

Crystallography (winter term 2015/2016)

Lecturer: Dr Semën Gorfman (ENC B-011)

**Exercise tutor:** Hyeokmin Choe (ENC B-015)

## **Exercise sheet 9: Introduction to X-ray crystallography.**

## 1. Bragg's law (5 points)

The figure below shows two different reflection geometries, which can be used for the derivation of Bragg's law. In both cases the path difference (AB + BC) between the wave 1 and the wave 2 must be calculated. Show that this path difference is the same for both geometries and equal to  $2d \cdot sin\theta$ .





## 2. Laue diffraction (8 points)

A single crystal of *quartz* (hexagonal crystal system, the lattice paraemetrs are a = 4.9Å, c = 5.4 Å) is investigated in a **white X-ray beam** (i.e. by means of the Laue method). The crystal is oriented so that the lattice basis vector, a, points to the X-ray source. Your task is to reconstruct the above Laue experiment in the reciprocal space by:

*a)* Plotting 2D central section of the Ewald ball, so that the section is parallel to the lattice vectors *a* and *b*. (the shortest wavelength of the X-ray spectra  $\lambda_{\min} = 0.3$  Å)

b) Plotting the lattice vectors **a**, **b** and reciprocal lattice vectors **a**\*, **b**\*.

*c)* Plotting reciprocal lattice points *hk0* where  $-4 \le h, k \le 4$  (you should get the reciprocal lattice consisting of 81 points)

*d)* Marking as **red those reciprocal lattice** points which give Bragg reflections on the Laue pattern, mark as **blue those reciprocal lattice points** which do not.

Choose any 3 of red reciprocal lattice points (free choice) and calculate the scattering angle (2 $\theta$ ) and the wavelength ( $\lambda$ ) of the corresponding Bragg peaks.

## 3. Single crystal diffraction / Rocking curve (8 points)

A single crystal of BaTiO<sub>3</sub> (cubic crystal system, the lattice constant a = 4 Å) is investigated with a monochromatic Mo K $\alpha$  radiation (wavelength  $\lambda = 0.71$  Å). The crystal is initially oriented in such a way that the vector **a** is parallel to the incident Xray beam. Your task is to construct the single crystal diffraction in reciprocal space by:



a) Plotting 2D section of Ewald sphere, so that the section is parallel to the lattice vectors **a** and **b**.

b) Plotting the lattice vectors **a**, **b** and reciprocal lattice vectors **a**\*, **b**\*.

c) Considering that the area detector covers 80°. How many Bragg reflections (l = 0) will be registered by the detector during the 35° of crystal rotation around the *c*-axis? Please find the indices *h k* 0 of the appearing Bragg reflections.



Please return on 01.02.2016