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 The uniform macro strain causes a shift of the diffraction lines to new 2θ positions. 

 The non-uniform micro-strain causes a broadening of the corresponding diffraction 

line. 

Both kinds of strain are usually superimposed in plastically deformed metals and diffraction 

lines are both shifted and broadened. 

 X-ray diffraction can be used as a method of residual stress measurement in metals and alloys. 

Consider a metal bar deformed elastically, for example in uniform tension. 

If the external force is removed, the stress disappears and the bar regains its initial stress-free 

dimensions. 

The stress, which persists in the absence of external forces, is called residual stress. 

The x-ray method is nondestructive for the measurement of surface stress.  

Consider a cylindrical rod of cross-section area A stressed elastically in tension by a force F (see 

Fig .1) 
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Fig. 1 Bar in pure tension 

There is a stress 𝜎𝑦 = 𝐹/𝐴 in the y direction. 

The stress 𝜎𝑦 produces a strain 𝜖𝑦 in the y direction given by  

𝜖𝑦 =
∆𝐿

𝐿
=

𝐿𝑓 − 𝐿0

𝐿0
 

where 𝐿0 and 𝐿𝑓 are the original and final length of the bar. This strain is related to the stress by 

𝜎𝑦 = 𝐸𝜖𝑦 

where E is elasticity constant. The elongation of the bar is accompanied by a decrease in its 

diameter D. The strain in the x and z direction are therefore given by  

𝜖𝑥 = 𝜖𝑧 =
𝐷𝑓 − 𝐷0

𝐷0
 

where 𝐷0 and 𝐷𝑓 are the original and final diameters of the bar.  

If the material of the bar is isotropic, these strains are related by the equation 

𝜖𝑥 = 𝜖𝑧 = −𝜈𝜖𝑦 
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where 𝜈 is poison’s ratio for the material of the bar.  

  

To measure 𝜖𝑦 by x-rays  diffraction from planes perpendicular to the axis of bar 

Since this is usually physically impossible, we use instead reflecting planes which are parallel to 

the axis of the bar by making the back reflection x-ray measurement  

In this way, the obtained strain in z direction: 

𝜖𝑧 =
𝑑𝑛 − 𝑑0

𝑑0
 

where 𝑑𝑛 is the spacing of the planes parallel to the bar axis under stress, and 𝑑0 is the spacing 

of the same planes in the absence of stress.  

𝜎𝑦 = −
𝐸

𝜈
(
𝑑𝑛 − 𝑑0

𝑑0
) 

In a bar subject to pure tension the normal stress acts only in a single direction  

 there will be stress components in two or three directions at right angles to one another, 

forming so-called biaxial or triaxial stress systems.   

 

Fig. 2 Stress at the surface of a stressed body. 𝝈𝟑 = 𝟎. The stress to be measured is 𝝈𝝓 (B.D. CULLITY 1977) 
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Principal stresses 𝜎1 and 𝜎2 are parallel to the surface, and 𝜎3 is zero. However 𝜖3 the strain 

normal to the surface is not zero. It has a finite value, given by the Poisson contraction due to 

𝜎1 𝑎𝑛𝑑 𝜎2.  

𝜖3 = −𝜈(𝜖1 + 𝜖2) = −
𝜈

𝐸
(𝜎1 + 𝜎2) 

What we want to measure  single stress 𝜎𝜙 acting in some chosen direction in the surface, 

direction OB, making an angle of  𝜙 with the principal direction 1.  

We do this by making two measurements: strain 𝜖3 along the surface normal, and one of the 

strain 𝜖𝜓 along OB. The direction OB lies in the vertical plane OABC through OC at an angle 𝜓, 

usually chosen to be 45°, to the surface normal (see Fig. 2).  

 𝜖3 is driven from the spacing   𝑑𝑛  of planes parallel to the surface, and  

 𝜖𝜓 from spacing 𝑑𝑖 of planes whose normal is inclined along OB. 

If the specimen were unstressed, the 𝑑0 plane spacing is independent of plane orientation.  

This not true when stress is present  if the stress is tensile, 𝑑𝑖  increases with 𝜓 . 

Elasticity theory for isotropic solid shows that the strain along the inclined line OB is: 

𝜖𝜓 = 1/𝐸[𝜎𝜙(1 + 𝜈)𝑠𝑖𝑛2𝜓 − 𝜈(𝜎1 + 𝜎2)] 

 𝜖𝜓 − 𝜖3  =
𝜎𝜙

𝐸
(1 + 𝜈)𝑠𝑖𝑛2𝜓 

This Eq. is the basis for the x-ray measurement of stress.  

 The difference between two strains in a stressed specimen depends only on the stress 

acting in the plane of those strains.  

 Expressing the strain in terms of plane spacing (unknown 𝑑0can be replaced by 𝑑𝑛 or 𝑑𝑖 

with negligible error): 

𝜎𝜙 =
𝐸

(1+𝜈)𝑠𝑖𝑛2𝜓
(

𝑑𝑖−𝑑𝑛

𝑑𝑛
) 
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Because the angular position 2θ of the diffracted beam is measured directly with a 

diffractometer, it is convenient to write the stress equation in terms of 2θ rather than plane 

spacing.  

𝜎𝜙 = 𝑘1(2𝜃𝑛 − 2𝜃𝑖) = 𝑘1(Δ2𝜃) 

𝑘1 =
𝐸𝑐𝑜𝑡 𝜃 )

2(1 + 𝜈)𝑠𝑖𝑛 2𝜓
 

where 2𝜃𝑛 is the observed value (in radian) of the diffraction angle in the “normal” 

measurement (𝜓 = 0) and 2𝜃𝑖  its value in the inclined measurement (𝜓 = 𝜓).  

The constant 𝑘1 is called the stress constant. For greatest sensitivity 𝑘1 should be as small as 

possible, which is why 𝜃 should be as large as possible. 

 But instrument misalignment can introduce small errors which cause a change in 2θ 

even for a stress-free specimen, when 𝜓 is changed from 0 to 45°.  

If (Δ2𝜃)0 is the line shift for a stress-free specimen and (Δ2𝜃)𝑚 the measured shift for a 

stressed specimen, then the line shift due to stress is  

Δ2𝜃 = (Δ2𝜃)𝑚 − (Δ2𝜃)0 

Line position cannot be measured with sufficient precision   

The standard method of finding the center of a diffraction line, broad or narrow, is to fit a 

parabola to the top of the line and take the axis of the parabola  as the line center. 

 

A simpler method for locating the parabola axis was suggested by Koistinen and Marburger: 



6 
 

Only three points on the line profile need be measured but they must be separated by the same 

angular interval c, as shown in Fig. 3. 

  

Fig. 3 Three-point method for fitting a parabola. X=2θ, y=I (B.D. CULLITY 1977) 

 

The center point should be near the maximum and the other two have intensities of about 85 

percent of the maximum. Once the intensity differences a=y2-y1 and b=y2-y3 are found, the 

center of the line is given by  

ℎ = 𝑥1 +
𝑐

2
(
3𝑎+𝑏

𝑎+𝑏
) 

the y coordinate may be intensity I in counts/sec, counts n for a fixed time, or reciprocal time 

1/t for a fixed count. 

The breath of an x-ray line often correlates well with the hardness of the specimen. Marburger 

and Koistinen also showed that the hardness of certain quenched and tempered steel is related 

to the breath Bp of the parabola used to fit the x-ray line for stress measurements. 𝐵𝑝 may be 

determined solely from the data obtained in the stress measurements, if the following more 

complex expression is used: 

𝐵𝑝 = 𝑐[
(3𝑎 + 𝑏)2 + 8𝑦1(𝑎 + 𝑏)

2(𝑎 + 𝑏)2
]1/2 
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 When the lines are broad, certain corrections should be applied to the intensity data 

before finding the line center.  

Lorenz-polarization (L-P) factor can be modified as:  

(1 + 𝑐𝑜𝑠22𝜃)/(𝑠𝑖𝑛2𝜃). 

The variation of this factor with 2𝜃  makes a high-angle line asymmetrical about its center.  

Absorption on the specimen has a similar effect when 𝜓 Is not zero, because the absorption 

factor is then  

(1-tan 𝜓 cot 𝜃). 

 Combine these two factors into one and call it LPA factor, then  

 

LPA=(modified L-P factor)(absorption factor)= (
1+𝑐𝑜𝑠22𝜃

𝑠𝑖𝑛2𝜃
)(1 − 𝑡𝑎𝑛𝜓 𝑐𝑜𝑡𝜃) 

Measured intensities are to be divided by LPA in order to make the lines more nearly 

symmetrical, before determining the line center by the least-squares or three-point method.  

   


