Dr Semën Gorfman Department of Physics, University of Slegen

Lecture course on crystallography, 2015

Lecture 2: Periodicity of crystal structures

The differences between crystalline (crystals) and

amorphous (glasses) solids

	Crystalline solids (Crystals)	Amorphous solids (Glasses)
Shape	Polyhedral shape with <u>naturally</u> formed faces	No <u>naturally</u> formed faces
Properties	Anisotropic	Isotropic
Atomic structure	Periodic (long range ordered)	No periodicity. Short-order only
X-ray Diffraction	Well separated diffraction picture with DISTINCT spots	No clearly separated features

The graphical illustration of the law of rational indices

Original idea: the crystal is formed by pilling up the <u>elementary blocks</u> (for example cubes or parallelopipeds). The formation of natural faces are shown below

Models from Haüy's Traité de Minéralogie (1801)

The graphical illustration of the law of rational indices

Anisotropy of physical properties

1. Growth velocity (formation of facets)

2. Electrical conductivity

<u>Physical properties of crystals: pyroelectric effect in</u> tourmaline

Pyroelectricity is the separation of the electric charges in a crystal by the change of temperature

Tourmaline crystal

Important: pyroelectric effect is anisotropic, electrical charges develop only in <u>certain directions</u>, i.e. on the certain faces of a crystal.

 ΔT

Further studies of physical properties of crystals. Pierre Curie (1859-1906)

Discovery of piezoelectricity in QUARTZ

Piezoelectricity is a physical phenomena occurring in some crystals, related to the generation of electric charges by external pressure.

General for crystals – ANISOTROPY of PHYSICAL properties

"Life" example of anisotropic physical properties

Cutting a scarf is a typical example of the directional dependence

The reason for that is the special **STRUCTURE** made by the stitching

Hypothesis of Pierre Curie – anisotropy of crystals is due to the periodic structure

X-ray Crystallography -> birth of solid state physics

1912Max von Laue

1914

Nobel prize in physics

"for his discovery of the diffraction of X-rays by crystals"

Discovery of X-ray diffraction (Max von Laue, Friedrich,

Knipping, 1912)

Conclusions

1. X-rays are <u>electromagnetic waves</u>

2. Crystal structures are periodic

3. The <u>period of crystal lattice</u> has the <u>order of</u> <u>the wavelength of X-rays</u>

Laue diffraction patterns

α -Quartz crystals (SiO₂)

The first REAL crystal structure

1915

Nobel prize in physics "for their services in the analysis of crystal structures be means of X-rays "

Atomic structure of NaCl, KCl, LiF was established

Sir William Henry Bragg William Lawrence Bragg

The discovery of X-ray diffraction by Max von Laue (1912) is the final and ultimate proof of the periodic structure of crystals. Moreover it was shown that the period of a crystal structure has the order of $\mathring{A} = 10^{-10} m$

The works of W.H. Bragg and W.L.Bragg allowed to establish the first crystal structures, i.e. the real arrangement of atoms in a crystal

Nowadays X-ray diffraction is the main tool for the solving, determination and characterization of crystal structures

The concept of long-range order

Long-range order is the geometrical law of expansion maintained over long (in comparison to interatomic) distances!

The concept of short-range order

Short-range order is the geometrical law of expansion maintained over short distances only

The structures of amorphous solids and liquids are commonly described by probability laws, based on the socalled radial distribution functions and pair-distribution functions (PDFs). **CRYSTAL: Official definition**

International Union of CRYSTALLOGRAPHY

A material is a crystal if it has **essentially** sharp diffraction pattern. The word **essentially** means that most of the intensity of the diffraction is concentrated in relatively sharp **Bragg peaks**, besides the always present diffuse scattering

Further public domain materials

https://www.youtube.com/watch?v=Z7hXiKiZZPs

https://www.youtube.com/watch?v=uqQlwYv8VQI

= You Tube

1 Dimensional crystal (1D periodic structures)

To obtain the whole crystal structure one has to translate the UNIT CELL to each LATTICE POINT

Different choices of unit cell

2 Dimensional crystal (2D periodic structures)

IMPORTANT MESSAGES!!!

- Crystal lattice is the mathematical object, describing the periodicity of crystal structure.
- Do not confuse <u>crystal lattice</u> with <u>crystal</u> <u>structure</u>
- Crystal structure is <u>UNIT CELL * CRYSTAL LATTICE</u>
- In order to get the whole crystal structure one has to translate the unit cell to the all lattice points

BASIS VECTORS and CRYSTAL LATTICE PARAMETERS

Lattice parameters for two dimensional case: $a = |a_1|$, $b = |a_2|$, $\alpha = \angle (a, b)$ For the given example: a = 1.5, b = 1, $\alpha = 80$ deg

BASIS VECTORS and CRYSTAL LATTICE PARAMETERS in 3D

The set of lattice parameters for the 3D lattice

UNIT CELL and ATOMIC POSITIONS

Consider a crystal lattice. We chose the pair (triple) of basis vectors: a_1, a_2 and a_3 . The crystallographic unit cell is defined by putting atoms, molecules, etc to the <u>sites</u>, R_1 , R_2 ,..., R_n inside the parallelogram based on the vectors a_1 , a_2 and a_3 . The site of each and every atom in the unit cell is given by the <u>fraction atomic positions</u>, x_1 , x_2 <u>and x_3 </u>.

 $R = x_1 a_1 + x_2 a_2 + x_3 a_3$ with $0 \le x_i < 1$

The lattice translations are applied to each atomic positions, i.e. if there is an atom with the coordinate $[x_i]$ then there is also an atom with the coordinates $[x_i+u_i]$. Translation $[u_i]$ is regarded as symmetry operation

An example of 2D periodic structure

Unit cell and crystal lattice

Hexagonal close packing (HCP)

HCP positions

Three dimensional HCP structure

Example: Body-centred cubic (BCC) structure

$$a = b = c$$

 $\alpha = \beta = \gamma = 90$
 $R_1 = [000]$
 $R_2 = [\frac{1}{2} \frac{1}{2} \frac{1}{2}]$

Two atoms per unit cell

Example: Face-centred cubic (FCC) structure

- a = b = c $\alpha = \beta = \gamma = 90$
- $R_{1} = [0 \ 0 \ 0]$ $R_{2} = [0 \ \frac{1}{2} \ \frac{1}{2}]$ $R_{3} = [\frac{1}{2} \ 0 \ \frac{1}{2}]$ $R_{4} = [\frac{1}{2} \ \frac{1}{2} \ 0]$

4 atoms per unit cell

Example: CUBIC PEROVSKITE, ABO3

- a = b = c $\alpha = \beta = \gamma = 90$
- $\boldsymbol{R}_{\boldsymbol{B}} = [0 \ 0 \ 0]$
- $R_A = [\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}]$
- $\boldsymbol{R_{X1}} = \begin{bmatrix} \frac{1}{2} & 0 \end{bmatrix}$

$$R_{X2} = [0\frac{1}{2}0]$$

 $R_{X3} = [00\frac{1}{2}]$

5 atoms per unit cell