Dr Semën Gorfman Department of Physics, University of Slegen

Lecture course on crystallography, 2015

Lecture 6: Bravais types of lattices

Depending on the geometry crystal lattice may sustain different symmetry elements.

According to the symmetry of the LATTICES all CRYSTAL are subdivided into a CRYSTAL SYSTEMS

2D Lattice symmetry 1: Oblique

The oblique lattice has 2-fold axis only / centre of inversion .

Note that for two dimensional objects 2fold axis is equivalent to the centre of inversion

2D Lattice symmetry 1: Oblique. The choice of basis vectors

No particular restrictions on the choice of the basis vectors constructing the lattice.

> a ≠ b α ≠ 90 deg

<u>2 D Lattice symmetry 2: Square</u>

<u>2 D Lattice symmetry 2: Square. The choice of basis</u>

2 D lattice symmetry 3: Hexagonal

- a) 6-fold symmetry axis
- b) Mirror planes 1a,1b,1c,2a,2b,2c (as shown on the plot)

<u>2 D lattice symmetry 3: Hexagonal. The choice of basis</u>

Conventional choice *a is along mirror plane 1a, b is along mirror plane 1c*

a=b,
$$lpha$$
=120 deg

2D lattice symmetry 4: Rectangular

- a) 2-fold symmetry axis
- b) Mirror planes 1 and 2 (see the plot)

2D lattice symmetry 4: Rectangular. The choice of basis

Conventional choice *a* is along mirror plane 1, *b* is along mirror plane 2 a \neq b, α =90 There is possibility to construct the lattice which is different from the one shown on previous page, but has the SAME POINT SYMMETRY:

- 1) 2-fold axis
- 2) Two mirror plane perpendicular to each other 1 and 2

CENTERED RECTANGULAR LATTICE

The basis of this lattice can be chosen as **a** and **b**. It is however more convenient to change the basis vectors to \boldsymbol{a} and \boldsymbol{b}_1 so that they are oriented relative to the symmetry elements as

a is along mirror plane number one, b_1 is long the mirror plane number 2.

Unit cell based on the vectors **a** and **b**₁ **contains a LATTICE POINT IN THE MIDDLE at the position** [1/2, 1/2].

IMPORTANT!!

There are 4 different symmetries of 2D lattice (*oblique, square, hexagonal* and *rectangular*). The symmetry of a lattice is referred to as *CRYSTAL SYSTEM*. So, there are *4 2D CRYSTAL SYSTEMS*.

Each CRYSTAL SYSTEM has the <u>conventional</u> choice of two lattice basis vectors, *a* and *b*, where the orientation of these vectors are specified by the orientation of symmetry elements.

Rectangular CRYSTAL SYSTEM (2 fold axis and 2 mirror planes) is accepted by two different type of lattices. The basis for the unit cell is either primitive (one lattice point per unit cell [0 0]) or centred (two lattice points per unit cell: [0 0] and [1/2 1/2]) unit cell.

CONCLUDING TABLE FOR 2D LATTICES

Crystal system	Basis vectors / Symmetry elements	Lattice constants	Lattice type
1. Oblique	$\overset{a_2}{\longleftarrow} a_1$	a ≠ b, α ≠ 90 deg	p2
2. Square	$a_2 \wedge a_1 \rightarrow a_1$	a = b, α = 90 deg	 p4mm
3. Hexagonal		a = b, α = 120 deg	p6mm

CONCLUDING TABLE FOR 2D LATTICES (cont)

Crystal system	Basis vectors / Symmetry elements	Lattice constants	Lattice type
4. Rectangular	a_2	a ≠ b, α = 90 deg	pmm2
			cmm2

Classification of 3D lattice.

For the case of 3 D lattice there are <u>7 different symmetries</u> (crystal systems) and <u>14 different types of lattices</u> (compare to 4 symmetries and 5 lattices for the 2D case). The types of lattices were analysed by August Bravais

Auguste Bravais (1811-1863)

Because of this the different types of lattices are referred as Bravais lattices

3D Lattice symmetry 1: Triclinic

The <u>triclinic</u> lattice has the centre of inversion .

Note that any three dimensional lattice has the centre of inversion as if **A** is a lattice point then **-A** is also a lattice point

There is no particular restriction on the choice of basis vectors, *a b* and *c*

 $a \neq b \neq c$ $\alpha \neq \beta \neq \gamma \neq 90 deg$

3D Lattice symmetry 2: Monoclinic

The *monoclinic lattice* has

- a) 2-fold axis
- b) Mirror plane

Conventional choice of lattice basis vectors is

- 1) **b** is parallel to the 2 fold axis / perpendicular to the mirror plane
- 2) a and c are within a mirror plane

 $a \neq b \neq c$ $\alpha = \gamma = 90 \text{ deg } \beta \neq 90 \text{ deg}$

NB!! 3D monoclinic lattice is obtained by stacking 2D oblique lattices on the top of each other

3D Lattice symmetry 3: Orthorhombic

The *orthorhombic* lattice has

- a) 2-fold axis (3 perpendicular to each other)
- b) Mirror plane (3 perpendicular to each other)

Conventional choice of lattice basis vectors is **a**, **b** and **c** are along the directions of the two fold axes

> $a \neq b \neq c$ $\alpha = \beta = \gamma = 90 \text{ deg}$

NB!! 3D orthorhombic lattice is obtained by stacking 2D rectangular lattices on the top of each other

3D Lattice symmetry 4: Tetragonal

The *tetragonal* lattice has

- a) 4-fold axis
- b) 2-fold axes (2 perpendicular to each other)
- c) Mirror plane 1,2,3 parallel to 4 fold axis
- d) Mirror plane perpendicular to 4 fold axis

Conventional choice of lattice basis vectors is

c is parallel to the 4 fold axis, a and b are parallel to the 2 fold axes

 $a = b \neq c$ $\alpha = \beta = \gamma = 90 \text{ deg}$

NB!! 3D tetragonal lattice is obtained by stacking 2D square lattices on the top of each other

3D Lattice symmetry 5: Hexagonal

The *hexagonal* lattice has

- a) 6-fold axis (main)
- b) Mirror planes and 2-fold axes as shown on the plot

Conventional choice of lattice basis vectors is *c* is parallel to the *6* fold axis, *a* and *b* are chosen according to hexagonal 2 D lattice

 $a = b \neq c$ $\alpha = \beta = 90 \text{ deg } \gamma = 120 \text{ deg}$

NB!! 3D *hexagonal* lattice is obtained by stacking 2D *hexagonal* lattices on the top of each other

3D Lattice symmetry 6: Trigonal

The <u>trigonal</u> lattice has

- a) Single 3-fold axis
- b) Mirror planes and 2-fold axes as shown on the plot

Conventional choice of lattice basis vectors is *a*, *b* and *c* are within the mirror planes and [111] is parallel to the 3fold axis

3D Lattice symmetry 7: Cubic

The *cubic* lattice has (symmetry of a cube)

- a) 3-fold axis (4 times)
- a) All elements of the tetragonal lattice

Conventional choice of lattice basis vectors is The same as for the tetragonal lattice (a, b and c) are along three orthogonal symmetry directions

Centering of the unit cell

Some symmetries (in particular *monoclinic, orthorhombic, tetragonal* and *cubic*) can be described by different types of lattice (refer to the rectangular symmetry for the 3D case).

The lattice vectors **a**, **b** and **c** chosen according to the conventional rules form the NON-PRIMITIVE UNIT CELL, which has additional lattice points inside. This correspond to the CENTERING OF A UNIT CELL.

For three dimensions all distinct lattices may be described by a few types of centering. It gives 14 3D Bravais lattice.

Position of the lattice points

- 1. [000]
- 2. [0 1/2 1/2]

Primitive unit cell

a' = [1,0,0] *b'* = [0,1/2,1/2] *c'* = [0,-1/2,1/2]

Base centering (B)

Base centering (C)

Position of the lattice points

- 1. [000]
- 2. [1/2 0 1/2]
- 3. [1/2 1/2 0]
- 4. [0 1/2 1/2]

Primitive unit cell

- *a'* = [0 1/2 1/2]
- **b'** = [1/2 0 1/2]
 - *c'* = [1/2 1/2 0]

THEOREM ABOUT BASE CENTERING OF A LATTICE

If the lattice is A and B centred then it is C centered as well

Suppose that the lattice describes the following lattice translations:

- **1.** $A_1 = [u v w]$ where u, v, and w are the lattice points
- 2. $A_2 = [0 1/2 1/2]$ as a result of the A centering
- 3. $A_3 = [1/2 \ 0 \ 1/2]$ as a result of the B centering

The above lattice translations may be combined in any sequence. For example if $A_1 A_2 A_3$ are the lattice vectors then $A_1 + A_2 - A_3$ is a lattice vector as well. Taking the lattice vector A_1 as [100] we get additional translation

4. $A_4 = [100] + [0 1/2 1/2] - [1/2 0 1/2] = [1/2 1/2 0]$ which manifests C centering

Result: There are no AB, AC or BC centring as they are all equivalent to the F centering

CONCLUDING TABLE FOR 3D LATTICES

Crystal system	Symmetry	Lattice constants	Lattice types
1. Triclinic	Inversion only	a ≠ b ≠ c, α ≠ β ≠ γ ≠ 90 deg	1. Primitive (P)
2. Monoclinic	Single 2-fold / single mirror	a ≠ b ≠ c, α= γ = 90 deg β ≠ 90 deg	2. Primitive (P) 3. Base centred (C)
			31

Crystal system	Symmetry	Lattice constants	Lattice types
3. Orthorhombic	Three perpendicular mirror planes and 2 fold axes	a ≠ b ≠ c, α = β = γ = 90 deg	4. Primitive (P) 5. Base centered (A) 6. Body centered (I) 7. Face centered (F)
4. Hexagonal	<section-header></section-header>	a = b ≠ c, α= β= 90 deg γ = 120 deg	8. Primitive (P)

Crystal system	Symmetry	Lattice constants	Lattice types
5. Trigonal	3-fold axis and mirror planes	a = b = c, α = β = γ ≠ 90 deg	9. Primitive (P)
6. Tetragonal	4-fold axis plus mirror planes	a = b ≠ c, α= β=γ = 90 deg	10. Primitive (P) 11. Body centered (I)

Crystal system	Symmetry	Lattice constants	Lattice types
5. Cubic	<section-header></section-header>	a = b = c, $\alpha = \beta = \gamma = 90 \text{ deg}$	12. Primitive (P)13. Face centered (F) (face centered cubic)14. Body centered (I)

Relationships between hexagonal and rhombohedral cell settings

A crystal lattice with 3 fold symmetry axis is usually described by trigonal (rhombohedral) cell setting: $\{a_{R'}b_{R'}c_{R}\}$ ($a_{R}=b_{R}=c_{R'}, \alpha_{R}=\beta_{R}=\gamma_{R}$). In this case unit cell is **primitive**, i.e. contains **one** lattice point

The same lattices (with 3 fold symmetry axis) may be described by hexagonal cell setting: $\{a_{\mu\nu}b_{\mu\nu}c_{\mu}\}\ (a_{\mu}=b_{\mu}, \alpha_{\mu}=\beta_{\mu}=90 \text{ deg}, \gamma_{\mu}=120 \text{ deg})$. In this case unit cell is **non primitive**, i.e. contains **three** lattice points

The transformations between hexagonal and rhombohedral cell basis vectors are given by

$$\begin{cases} \mathbf{a}_{H} = \mathbf{a}_{R} - \mathbf{b}_{R} = [110]_{R} \\ \mathbf{b}_{H} = \mathbf{b}_{R} - \mathbf{c}_{R} = [011]_{R} \\ \mathbf{c}_{H} = \mathbf{a}_{R} + \mathbf{b}_{R} + \mathbf{c}_{R} = [111]_{R} \end{cases} \begin{cases} \mathbf{a}_{R} = 2/3\mathbf{a}_{H} + 1/3\mathbf{b}_{H} + 1/3\mathbf{c}_{H} \\ \mathbf{b}_{R} = -1/3\mathbf{a}_{H} + 1/3\mathbf{b}_{H} + 1/3\mathbf{c}_{H} \\ \mathbf{c}_{R} = -1/3\mathbf{a}_{H} - 2/3\mathbf{b}_{H} + 1/3\mathbf{c}_{H} \end{cases}$$

On the illustration below the lattice projection along [001] hexagonal axis is given:

Lattice points in the layer 0 (projection to c_H axis is 0)

Lattice points in the layer 1 (projection to c_H axis is 1/3)

Lattice points in the layer 2 (projection to c_{H} axis is 2/3)

Relationships between hexagonal and rhombohedral cell settings

