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Röntgenbeugung-Intensität (II): 

There are six factors affecting the relative intensity (I) of the diffraction lines on a powder 

pattern: 

 Polarization factor 

 Structure factor 

 Multiplicity factor 

 Lorenz factor 

 Absorption factor 

 Temperature factor 

 

 I prop.  
1

2
(1 + 𝑐𝑜𝑠22𝜃)  

 

I prop.  |𝑭𝒉𝒌𝒍|
2 

 The relative proportion of planes contributing to the same reflection enters the intensity 

equation as the quantity p, the multiplicity factor. 

the number of different planes in a form having the same spacing. 

 The value of p depends on the crystal system: in the tetragonal crystal, the (100) and (001) 

planes do not have the same spacing p for {100} is 4 and for {001} is 2  

  

 

Multiplicity factors for the powder method 

Flächen-Häufigkeitszahlen von Netzebenen bei Debye-Scherrer Aufnahmen (R.Glocker) 
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 The integrated intensity of a reflection dependence on the particular value of θB involved 

via the maximum intensity and the breadth.  

 The value of Imax of the curve depends on the angular range (Δ𝜃) of crystal rotation over 

which the energy diffracted in the direction 2θB is appreciable.  

 
 

 Δ𝜃 =
𝜆

2𝑁𝑎𝑠𝑖𝑛𝜃
, where a is atom spacing in the plane and Na the total length of the plane 

this Eq. gives the maximum angular range of crystal rotation over which appreciable 

energy will be diffracted in the direction 2θB. 

 Imax depend on this range Imax prop. 
1

𝑠𝑖𝑛𝜃
 

 B (breath) prop. 
1

cosθB
  (Scherrer Eq.) 

 Integrated intensity prop. ImaxB I prop. 
1

𝑠𝑖𝑛2𝜃𝐵
 

 The powder method is the equivalent of single-crystal rotation. 

 

 

 In powder method a second geometry factor arises 

  Integrated intensity depends on the number of crystal oriented at or near Bragg angle 

 

 
Δ𝑁

𝑁
=

Δθ 𝑐𝑜𝑠𝜃𝐵

2
  , the Δ𝑁 is number of the crystals and N the total number 

 number of crystal oriented at or near Bragg angle prop. 𝑐𝑜𝑠𝜃𝐵 

 

 

 In assessing relative intensities, we do not compare the total diffracted energy in one cone 

of rays with that in another but rather the integrated intensity per unit length of one 

diffraction line with that of another 

  the relative intensity per unit length of line  prop. 
1

𝑠𝑖𝑛2𝜃𝐵
 

 

 The three geometry factors are combined in one 
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 Lorenz factor = 
1

𝑠𝑖𝑛2𝜃𝐵
. 𝑐𝑜𝑠𝜃𝐵 .

1

𝑠𝑖𝑛2𝜃𝐵
 = 

1

4𝑠𝑖𝑛2𝜃𝑐𝑜𝑠𝜃
 

 

 Lorenz factor + polarization factor Lorenz-

polarization factor = 
1+𝑐𝑜𝑠2𝜃

𝑠𝑖𝑛2𝜃𝑐𝑜𝑠𝜃
 

 

 The overall effect of these geometry factor 

 decrease of the intensity of reflection at intermediate 

angles compared to those in forward or backward 

directions 

 

 The calculation of A depends on the geometry of the diffraction method involved. 

 Atoms vibrate about their mean position even at absolute zero. 

Thermal vibration effects: 

1. The unit cell expands plane spacing d changes change in 2θ position of the 

diffraction lines 

2. The intensity of the diffraction lines decreases 

3. The intensity of the background scattering between lines decreases 

Variations in intensity with 2θ at constant temperature. 

 Thermal agitation decrease the intensity the reinforcement is not perfect 

 The thickness of the platelike “planes” in which the vibrating atoms lie is (on the average)  

2u 

 u is the average displacement of an atom from 

mean position 

 T increases  u/d increases   reinforcement 

become more imperfect 

 High- θ reflection involve planes of low d 

thermal vibration causes a greater decrease in 

the reflected intensity at high angles than at low 

angles. 

 

 In intensity calculation we allow for this effect 

by introducing the temperature factor 𝒆−𝟐𝑴
 

𝒆−𝟐𝑴 decreases as 2θ increases 

Temperature factor e
-2M

 of iron at 20°C as a 
function of (sinθ)/λ  (B. D. CULLITY 1977) 

Lorentz-polarization factor  

(B. D. CULLITY 1977) 
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 The quantity M depends on both the amplitude u of thermal vibration and the scattering 

angle 2θ 

 𝑀 = 2𝜋2 (
𝑢2̅̅ ̅̅

𝑑2) = 8𝜋2𝑢2 ̅̅ ̅̅  (
𝑠𝑖𝑛𝜃

𝜆
)2 = 𝐵 (

𝑠𝑖𝑛𝜃

𝜆
)2   

The 𝑢2̅̅ ̅ is the man square displacement of the atom in a direction normal to the reflecting 

planes. 

Debye has given the following expression: 

 𝑀 =
6ℎ2𝑇

𝑚𝑘Θ2
 [𝜙(𝑥) +

𝑥

4
](

𝑠𝑖𝑛𝜃

𝜆
)2   

Where h is planks constant, T the absolute temperature, m the mass of vibrating atom, k 

Boltzmann’s constant, Θ the Debye characteristic temperature of the substance in K, 

𝑥 =
Θ

𝑇
 , and [𝜙(𝑥) is a function tabulated , along with values of Θ. In Appendix 15. 

Because m=A/N, where A=Atomic weight and N =Avogadro’s number, the coefficient of 

the bracket terms above becomes 

6ℎ2𝑇

𝑚𝑘Θ2
=

6(6.02 × 1026)(6.63 × 10−34)2𝑇

𝐴Θ2(1.38 × 10−23)(10−20)
=

1.15 × 104𝑇

𝐴Θ2
 

 

if 𝜆 is in Å. This equation is approximate and applied only to elements with cubic crystal 

structure. 

 

 The temperature effect and absorption effect depends on angles in opposite ways 

to a first approximation, cancel each other in Debye-Scherrer method 

 

 

 The relative intensity of powder pattern lines: 

Deby-Scherrer Camera: 

𝑰 = |𝑭|𝟐𝒑 (
𝟏+𝒄𝒐𝒔𝟐𝟐𝜽

𝒔𝒊𝒏𝟐𝜽𝒄𝒐𝒔𝜽
)  , (approximation) 

Where I = relative integrated intensity (arbitrary units), F= structure factor, p= multiplicity factor. 

And 𝜃 = Bragg angle. 

 Omission of the temperature and absorption factors means that this Eq. is valid only for 

lines fairly close together on the pattern. 

 This Eq. gives relative integrated intensity, i.e., the relative area under the curve of 

intensity vs. 2𝜃 

  𝑰 = |𝑭|𝟐𝒑 (
𝟏+𝒄𝒐𝒔𝟐𝟐𝜽

𝒔𝒊𝒏𝟐𝜽𝒄𝒐𝒔𝜽
) 𝑨(𝜽)𝒆−𝟐𝑴, (Exact expression) 


