Physics 1 for Nano: written Exercises 5

WS 2019 (sheet 5)

Exercise 25

Determine the current through R_{1} and R_{2} and the potential difference between points a and b of the device given below. The EMF are $\mathrm{E}_{1}=6.0 \mathrm{~V}$ and $\mathrm{E}_{2}=5.0 \mathrm{~V}$ and $\mathrm{E}_{3}=4.0 \mathrm{~V}, \mathrm{R}_{1}=100 \Omega$, $\mathrm{R}_{2}=50 \Omega$.

Exercise 26.

A metal stripe (length 6.5 cm , width 0.85 cm and thickness 0.76 mm) moves with constant velocity, v, through a homogeneous magnetic field $\mathrm{B}=1.2 \mathrm{mT}$ directed perpendicular to the stripe. The measured potential difference across the width is $\mathrm{V}=3.90 \mu \mathrm{~V}$. Determine the velocity v of their stripe.

Exercise 27

A long straight wire carries a current of 30A, their rectangular loop a current 0 f 20A. How large is the resulting force acting at the loop for $\mathrm{a}=1.0 \mathrm{~cm}, \mathrm{~b}=8.0 \mathrm{~cm}$ and $\mathrm{L}=30 \mathrm{~cm}$.

Exercise 28

An electron of kinetic energy 1.2 keV circles in a plane perpendicular to a uniform magnetic field. The orbit radius is 24.0 cm . Find (a) the electron speed, (b) the magnetic field magnitude, (c) the circling frequency and (d) the period of motion.

Exercise 29

Estimate the total path length traveled by a deuteron in a cyclotron of radius $\mathrm{r}=53 \mathrm{~cm}$ and operating frequency of 12 MHz during (entire) acceleration process. Assume that the accelerating potential between the dees is 80 keV .

Exercise 30

In figure left a wood cylinder of mass 0.25 kg and length $\mathrm{L}=10 \mathrm{~cm}$ is wrapped by $\mathrm{N}=10$ turns of wire, so that the plane of the wire coil contains the long central axis of the cylinder. The cylinder is released on a plane inclined by an angle $\theta=30^{\circ}$ to the horizontal, with the plane coil parallel to the incline plane. If there is a vertical uniform magnetic field of $B=0.5 \mathrm{~T}$, what is the least current I through the coil that keeps the cylinder from rolling down the plane ?

Note:
Exercises have to give back at lecture 10.12.19. It will be discussed in exercise hours at 11.12 .19

