Phase-diagram determination

General principles

 An alloy consists of a single phase or of a mixture of phases depending on the composition of the alloy and the temperature.

Phase diagram: a plot of temperature vs. composition \rightarrow a short map of alloy system

Investigation of the phase diagram:

• How X-ray methods can be used in the study of phase diagram of binary systems

ightarrow Determination of crystal structures of various phases involved

→Determination of solvus (solid solubility) curves

Powder pattern of alloys \rightarrow each phase produces its own pattern independently of the presence or absence of any other phase

• If two metal A and B are *completely soluble* in the solid state

 \rightarrow The solid phase α is of the substitutional type \rightarrow it varies in composition (but not in crystal structure) from pure A to pure B

 \rightarrow Effect on powder patterns: shift of the diffraction-line positions in accordance with the change in lattice parameter

• If two metals A and B are only *partially soluble* in the solid state (see Fig. 1)

 \rightarrow The first additions of B to A go into solid solution in the A lattice \rightarrow expanding or contracting depends on the relative sizes of the A and B atoms and type of the solid solution formed (substitution or interstitial)

 \rightarrow Finally the solubility limit of B in A is reached \rightarrow further addition of B \rightarrow precipitation of a second phase \rightarrow B-rich solid solution with the same structure as B

Fig. 1 Phase diagram: partial solid solubility

Single-phase regions: a change in the composition \rightarrow a change in the lattice parameter **Two-phase regions**: a change in the composition of the alloy \rightarrow a change in the relative amount of the two phases but no change in their composition \rightarrow Powder pattern consists of the superimposed pattern of α of composition x and β of composition y.

Solid solutions

- 1. Interstitial
- 2. Substitutional
- **1.** An **interstitial solid solution** of B in A \rightarrow when B atom is so small compared to the A atom that it can enter the interstices of the A lattice without causing much distortion

 \rightarrow Solid solutions formed between a metal and one of the elements, carbon, nitrogen, hydrogen, and boron (all have atoms less than 2 Å in diameter) \rightarrow always accompanied by increase in the volume of the unit cell.

• The density of an interstitial solid solution is given by the basic density equation

$$\rho = \frac{1.66042 \sum A}{V'}$$

Where $\sum A = n_s A_{s+} n_i A_i$

 n_s and n_i are number of solvent and interstitial atoms per unit cell and A_s and A_i are atomic weights of the solvent and interstitial atoms

 \rightarrow n_s is an integer and independent of the concentration of the interstitial element and that n_i is normally a small fraction of unity.

- 2. The formation of a *random substitutional solid solution* of B and A may be accompanied by either an increase or a decrease in cell volume→ depending on weather the B atom is larger or smaller than the A atom.
- The density of a random substitutional solid solution is found from

$$\rho = \frac{1.66042 \sum A}{V'}$$

With $\sum A$ factor being given by

 $\sum A = n_{solvent} A_{solvent+} n_{solute} A_{solute}$

Where n again refers to the number of atoms per cell and A to the atomic weight.

But here ($n_{solvent} + n_{solute}$) is a constant integer, equal to the total number of atoms per cell.

• Whether a given solution is interstitial or substitutional may be deduced by determining whether x-ray density calculated according to $\sum A = n_s A_{s+} n_i A_i$ or that calculated according to $\sum A = n_{solvent} A_{solvent+} n_{solute} A_{solute}$ agrees with the directly measured density.

Determination of Solvus curves (disappearing-phase method)

Disappearing-phase method: is based on a determination of the composition at which the β phase just disappear from a series of (α+β) alloys.

 \rightarrow "lever law": relative proportions of α and β in an alloy of composition z in equilibrium at temperature T₁ is given by the relative lengths of the lines zy and zx (see Fig. 2)

$$W_{\alpha}(z-x) = W_{\beta}(y-z)$$

Where W_{α} and W_{β} denote the relative weights of α and β if x, y, and z are expressed in weight percent.

Intensity of any diffraction line from the β phase varies from zero at x to a maximum at y \rightarrow This intensity variation used to locate the point x (see Fig. 2)

• The intensity of a diffraction line depends on atomic scattering factor f (proportional to atomic number Z).

if atomic number of B is considerably less than A \rightarrow the intensity of the β may be so much lower than α pattern \rightarrow large amount of β in two–phase mixture will be undetected

Fig. 2 Level law construction for finding the relative amount of two phases in a two-phase field

Determination of Solvus curves (Parametric method)

- Parametric method: is based on observation of the α solid solution itself→ depends on the fact that the lattice parameter of a solid solution generally changes with composition up to the saturation limit, and then remains constant beyond that point (see Fig. 3).
- Determination of the exact location of the solvus curve:

 \rightarrow A series of alloys 1 to 7 is brought to equilibrium temperature T₁,

 \rightarrow The lattice parameter of α is measured for each alloy and plotted against alloy composition, resulting in a curve in Fig (3b).

(This curve has two branches)

 \rightarrow An inclined branch "*bc*", which shows how the parameter of α varies with the composition of α (this branch serves as a sort of master curve for the determination of the whole solvus), and a horizontal branch "*de*", which shows that α phase in alloys 6 and 7 is saturated, because its lattice parameter does not change with change in alloy composition

 \rightarrow The limit of the α field at temperature T₁ is therefore given by the intersection of the two branches of the parameter curve \rightarrow x percent B at T₁.

Fig. 3 Parametric method for determining a solvus curve.

→ Once the parameter-composition curve of the solid solution has been estimated only one two-phase alloy is needed to determine the rest of the solvus (see exercise).