Dr Semën Gorfman Department of Physics, University of Slegen

Lecture course on crystallography, 2015

Lectures 3-4: Properties of crystal lattice, lattice planes

1 Dimensional crystal (1D periodic structures)

To obtain the whole crystal structure one has to translate the UNIT CELL to each LATTICE POINT

Different choices of unit cell

2 Dimensional crystal (2D periodic structures)

+

4

IMPORTANT MESSAGES!!!

- Crystal lattice is the mathematical object, describing the periodicity of crystal structure.
- Do not confuse <u>crystal lattice</u> with <u>crystal</u> <u>structure</u>
- Crystal structure is <u>UNIT CELL * CRYSTAL LATTICE</u>
- In order to get the whole crystal structure one has to translate the unit cell to the all lattice points

BASIS VECTORS and CRYSTAL LATTICE PARAMETERS

Lattice parameters for two dimensional case: $a = |\mathbf{a}|, b = |\mathbf{b}|, \alpha = \angle (\mathbf{a}, \mathbf{b})$ For the given example: a=1.5, b=1, α =80 deg

Different choices of basis vectors and lattice parameters

There is a freedom of choice of the lattice basis vectors and therefore lattice parameters

Building a lattice : choice of basis vectors 1

Building a lattice : choice of basis vectors 2

Building a lattice : choice of basis vectors 3

Theorem about the choice of basis vectors

Consider the lattice built with two basis vectors, a_1 and a_2

Take two other lattice vectors

 $A_{1} = [u_{1i}] = u_{11}a_{1} + u_{12}a_{2}$ $A_{2} = [u_{2i}] = u_{21}a_{1} + u_{22}a_{2}$

 u_{ij} are integer

Does this new pair of vectors build the same lattice???

It is necessary to provide that the area, **S** of the parallelogram built on a_1 and a_2 is the same as the area of parallelogram built on A_1 and A_2

$$S(A_1, A_2) = \pm \begin{vmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{vmatrix} S(a_1, a_2) \qquad \begin{vmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{vmatrix} = \pm 1$$

If the last equation is fulfilled the pair of vectors A_1 and A_2 can be chosen as basis vectors for the SAME LATTICE

Description of the lattice planes

Suppose the pair of basis vectors, a_1 and a_2 is chosen and the lattice is built.

We split the lattice into the system of rows parallel to the lattice vectors $A_1 = [u_{11} \ u_{12}]$. We aim to formulate the equation for the point within row N

The equation of the row number N

$$h_1 x_1 + h_2 x_2 = N$$

with $h=u_{12}$ and $k=-u_{11}$

Reciprocal basis vectors

Consider a lattice built on the pair of vectors, a_1 and a_2 . The pair of reciprocal basis vectors, a_1^* and a_2^* is introduced according to the following dot products

The lattice based on the vectors $oldsymbol{a}_1^*$ and $oldsymbol{a}_2^*$ is a RECIPROCAL LATTICE

Equation of planes in terms of reciprocal basis vectors

The equation of the lattice rows: $h_1 x_1 + h_2 x_2 = N$

can now be rewritten as simply with the dot product

(**B R**) = N

with $\boldsymbol{R} = x_i \boldsymbol{a_i}$ $\boldsymbol{B} = h_i \boldsymbol{a}_i^*$

For the row number 0 (plane going through the origin) we get (P, P) = 0

$$(BR)=0$$

i.e. the row is perpendicular to the vector **B**.

For the first plane (B R) = 1.

Each set of lattice rows is described by the INTEGER NUMBERS (typically called *h* and *k*) known as **MILLER INDICES**

<u>The properties of lattice planes with MILLER INDICES h₁ and h₂</u> (NB!!! These indices are commonly written as h and k)

- 1. The equation of planes are $h_1x_1 + h_2y_2 = N$ (with N integer)
- 2. According to the definition the numbers $h_1(h)$ and $h_2(k)$ are mutually prime integers
- 3. The set of planes is perpendicular to the reciprocal lattice vector $B = h_1 a_1^* + h_2 a_2^*$
- 4. The distance between the neighbouring planes is given by d = 1 / |B|
- 5. The plane intersect the lattice basis vectors in the points [N/h, 0] and [0, N/k]
- 6. The distance between two lattice point within single plane is
 I_{hk} = |B|*S(*a,b*)

Examples. MILLER INDICES AND LATTICE PLANES

How do you calculate the Miller indices of the given set of lattice planes?

- 1. There is a plane (number N) intersecting the main axes **a** and **b** in points [1,0] and [0,2].
- 2. According to equation of this plane h=N and k=N/2.
- 3. The mutually prime h and k are obtained by taking N=2. We get h=2 and k=1.

Examples. MILLER INDICES AND CRYSTAL MORPHOLOGY

According to the original idea of <u>Haüy</u> the faces of a crystal are parallel to the lattice planes. Now we can characterize the crystal faces in terms of the Miller indices.

We take a lattice and construct a polyhedron from the different number of faces

Examples. MILLER INDICES AND CRYSTAL MORPHOLOGY

BASIS VECTORS and CRYSTAL LATTICE PARAMETERS in 3D

The set of lattice parameters for the 3D lattice $a=|a|, b=|b|, c=|c|, \alpha=\angle(b,c), \beta=\angle(a,c), \gamma=\angle(a,b)$

Theorem about the choice of basis vectors, 3D case

It is necessary to provide that the volume of the parallelepiped built on **a**, **b** and **c** is the same as the area of parallelogram built on A_1 , A_2 and A_3

$$V(\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}) = \pm \begin{vmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{vmatrix} V(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}) \qquad \begin{vmatrix} u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \\ u_{31} & u_{32} & u_{33} \end{vmatrix} = \pm 1 \qquad (*)$$

If equation (*) is fulfilled if the vectors A_1 , A_2 and A_3 can be chosen as basis vectors for the SAME LATTICE

27

Reciprocal basis vectors (3D case)

Consider the crystal lattice and the pair of lattice basis vectors **a**, **b** and **c**. The pair of reciprocal basis vectors, **a***, **b*** and **c*** is introduced according to the following dot products

$$a_{1} \cdot a_{1}^{*} = 1 \quad a_{1} \cdot a_{2}^{*} = 0 \quad a_{1} \cdot a_{3}^{*} = 0$$
$$a_{2} \cdot a_{1}^{*} = 0 \quad a_{2} \cdot a_{2}^{*} = 1 \quad a_{2} \cdot a_{3}^{*} = 0$$
$$a_{3} \cdot a_{1}^{*} = 0 \quad a_{3} \cdot a_{2}^{*} = 0 \quad a_{3} \cdot a_{3}^{*} = 1$$

That means a_1^* is perpendicular to the (a_2a_3) plane That means a_2^* is perpendicular to the (a_3a_1) plane That means a_3^* is perpendicular to the (a_1a_2) plane

$$A = u_i a_i$$
$$B = h_j a_j^*$$
$$A \cdot B = u_i h_i = u_1 h_1 + u_2 h_2 + u_3 h_3$$

Mathematical description of lattice planes (3D case)

Suppose the triple of main basis vectors, a_1 , a_2 and a_3

is chosen and the lattice is built

We split the lattice into the system of planes so that the plane is defined by the lattice vectors $A_1 = [u_{1i}]$ and $A_2 = [u_{2i}]$. Similar to the 2D case we can use the theorem about the choice of basis vectors to construct the equations of planes

Plane number 0

Plane number 1

Plane number 2

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \end{vmatrix} = 0 \qquad \begin{vmatrix} x_1 & x_2 & x_3 \\ u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \end{vmatrix} = 1 \qquad \begin{vmatrix} x_1 & x_2 & x_3 \\ u_{11} & u_{12} & u_{13} \\ u_{21} & u_{22} & u_{23} \end{vmatrix} = 2$$

In general the equation of the plane number N from the origin

 $\begin{array}{c} h_1 x_1 + h_2 x_2 + h_3 x_3 = N \\ h_1 x_1 + h_2 x_2 + h_3 x_3 = N \end{array} \text{ with } h_1 = \begin{vmatrix} u_{12} & u_{13} \\ u_{22} & u_{23} \end{vmatrix} \quad h_2 = -\begin{vmatrix} u_{11} & u_{13} \\ u_{21} & u_{23} \end{vmatrix} \quad h_3 = \begin{vmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{vmatrix}$

Equation of planes in terms of reciprocal basis vectors (3D)

The equation for the lattice planes:

$$h_1 x_1 + h_2 x_2 + h_3 x_3 = N$$

can now be rewritten as simply with the dot product

$$(\textbf{B} \ \textbf{R}) = N$$

 $\textbf{R} = x_i \textbf{a}_i \qquad \textbf{B} = h_i \textbf{a}_i^*$

For the plane number 0 (plane going through the origin) we get (**B** R) = O, that means the plane is perpendicular to the vector B. For the first plane (B R) = 1.

Each set of lattice rows is described by the INTEGER NUMBERS (typically called *h*, *k* and *l*) known as **MILLER INDICES**

The properties of lattice planes with MILLER INDICES h k l

- 1. The equation of planes are hx + ky + lz = N (with N integer)
- 2. According to the definition h, k and I are MUTUALLY PRIME
- The set of planes is perpendicular to the reciprocal lattice vector
 B = ha* + kb*+ lc*
- 4. The distance between the neighbouring planes is given by d = 1 / |B|
- 5. The plane intersect the lattice basis vectors in the points [N/h, 0, 0], [0, N/k,0], [0,0,N//]
- 6. The area of 2D lattice between four lattice point within single plane is $S_{hk} = |B| * V(a,b,c)$

<u>3D crystal morphologies. Crystal shapes corresponding to</u> the cubic lattice (lattice constants a=b=c, $\alpha = \beta = \gamma = 90$ deg)

<u>The angles between faces: how do they depend on the</u> crystal lattice

Example: the polyhedral shape of a 2D for two different crystal lattices

The angles between the natural faces of a crystals are defined by the crystal lattice parameters. This is the background for the law of constancy of the interfacial angles

Simple shapes corresponding to the cubic lattice (lattice

constants a=b=c, $\alpha = \beta = \gamma = 90 \text{ deg}$)

Cube

Octahedron

The list of faces for a cube:

(100)	(010)	(001)
(100)	$(0\overline{1}0)$	$(00\overline{1})$

The list of faces for an octahedron: (111) ($\overline{1}11$) ($\overline{1}\overline{1}1$) ($\overline{1}\overline{1}1$) (11 $\overline{1}$) ($\overline{1}1\overline{1}$) ($\overline{1}\overline{1}\overline{1}$) ($\overline{1}\overline{1}\overline{1}$)

Rhombododecahedron

The list of faces :

(110)	(110)	(110)	$(\overline{1}\overline{1}0)$
(101)	$(10\overline{1})$	(101)	$(\overline{1}0\overline{1})$
(011)	$(01\overline{1})$	$(0\overline{1}1)$	$(0\overline{1}\overline{1})$

Pentagondodecahedron

The list of faces :

(120)	$(1\overline{2}0)$	(120)	$(\bar{1}\bar{2}0)$
(201)	$(20\overline{1})$	(201)	$(\overline{2}0\overline{1})$
(012)	$(01\overline{2})$	$(0\overline{1}2)$	$(0\overline{1}\overline{2})$

