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REMINDER:  Types of symmetry operation 

According to the type of movement there are different types of symmetry operations 

1. Point symmetry: AT LEAST one point is fixed during 
the movement of the object  

2. Space symmetry: no points are fixed during the 
movement of the object 

• Rotation 
• Reflection 
• Inversion 
• Combination of any above 

• Translation (lattice translation) 
• Combination of translation and any kind of point symmetry operations 



Space symmetry operations: glide planes 

Glide plane is the symmetry element associated with the 
combination of a mirror and translation along  the mirror. 
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d  is the displacement, a=2d is a periodicity of a system 



d 

a 
The displacement within a 
glide plane is always half 
the periodicity of the 
system in the direction of 
the displacement 



Notations for the glide plane 

Notation Graphical symbol Actual meaning 

a, b, c The glide is along basis vectors a, b or c 

n 

g The glide is along the line (in 2D) 

The glide is along one of the diagonal 
[110] 

d The glide is along the diagonal [111] 



Reading symmetry diagrams containing glide 
planes 

1. Glide direction is parallel to the line (for a b or c planes)  

d 

3. Glide direction between the directions 1 and 2 (for n planes)  

2. Glide direction is perpendicular to the projection plane (for a b or c planes)  

d 



Screw axis 

Screw axis is the symmetry element associated with the 
combination of a rotation axis and translation along  the axis. 
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Notation for a screw axis 

nm  (n denotes rotation angle and m denotes the displacement) 

= 360 /n    
d = a·m/n, where a is the lattice period along direction of the axis 
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Notation for a screw axis 
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nm  (n denotes rotation angle and m denotes the displacement) 

= 360 /n    
d = a·m/n, where a is the lattice period along direction of the axis 
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UNIT CELL and ATOMIC POSITIONS 

a 

b 
Consider a crystal lattice. According to its 
Bravais type we chose the conventional pair 
(triple) of basis vectors: a,b and c. The 
crystallographic unit cell is defined by 
putting atoms, molecules, etc to the sites, 
R1 , R2 ,..., Rn inside the parallelogram 
based on the vectors a, b and c. The site of 
each and every atom in the unit cell is given 
by the fraction atomic positions, x, y and z. 

R1 

R2 
R3 

R= xa+yb+zc,  
with  0 ≤ x< 1, 0 ≤ y< 1, 0 ≤ z< 1 

The lattice translations are applied to each atomic positions, i.e.  if there is 
an atom with the coordinate [x,y,z] then there is also an atom with the 
coordinates [x+u, y+v, z+w]. Translation [uvw] is regarded as symmetry 
operation 



Matrix representation for symmetry operation 
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b 

a’ 

b’ 

d 

Any symmetry operation can be presented by 
the rotation matrix and displacement vector. 
Suppose the lattice is built on the basis vectors 
a, b and c and the position of atoms are given 
by the fractional coordinates [xyz] so that R = 
xa+yb+zc. If we apply the movement related to 
the particular symmetry operation, the vectors 
a, b and c are transformed into a’, b’ and c’ and 
the origin is displaced by the vector d. The 
position of symmetry equivalent atom is   

R’ = x a’ + y b’ + z c’  + d    = x1 a + y1 b + z1 c  
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Combination of symmetry operations in terms of 
matrices 

Symmetry operation 1:  {S1, d1}       R1 = S1 R0 + d1  

Symmetry operation 2:  {S2, d2}       R2 = S2 R0 + d2    

Symmetry operation 3:  {S1, d1}  -> {S2, d2}        
 

R2 = S2 R1 + d2   = S2 S1 R0 + S2 d1 + d2 

The combination of symmetry operation is represented by the 
rotation matrix S2 S1   and displacement vector S2 d1 + d2 

 



For the CENTERED LATTICES.  

We know that for 7 (out of 14) types of Bravais lattices the basis vectors are 
chosen in the way that the unit cell contains additional point. For these 
cases the translation by the centering vector( such as [1/2 1/2 1/2] ) is also 
a symmetry operation 

a 

b 

Rc 

1)    [x y z]     [x y z] + [xc yc zc] 

Forming crystallographic unit cell: 

2)   [x y z]     [x y z] + [xc yc zc] + [uvw] 
 
(reducing the position to the 
crystallographic unit cell, i.e. providing 
0 ≤ x< 1, 0 ≤ y< 1, 0 ≤ z< 1) 



Example: C - centred lattice ([0.5 0.5 0]). 

[x y z] [x y z] + RC 

[0  0  0] [0.5  0.5  0] [0  0  0] 

Auvw 
[x y z] +RC + Auvw 

[0.5  0.5  0] 

Original positions Adding centring 
vector  

Lattice vector The final position in the unit cell  

[0.2  0.7  0.7] [0.7  1.2  0.7] [0  -1  0] [0.7  0.2  0.7] 

[0.6  0.4  0.2] [1.1  0.9  0.2] [-1  0  0] [0.1  0.9  0.2] 

[0.7  0.8  0.1] [1.2  1.3  0.1] [-1  -1  0] [0.2  0.3  0.1] 



Unit cell and point symmetry operations 

a 

b 

m 

Suppose that crystal belongs 
to the rectangular crystal 
system and has the mirror 
plane  parallel to a. Then the 
atom is duplicated by 
symmetry operation  

-b 

Forming crystallographic unit cell: 

1)    [x y z]     [x -y z] 

2) [x -y z]     [x -y z] + [uvw] 
(reducing the position to the crystallographic 

unit cell 0 ≤ x< 1, 0 ≤ y< 1, 0 ≤ z< 1) 



Special positions in the unit cell 

a 

b 

m 

-b 

However we can consider a 
special case when the initial 
position of an atom in the unit 
cell is [x, 1/2, z]. In this case  

Forming crystallographic unit cell: 

1)    [x 1/2 z]     [x -1/2 z] 

2) [x -1/2 z]     [x -1/2 z] + [010] = [x 1/2 z] 
(reducing the position to the crystallographic unit cell 

0 ≤ x< 1, 0 ≤ y< 1, 0 ≤ z< 1) 

THE POSITION OF THE atom [x 1/2 z] is special as it is not 
duplicated by the symmetry operation 



Mathematical description of symmetry operations. Two 
fold axis parallel to c 
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b 

a’ 

b’ 

x y z 

-x -y z 

2 fold rotation axis parallel to the c (provided a and b is 
perpendicular to c) gives two symmetry equivalent atoms  

1) x y z         2) -x -y z            

After the rotations by 180 
degrees the basis vectors 
a,b and c are transformed (a 
 a’ , b  b’  and c  c’) so 
that  

a’ = -a,   b’ = -b, c’   = c 

The position of symmetry equivalent atom is xa’+yb’+zc’ = -xa-yb+zc  = [xyz] 
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x y z 

z x y 

3 fold rotation axis parallel to the [111] gives three symmetry 
equivalent atoms  

y z x 

1)  x y z     2) z x y     3)  y z x 

Mathematical description of symmetry operations. 
Three fold axis parallel to c (Rhombohedral setting) 

 a’ 

b’ 

c’ 

After the rotations by 120 
degrees the basis vectors a,b 
and c are transformed (a  a’ , 
b  b’  and c  c’) so that  

a’ = b,  b’ = c,  c’ = a 

The position of symmetry equivalent atom should be xa’+yb’+zc’ = xb+yc+za  = [zxy] 



x y z 

-y  x-y  z 
-x+y  -x  z 

 x-y  x  z 

-x -y z 

y  -x+y  z 

6 fold rotation axis parallel to the c gives six symmetry equivalent atoms  

Mathematical expression for the symmetry operations: 6 fold 

1) x   y   z     2)  x-y    x    z    3)  -y   x-y    z       
4)  -x   -y   z   5) -x+y   -x   z  6) y  -x+y  z 
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b 
x  y  z 

-y  x  z 

-x  -y  z 

y  -x  z 

Mathematical expression for the symmetry operations: 4 
fold 

4 fold rotation axis parallel to the c (provided a and b is perpendicular to 
c) gives four symmetry equivalent atoms  

1)  x y z     2)  -x  -y  z    3)  -y  x  z      4) y  -x z 



SUMMARY OF MATHEMATICAL REPRESENTATION OF SYMMETRY 

n The list of atomic positions 

2 

3 

4 

6 

Orientation 

|| c 1)  x y z   2) -x -y z 

|| a+b+c 1)  x y z    2) z x y   3) y z x  

|| c 
1)  x y z    2)  -x  -y  z   
3)  -y  x  z   4) y  -x z 

|| c 1) x y z     2)  x-y  x  z    3)  -y x-y  z       
4)  -x -y z   5) -x+y  -x  z  6) y -x+y  z 

The reduction to the crystallographic unit cell, i.e. adding the lattice vector [uvw] 
or centering lattice vector (e.g [1/2 1/2 1/2]) should be performed after the 

above transformation 
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b x  y  z 

x+1/2  -y  z 

Mathematical expression for glide plane (a) 

After the reflection in the plane perpendicular 
to b the basis vectors a, b and c are 
transformed (a  a’ , b  b’  and c  c’) so 
that  

a’=a   b’=-b  c’ = c 

Glide along the a axis displaces the origin by 
[1/2 0 0] 

a’ 

b’ 



Example: matrix representation of glide planes 
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