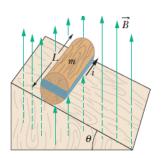

Physics 1 for Nano: written Exercises 5 WS 2019 (sheet 5)


Exercise 28

An electron of kinetic energy 1.2 keV circles in a plane perpendicular to a uniform magnetic field. The orbit radius is 24.0 cm. Find (a) the electron speed, (b) the magnetic field magnitude, (c) the circling frequency and (d) the period of motion.

Exercise 29

Estimate the total path length traveled by a deuteron in a cyclotron of radius r= 53 cm and operating frequency of 12 MHz during (entire) acceleration process. Assume that the accelerating potential between the dees is 80keV.

Exercise 30

In figure left a wood cylinder of mass 0.25 kg and length L= 10cm is wrapped by N = 10 turns of wire, so that the plane of the wire coil contains the long central axis of the cylinder. The cylinder is released on a plane inclined by an angle θ = 30° to the horizontal, with the plane coil parallel to the incline plane. If there is a vertical uniform magnetic field of B= 0.5 T, what is the least current I through the coil that keeps the cylinder from rolling down the plane ?

Note:

Exercises have to give back at lecture 10.12.19. It will be discussed in exercise hours at 11.12.19