Physics 1
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You drive a beat-up pickup truck along a straight road for
8.4 km at 70 km/h, at which point the truck runs out of gaso-
line and stops. Over the next 30 min, you walk another 2.0 km
farther along the road to a gasoline station.

(a) What is your overall displacement from the beginning
of your drive to your arrival at the station?

KEY IDEA

Assume, for convenience, that you move in the positive di-
rection of an x axis, from a first position of x; = 0 to a second
position of x, at the station. That second position must be at
x, =84 km + 2.0 km = 10.4 km. Then your displacement Ax
along the x axis is the second position minus the first position.

velocity is the ratio of the displacement for the drive to the
time interval for the drive.

Calculations: We first write

Ax gy
V = .
avg.dr &[dr
Rearranging and substituting data then give us
Axg 8.4 km
Aty = — = = 0.12 h.
“ Vyear  T0km/h

SO, At = ﬂ'tdr + '&Ewlk

=0.12h + 050 h = 0.62 h. (Answer)

(c) What is your average velocity v,,, from the beginning of
your drive to your arrival at the station? Find it both numer-
ically and graphically.

From Eq. 2-2 we know that v,,, for the entire trip is the ratio
of the displacement of 10.4 km for the entire trip to the time in-
terval of 0.62 h for the entire trip.

Calculation: From Eq. 2-1, we have
Ax=x, —x;, =104 km — 0= 104 km.

Thus, your overall displacement is 10.4 km in the positive
direction of the x axis.

(Answer)

(b) What is the time interval Ar from the beginning of your
drive to your arrival at the station?

KEY IDEA

We already know the walking time interval At (= 0.50 h),
but we lack the driving time interval At,. However, we
know that for the drive the displacement Ax,, is 8.4 km and
the average velocity v, 4 18 70 km/h. Thus, this average

average speed from the beginning of your drive to your
return to the truck with the gasoline?

KEY IDEA

Your average speed is the ratio of the total distance you
move to the total time interval you take to make that move.

Calculation: The total distance is 84 km + 2.0km + 2.0
km = 12.4 km. The total time interval is 0.12 h + 0.50 h +
0.75 h = 1.37 h. Thus, Eq. 2-3 gives us

124 km

Swe = 137H 9.1 km/h. (Answer)
Driving ends, walking starts.
X
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Sample Problem

Acceleration and dv/dt

A particle’s position on the x axis of Fig. 2-1 is given by
x=4-=2Tt+ 1,

with x in meters and 7 in seconds.

(a) Because position x depends on time t, the particle must

be moving. Find the particle’s velocity function v(f) and ac-
celeration function a(t).

KEY IDEAS

(1) To get the velocity function v(r), we differentiate the po-
sition function x(¢r) with respect to time. (2) To get the accel-
eration function a(t), we differentiate the velocity function
v(r) with respect to time.

Calculations: Differentiating the position function, we find

v=—27 + 3t% (Answer)

with v in meters per second. Differentiating the velocity
function then gives us

a — +6f,
with @ in meters per second squared.

(Answer)

(b) Isthere ever atime whenv = 0?

Calculation: Setting v(r) = 0 yields
0= —-27+ 3¢2,

which has the solution

t= *3s. (Answer)

Thus, the velocity is zero both 3 s before and 3 s after the
clock reads 0.

(c) Describe the particle’s motion for t = 0.

Reasoning: We need to examine the expressions for x(t),
v(t),and a(t).

At t =0, the particle is at x(0) = +4 m and is moving
with a velocity of v(0) = —27 m/s—that is, in the negative
direction of the x axis. Its acceleration is a(0) = 0 because just
then the particle’s velocity is not changing.

For 0 < t << 3 s, the particle still has a negative velocity, so
it continues to move in the negative direction. However, its
acceleration is no longer 0 but is increasing and positive.
Because the signs of the velocity and the acceleration are
opposite, the particle must be slowing.

Indeed, we already know that it stops momentarily at
t = 3 s. Just then the particle is as far to the left of the origin
in Fig. 2-1 as it will ever get. Substituting ¢+ = 3 s into the
expression for x(r), we find that the particle’s position just then
is x = —50 m. Its acceleration is still positive.

For t = 3 s, the particle moves to the right on the axis.
Its acceleration remains positive and grows progressively
larger in magnitude. The velocity is now positive, and it too
grows progressively larger in magnitude.



Constant acceleration
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Equation of motion

Equations for Motion with Constant
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=
Equation Missing Z
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Equ. Nr refer to Halliday Resnik Chap. 2



Sample Problem

Constant acceleration, graph of v versus x

Figure 2-9 gives a particle’s velocity v versus its position as it
moves along an x axis with constant acceleration. What is its
velocity at position x = 07

KEY IDEA

We can use the constant-acceleration equations; in particu-
lar, we can use Eq.2-16 (v? = v§ + 2a(x — x,)), which relates
velocity and position.

First try: Normally we want to use an equation that includes
the requested variable. In Eq. 2-16, we can identify x; as 0 and
v, as being the requested variable. Then we can identify a sec-
ond pair of values as being v and x. From the graph, we have

The velocity is 8 m/s when
the position is 20 m.

The velocity is 0 when the
position is 70 m.

Fig. 2-9 Velocity versus position.

two such pairs: (1) v =8 m/s and x =20 m, and (2) v = 0 and
x = 70 m. For example, we can write Eq.2-16 as

(8 m/s)? = v3 + 2a(20 m — 0).

However, we know neither v, nor a.

(2-19)

Second try: Instead of directly involving the requested
variable, let’s use Eq. 2-16 with the two pairs of known data,
identifying v, =8 m/s and x; =20 m as the first pair and
v = 0m/s and x = 70 m as the second pair. Then we can write

(0 m/s)> = (8 m/s)? + 2a(70 m — 20 m),

which gives us @ = —0.64 m/s%. Substituting this value into
Eq. 2-19 and solving for v, (the velocity associated with the
position of x = 0), we find

vo = 9.5 mfs. (Answer)

Comment: Some problems involve an equation that in-
cludes the requested variable. A more challenging problem
requires you to first use an equation that does not include
the requested variable but that gives you a value needed to
find it. Sometimes that procedure takes physics courage be-
cause it is so indirect. However, if you build your solving
skills by solving lots of problems, the procedure gradually
requires less courage and may even become obvious.
Solving problems of any kind, whether physics or social, re-
quires practice.



Equation of movement by integration
Given : a = dv/dt

dv = a dt.

J.n"v = J.-a dt. > J.Ifh: =a J..d; 2> v=ai+ C. > w=(a)0)+ C=0C

Given : v = dx/dt

dx = vdf

’- dx = ’ v drf. - ’r:.h‘ = l{v.;;. +at)dt. = ’ dx = v, ] dt + a ] t dt.

S x =t +zat’ + C, finding : x,att=0 = C'=x,

X=X, +V,t + % at?




Time for full up-down flight, baseball toss

In Fig. 2-11, a pitcher tosses a baseball up along a y axis, with
an initial speed of 12 m/s.

(a) How long does the ball take to reach its maximum
height?

KEY IDEAS

(1) Once the ball leaves the pitcher and before it returns to
his hand., its acceleration is the free-fall accelerationa = —g.
Because this is constant, Table 2-1 applies to the motion. (2)
The velocity v at the maximum height must be 0.

Calculation: Knowing v, a, and the initial wvelocity
vp = 12 m/s, and seeking ¢, we solve Eq. 2-11, which contains

} }
v=0at

I
I
I
highest point | \
i
!
b
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i
I
N
: I I~ During
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During ascent, - | : a=—f
a=-g, _\: i _speed
speed decreases, | I HIER D By
and velocity : I and velocity
becomes less |*" becomes
itivi I more
positive
! : negative
Fig. 2-11 A pitcher tosses a e o

baseball straight up into the air.
The equations of free fall apply :
for rising as well as for falling ]
objects, provided any effects '
from the air can be neglected.

those four variables. This yields

_v—vy, 0-12m/s
= T osms  2S

(Answer)

(b) What is the ball’'s maximum height above its release
point?

Calculation: We can take the ball’'s release point to be
¥o = 0. We can then write Eq.2-16 in y notation, sety — y, =
y and v = 0 (at the maximum height), and solve for y. We
get

vi—vZ 0 — (12 mis)
2a 2(—9.8 m/s?)

y:

=73 m. (Answer)

(c) How long does the ball take to reach a point 5.0 m above
its release point?

Calculations: We know vy, a = —g, and displacement y —
¥o = 5.0 m, and we want ¢, so we choose Eq. 2-15. Rewriting
it for y and setting y, = 0 give us

y = vot — 381%,
or 50m = (12 mis)t — (5)(9.8 m/s?)r

If we temporarily omit the units (having noted that they are
consistent), we can rewrite this as

497 — 12t + 50 =10.
Solving this quadratic equation for ¢ yields

t=053s and r=19s (Answer)

There are two such times! This is not really surprising
because the ball passes twice through y = 5.0 m, once on the
way up and once on the way down.

PLUS Additional examples, video, and practice available at WilsyFPLUS



Vectors and scalars
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Sample Problem

Adding vectors in a drawing, orienteering

In an orienteering class, you have the goal of moving as far
(straight-line distance) from base camp as possible by mak-
ing three straight-line moves. You may use the following
displacements in any order: (a) @, 2.0 km due east (directly
toward the east); (b) b,2.0 km 30° north of east (at an angle
of 30° toward the north from due east); (c) ¢, 1.0 km due
west. Alternatively, you may substitute either —3 for b or
—¢ for ¢. What is the greatest distance you can be from base
camp at the end of the third displacement?

Reasonmg Usmg a convenient scale, we draw vectors @, b,
¢, —b,and —¢ as in Fig. 3-7a. We then mentally slide the
vectors over the page, connecting three of them at a time in
head-to-tail arrangements to find their vector sum d. The
tail of the first vector represents base camp. The head of the
third vector represents the point at which you stop. The vec-
tor sum d extends from the tail of the first vector to the head
of the third vector. Its magnitude 4 is your distance from
base camp.

We find that distance 4 is greatest for a head-to-tail
arrangement of vectors @, b,and —¢. They can be in any
order, because their vector sum is the same for any order.

Cosinus : d*= b? + (a-c)*>- 2|b| |a-c|cos ¥

a
—:} — —
a —
i b ¢ =
______ 30°___ =
9 - = P> This is the vector result
for adding those three
m vectors in any order.
0 1 2

(a) (B)

Fig. 3-7 (a) Displacement vectors; three are to be used. (b) Your
distance from base camp is greatest if you undergo displacements
d,b,and —¢,in any order.

The order shown in Fig. 3-7b is for the vector sum
d=b+d+ (-0

Using the scale given in Fig. 3-7a, we measure the length d of
this vector sum, finding

d=48 m. (Answer)

y =180°-30°=150 °

d?=22+32-2%2%3%0.5%1.732=4+9-12*(-0.866)=23.4 - d=4.83



Vector components

a, =acosf and a, = asinf,

1 Amount and angle

x i
0 a=+val+a? and tan§=—

dy

ry = ay + b,
r=da+b, r,=a,+b,
. s s r.=a,+b.
T o=rei +r,] +r:k
E d=a-b
d=ai+a)

. { d,=a,—b, d,=a,—b,, and d,=a, — b,

b = b+ b,j. o

d=di+dj+ dk.



Vector sum

Figure 3-15a shows the following three vectors:
d=(42m) — (1.5 m)),
b = (—1.6m)i + (29 m)],
and € = (-3.7m).

What is their vector sum 7 which is also shown?

=]

To add thesse vectors,
21 find their net x component
and their net y component.

Then arrange the net
Ynﬂmpﬂnents head to tail.
261

(&) =—This is the result of the addition.

Fig. 3-15 Vector 7 is the vector sum of the other three vectors.



Vectors in different co-ordinate systems

a=Val+al=Val+al?

al g
=@ + .
[ ) i )
Vectos in physics are independent of the co-ordinate system of choice
Skalar product of two vectors = Scalar
@-b = abcos o,
Ek:nipmu‘nlc:fi
. - :l]tllE.tii.rl:!Cti{Jn of
E_"Ii:"z b_‘.‘" @ is b cos @
Multiplying these gives —
a-b=(ai+ a,.j + {r-ﬁt} {b_l.i - hl.i + bk] the dot product =
’ h . B b
! \\—(:c:n1[m:1c::1luf'_r.r’
Mu|t|p|y eaCh Component ulm&;{limt:ti:m of
Or multiplying these bis acos &

gives the dot product. (&)

a-b=ab,+ab,+ ab.



Sample Problem

Angle between two vectors using dot products

What is the angle ¢ between @ =3.0i — 40j and b =
=200 + 3.0k? (Caution: Although many of the following steps
can be bypassed with a vector-capable calculator, you will learn
more about scalar products if, at least here, you use these steps.)

KEY IDEA

The angle between the directions of two vectors is included
in the definition of their scalar product (Eq. 3-20):

@-b = ab cos ¢. (3-24)
Calculations: In Eq. 3-24, a is the magnitude of @, or
a = V3.0% + (—4.0)2 = 5.00, (3-25)
and b is the magnitude of E:, or
b = \/{(—2.{1}E +3.0% = 3.6l (3-26)

We can separately evaluate the left side of Eq. 3-24 by writ-
WILEY oy

ing the vectors in unit-vector notation and using the distrib-
utive law:
@b = (3.0 — 4.0§)-(—2.0i + 3.0k)
= (3.0i) - (—2.01) + (3.00) - (3.0Kk)
+ (—4.0)) - (=2.01) + (—4.0))- (3.0k).
We next apply Eq. 3-20 to each term in this last expression.
The angle between the unit vectors in the first term (i and 1) is
0°, and in the other terms it is 90°. We then have
a-b= —(6.0)(1) + (9.0)(0) + (8.0)(0) — (12)(0)
= —6.0.
Substituting this result and the results of Eqgs. 3-25 and 3-26
into Eq. 3-24 yields
—6.0 = (5.00)(3.61) cos ¢,
—6.0

Go0)Gen =10

so ¢ =cos’! (Answer)

PLUS Additional examples, video, and practice available at WileyPLUS



Vector product = vector .
Right hand rule * axb

T:ﬁ’xﬁ ¢ = ab sin ¢,
d

@ x b =(afd+ a,j +a.k) x (bi + b,j + bk), ( -7

@ x b = (ayb; — bya )i + (ab, — b.a)j + (ah, — bya)k. b ) )
£
bxd= —(a x b).

d@ x b= (aj+aj+ak)x (bi+ b,j+ b.k),

ai X bi=ab,(ixi)=0, ad X b,j = ab,(i x j) = a,b, k.

@ x b = (a,b, — bya.)i + (a.b, — b.a,)j + (ap, — bya,)k.



Sample Problem

Cross product, unit-vector notation

Ifad =3 — 4f and b = —2i + 3k,whatis € = @ x b? We next evaluate each term with Eq. 3-27, finding the
direction with the right-hand rule. For the first term here,

the angle ¢ between the two vectors being crossed is 0. For
the other terms, ¢ is 90°. We find
When two vectors are in unit-vector notation, we can find

their cross product by using the distributive law. € _6{?) - ?.(_ ”,+ 8(=k) - 12
Calculations: Here we write = 129 -8k . (Answer)
== (3{ _ 4}} % [_ﬂ + 31*:) This wt'lect:c:u;] ¢ ishperpend]iculirlo hgth Tx(;@dgb, aufa;':-lt you
I 2 o = - can check by showing that c-a =0 and c- b = 0; that is,
3t x (¢ 2) -t 3 x 3k + (=4) x (=2) there is no component of ¢ along the direction of either

+ (—4j) x 3k. Zorh.

e - -

a X E - (ﬂ_vbz - bvﬂz}; + (a:b.r - bzax)i + (ﬂ.rb_v - b]'a}'}i'

=(-4*3-0*0)i +(0%(-2))-3*3)j+(3*0- (-2)*(-4)) k= -12i -9j +8k



To locate the

. . . article, this
Movement in 2 and 3 dimension f"—iF;hnwfar
Jlf- parallel to z.
Position: F=(-3m)i + (2m)j + (5 m)k T

}." 1§ parallel to y.
/ y

/ B This is how far

. /
r=xi+ Fj + zKk, .'fll / parallel to x.
(5 m)k (2 m)] X i
(-3 m}i
x

i

Difference position

Ar=r,—ry.

AT = (a1 + 2] + 2K) — (i + »ij + 2:K)

Ar = (x; — -"JL}I + (¥ — }’Jﬁ + (22 — 31}E~



Two-dimensional position vector, rabbit run

A rabbit runs across a parking lot on which a set of
coordinate axes has, strangely enough, been drawn. The co-
ordinates (meters) of the rabbit’s position as functions of
time ¢ (seconds) are given by

x=—0317 + 7.2t + 28 (4-5)
y = 0227 — 9.1t + 30. (4-6)

(a) Atr=15s,what is the rabbit’s position vector r in unit-
vector notation and in magnitude-angle notation?

KEY IDEA

The x and y coordinates of the rabbit’s position, as given by
Eqgs. 4-5 and 4-6, are the scalar components of the rabbit’s
position vector r.

and

Calculations: We can write
(1) = x(i + y()]- (47)
(We write 7(f) rather than r because the components are

functions of t,and thus 7 is also.)
At =15 s, the scalar components are

x = (—031)(15)* + (7.2)(15) + 28 = 66 m
and y = (0.22)(15)2 — (9.1)(15) + 30 = —57 m,

50 7 = (66 m)i — (57 m)j, (Answer)

which is drawn in Fig. 4-24. To get the magnitude and angle
of ¥, we use Eq.3-6:
r=Va+y = V(66 m)’ + (—57 m)’
= 87 m,

(Answer)

— —41°.

—57
= ) (Answer)

v
and # = tan! ? = tan“(

(a)

Fig. 4-2

(@) A rabbit’s
position vector 7
attime = 15s.
The scalar com-
ponents of T are
shown along the
axes. (b) The (B)
rabbit’s path and
its position at six
values of L

y (m)
40
To locate the
20 rabbit, this i1s the
= * component.
L = x(m)
0 20 | 40  60]] 80
|
|
—70) |
|
|
[
—40 =1
L
1 1|
C60—————— f
This is the y component.
y (m)
40
=03
0
. ap = (m)
=20
—40 105
—6il)| 5
9 s 15w

This i1s the path with
various times indicated.



Velocity
. _ Ar
Vavg = ?

As the particle moves,
| the position vector

must change.

Tangent —\\

———This is the
displacement.

. Axi + Ayj + Azk Ax . Ay . Az .
1-’3_1'-2 = = 1 + ] + k. Path
At At At Ar .
. dr
V = — .
dt
v = i(ﬂ + .Vi + zﬁ] = s dy i + dz k. The velocity vector is always
dt dt dt dt tangent to the path.
y
Tangent \

Vo= 'I-’Ii + 'I-’_.,.j + Prk._, P ! These are the xand y
components of the vector
at this instant.

Path
dx dy dz 9 :
Vy = ——, ¥V, = —, v, = —.
odtT Y dt o dt

The direction of the instantaneous velocity v of a particle is always tangent to the
particle’s path at the particle’s position.



Sample Problem

Two-dimensional velocity, rabbit run

For the rabbit in the preceding Sample Problem, find the ve-
locity v attime ¢ = 15s.

KEY IDEA

We can find v by taking derivatives of the components of
the rabbit’s position vector.

Calculations: Applying the v, part of Eq. 412 to
Eq.4-5, we find the x component of v to be

dx d
=—=— (0312 + 72t + 28
T4 dr ( )
= —0.62t + 7.2. (4-13)

At t = 15 s, this gives v, = —2.1 m/s. Similarly, applying the
v, part of Eq.4-12 to Eq. 4-6, we find

dy i
= ——=—(022¢2 - 91t + 30
Y Ty a!r{ )

= 044t — 9.1. (4-14)

At t=15s, this gives v, = —2.5m/s. Equation 4-11 then
yields

vV = (=21 m/s)i + (2.5 m/s)j, (Answer)

which is shown in Fig. 4-5, tangent to the rabbit’s path and in
the direction the rabbit is running at t = 15 s.

To get the magnitude and angle of v, either we use a
vector-capable calculator or we follow Eq. 3-6 to write

v="Vi2+12=V(-21mis) + (—25 mfs)?

= 3.3 m/s (Answer)
Vy —25m/s
= —1 —} e -1 _—
and f = tan . tan ( 51 ma’s)
=tan'1.19 = —130°. (Answer)

Check: Isthe angle —130° or —130° + 180° = 50°?

¥ (m)

40

20

2

These are the xand y
components of the vector
at this instant.

Fig. 4-5 The rabbit's velocity v ati = 15 s



acceleration These are the xand y

components of the vector

L T':z B F| - AS ¥ at this instant.
aavg - At _ At
0 X
— ‘d v v 5
. dv a=—(vi +v,j + v.k)
a=— df ° -
dt d d d
Vx 2 Vy = Yz
dt dt ] dt
— T = i dv_l’ dv dv{
a = EI'[] _|_ a}ll + H_Ek'.- ﬂ-.t = _dt W EIJI, = d,:1. H.I]d. EIE' = dt .



Rabbit on the parking lot - position as function of time

x (m

ylm)
40
— To locate the
20 rabbit, this is the
T X component.
0 2 | 40 | 60 B0
|
N :
|
|
—4i = I
o |
| J
o i el e et %?i
[ a)

This is the y component.

x=—031# + 7.2t + 28
y =022 — 9.1t + 30.

y Lom)

i=0s

s

Ph s =

{ B) M s

This is the path with
various times indicated.

AP = 9.757 — 477

|A7| = /9.75% 4+ 472 [m] = 48m
AO= —10° — (—41°) = +31°



¥ Vertical motion + Harizontal motion - ¥ Projectile motion

M ° M - This vertical motion plus
P rOJ e Ctl I e m Ot I O n this horizontal motion /f/ .
produces this projectile motion. Tof| Launch velocity
Vis| WVertical velocity Viy E:bl
| ~ ) 1 ' Launch angle
- - _GT TJT% ’ 0 "'o:l
— v " Launch Launch
Vp = Vil + 1-’|:|}.] . : .
v w34
&) Speed decreasing . e
Ve — WV COS H'u and 1-’|:|_.|_. = ¥ 1N ﬁ::].
N . .
o o oy ' 0
Constant velocity
? 7 ¥
Horizontal motion e o
Stopped a
x — xp = (v COS )t height
Vg
. . — : @— p
Ve rt I Ca | m Ot I O n v v Constant velocity v
J— — ) — l E .
-F _.'I-"u. 1-|]._|||f :gr FU Speed increasing LULE-:I
= (vy sin )t — 1g1°, ’ R
.-\vx ¥
0 o' - ' 0
Constant velocity
In projectile motion, the horizontal motion and the vertical motion are independent |
of each other; that is, neither motion affects the other.
Trajectory y=fkt(x) __ .
T;J o' _ ' 0 e |
l Constant velocity ] N\
7

gx’
2(vy cos f)°

y = (tan fy)x —




Horizontal range

Find:x—x,=R and y-y,=0

R = (v cos f)t
0 = (v sin f,)t — 2et°.

Eliminating t

-

2vp .
R = —sin #,; cos #,.
4

Using identity : sin 26, = 2 sin f, cos f,

vioo
R = —Lsin 24,
"[.'ir

Maximum at 0=45°



Sample Problem

Cannonball to pirate ship

Figure 4-15 shows a pirate ship 560 m from a fort defending
a harbor entrance. A defense cannon, located at sea level,
fires balls at initial speed v, = 82 m/s.

(a) Atwhatangle 6, from the horizontal must a ball be fired
to hit the ship?

KEY IDEAS

(1) A fired cannonball is a projectile. We want an equation
that relates the launch angle 4, to the ball’s horizontal dis-
placement as it moves from cannon to ship. (2) Because the
cannon and the ship are at the same height, the horizontal
displacement is the range.

¥ Either launch angle
gives a hit.

I R=560m 1
Fig. 4-15 A pirate ship under fire.

Calculations: We can relate the launch angle &, to the
range R with Eq.4-26 which, after rearrangement, gives

1 gR 1 | (9.8m/s?)(560 m)
b=7sin =S (82 m/s)?
1
= - sin”! 0816, (4-33)

One solution of sin~" (54.7%) is displayed by a calculator; we
subtract it from 180° to get the other solution (125.3%). Thus,
Eq.4-33 gives us

6, = 27° and 6, = 63°. (Answer)

(b) What is the maximum range of the cannonballs?

Calculations: We have seen that maximum range corre-
sponds to an elevation angle #; of 45°. Thus,

v (82 m/s) .
R = ?EIHZED = WSIH(E * 45:!
= 686 m = 690 m. (Answer)

As the pirate ship sails away, the two elevation angles at
which the ship can be hit draw together, eventually merging
at #, = 45" when the ship is 690 m away. Beyond that dis-
tance the ship is safe. However, the cannonballs could go
farther if the cannon were higher.

PLUS Additional examples, video, and practice available at WileyPLUS



Relative motion in 1D
Xpy = Xpg T Xpga.

(1,;1} {wa] T
Vag = Vpg + Vaa

d
F("’m] d' ——(vpg) + -

fpy = dpy.

d
At (Xg.a)-

Frame B moves past
frame A while both

observe P.
¥ )
Frame A Frame B
Vg4 Xpg
. |
T = T X
XA Xpy = Xpg + Xy

The term v 18 the velocity of frame B relative to frame A.

{PHA]

Because vy, is constant, the last term is zero

X



Sample Problem

Relative motion, one dimensional, Alex and Barbara

In Fig. 4-18, suppose that Barbara’s velocity relative to Alex
is a constant v, = 52 km/h and car P is moving in the nega-
tive direction of the x axis.

(a) If Alex measures a constant vp; = —78 km/h for car P,
what velocity vp; will Barbara measure?

KEY IDEAS

We can attach a frame of reference A to Alex and a frame of
reference B to Barbara. Because the frames move at constant
velocity relative to each other along one axis, we can use
Eq.4-41 (vpy = vpy + vy, to relate vpg to vp, and vy,

Calculation: We find
=78 km/h = vpg + 52 km/h.

Thus, Vpp = —130 km/h. (Answer)

Comment: If car P were connected to Barbara’s car by a
cord wound on a spool, the cord would be unwinding at
a speed of 130 km/h as the two cars separated.

(b) If car P brakes to a stop relative to Alex (and thus rela-
tive to the ground) in time ¢ = 10 s at constant acceleration,
what is its acceleration ap, relative to Alex?

KEY IDEAS

To calculate the acceleration of car P relative to Alex, we
must use the car’s velocities relative fo Alex. Because the

acceleration is constant, we can use Eq.2-11 (v = v, + af) to
relate the acceleration to the initial and final velocities of P.

Calculation: The initial velocity of P relative to Alex is
vpy = — 78 km/h and the final velocity is (. Thus, the acceler-
ation relative to Alex is
1 m/s
3.6 km/h
(Answer)

v—v, 0— (—=78km/h)
a —_ —_
i t 10s
= 2.2 m/s%.

(c) What is the acceleration apy of car P relative to Barbara
during the braking?

KEY IDEA

To calculate the acceleration of car P relative to Barbara, we
must use the car’s velocities relative to Barbara.

Calculation: We know the initial velocity of P relative to
Barbara from part (a) (vpy = —130 km/h). The final velocity of
P relative to Barbara is —52 km/h (this is the velocity of the
stopped car relative to the moving Barbara). Thus,

L _v—v _ —S2km/h — (~130km/h) 1m/s
o t 10s 3.6 km/h
= 2.2 m/s%. (Answer)

Comment: We should have foreseen this result: Because
Alex and Barbara have a constant relative velocity, they
must measure the same acceleration for the car.



Relative motion in 2D

Fpa = Fpg + Fga-

—

Vpa = Vpg T Vga.

dpy — dpg.

Frame A



Sample Problem

Relative motion, two dimensional, airplanes

In Fig. 4-20qa, a plane moves due east while the pilot points
the plane somewhat south of east, toward a steady wind that
blows to the northeast. The plane has velocity vy, relative
to the wind, with an airspeed (speed relative to the wind)
of 215 km/h, directed at angle # south of east. The wind
has velocity vy, relative to the ground with speed 65.0
km/h, directed 20.0° east of north. What is the magnitude of
the velocity v p; of the plane relative to the ground, and
what is 6?7

KEY IDEAS

The situation is like the one in Fig. 4-19. Here the moving par-
ticle P is the plane, frame A is attached to the ground (call it
(), and frame B is “attached” to the wind (call it W). We need
a vector diagram like Fig. 4-19 but with three velocity vectors.

Calculations: First we construct a sentence that relates the
three vectors shown in Fig, 4-20b:

velocity of plane  velocity of plane
relative toground  relative to wind

(PG) (PW)

This relation is written in vector notation as

velocity of wind
relative to ground.
(WG)

(4-46)

— — —
Vpg = Vpw T Vg

We need to resolve the vectors into components on the co-
ordinate system of Fig. 4-20b and then solve Eq. 4-46 axis by
axis. For the y components, we find

Vegy = Vewy T Vivgy
or 0= —(215 km/h)sin # + (65.0 km/h)(cos 20.0%).
Solving for 6 gives us

S (65.0 km/h)(cos 20.0°)
B 215 km/h

= 16.5% (Answer)

Similarly, for the x components we find

Vegx = Vewz T Vg
Here, because v, is parallel to the x axis, the component
Vi o 18 equal to the magnitude vp;. Substituting this nota-
tion and the value # = 16.5°, we find
vpg = (215 km/h)(cos 16.5%) + (65.0 km/h)(sin 20.0%)
= 228 km/h. (Answer)

™ This is the plane's actual
direction of travel.

Vg
P E
MN
This is the plane's 209,
- - Vv .
onentation. e
This is the wind
direction.
()
¥ Ve
B (>
— -
Vi Ve

The actual direction

is the vector sum of

the other two vectors
(head-to-tail arrangement).

(5
Fig. 4-20 A plane flying in a wind.



Force is a vector quantity

Newton's First Law: If no force acts on a body, the body’s velocity cannot change;
that is, the body cannot accelerate.

F1
- Flg. 5-1 A force F on the standard kilo-
7 gram gives that body an acceleration a.

Considering principle of superposition of forces, F, ., is the resultant
force of all forces acting at the body

Newton'’s First Law: If no net force acts on a body {fm = (), the body’s velocity
cannot change; that is, the body cannot accelerate.

- Our earth is stricktly
speaking not an intertial
/1 system

An inertial reference frame is one in which Newton’s laws hold.



Newton’s 2" |aw

Newton's Second Law: The net force on a body is equal to the product of the body’s
mass and its acceleration.

In equation form,

. . . . . _ 2
F. = ma {Newton's second law). (5-1) Dimension: 1 N=1kg m/s
Mass is scalar my _ 4
My ay

As acceleration is a vector, also Force is a vector

Fncl._r = mdy,, Fnct,_v = mn}., and Fncl.: = ma..

The acceleration component along a given axis is caused only by the sum of the force
components along that same axis, and not by force components along any other axis.

Use a free-body diagram -



1D force
diagram

Parts A, B, and C of Fig. 5-3 show three situations in which
one or two forces act on a puck that moves over frictionless
ice along an x axis, in one-dimensional motion. The puck’s
mass is m = 0.20 kg. Forces F, and fz are directed along the
axis and have magnitudes F; = 4.0 N and F, = 2.0 N. Force
F, is directed at angle # = 30° and has magnitude F; = 1.0
N.In each situation, what is the acceleration of the puck?

KEY IDEA

In eaclLsituation we can relate the acceleration @ to the net
f_qrce F, acting on the puck with Newton’s second law,
F,.. = ma.However, because the motion is along only the x

A
2 The horizontal force
_[=——> | causes a horizontal
- ’ acceleration.
(a)

This is a free-body

Puck ?‘I .
— diagram.

(b)

7 7 These forces compete.

_<=——>>  Their net force causes
' a horizontal acceleration.

I Ii  Thisis a free-body
diagram.

Only the horizontal

(o}
S adh
Jza@_ x» component of F3
N y competes with Fy.

R This is a free-body

RV ¥ diagram.

N

axis, we can simplify each situation by writing the second
law for x components only:

F,

net.x X (5-4)

= ma,
The free-body diagrams for the three situations are also
given in Fig. 5-3, with the puck represented by a dot.
Situation A: For Fig. 5-3b, where only one horizontal force
acts, Eq. 5-4 gives us

F, = ma,,

which, with given data, yields
a,=—= —g = 20 m/s2. (Answer)

The positive answer indicates that the acceleration is in the
positive direction of the x axis.

Situation B: In Fig. 5-3d, two horizontal forces act on the
puck, F, in the positive direction of x and F, in the negative
direction. Now Eq. 5-4 gives us

F, — F, = ma,,
which, with given data, yields

F,—F, _40N-20N
m  020kg

25— =10 m/s%.

(Answer)
Thus, the net force accelerates the puck in the positive direc-
tion of the x axis.

Situation C: In Fig. 5-3f, force F; is not directed along the
direction of the puck’s acceleration; only x component F; ,
is. (Force 1_53 is two-dimensional but the motion is only one-
dimensional.) Thus, we write Eq.5-4 as

F;,— F, = ma,. (5-5)
From the figure, we see that F;, = F; cos 6. Solving for the
acceleration and substituting for Fs , yield

e F,—F, _ Ficos§-—F,
x = =
_ (1.ON)(cos30°) —20N

= —57m/s,
020kg S

(Answer)



In the overhead view of Fig. 5-4a, 2 2.0 kg cookie tin is accel-

erated at 3.0 m/s® in the direction shown by a, over a fric- , .

tionless horizontal surface. The acceleration is caused by ZD force vector s dlagram
three horizontal forces, only two of which are shown: F, of

magnitude 10 N and F, of magnitude 20 N. What is the third

force F, in unit-vector notation and in magnitude-angle

notation?
¥
— o L . We d the duct
These aretwo 2|  This is the resulting © draw e proctict
i _ of mass and acceleration
of the three horzontal acceleration
) as a vector.

honzontal force vector. B
vectors. -

./D‘—E

M

X
F
) ()

Then we can add the three
vectors to find the missing

third force vector.

Fig. 5-4 (a) An overhead view of two of three horizontal forces that act on a cookie tin,
resulting in acceleration @. F; is not shown. (b) An arrangement of vectors ma. — F..and
—Ff-._. to find force F;



Gravitational force

body of mass m is in free fall with the free-fall acceleration of magnitude g.

—F, =m(—¢g)
F, = mg.
Weigth

The weight W of a body is the magnitude of the net force required to prevent the body from falling freely,

W —F, = m(0)

As vector

g

W=F

g

The weight W of a body is equal to the magnitude F, of the gravitational force on the

body.

W

Note: weigth is not
mass!!

mg

(weight),

How to measure weight

F, = —F,j= —mgi=m§,

Scale marked
in either
weight or
mass units



Normal Force

Frety = ma,

Fy— F, = ma,.
¢ g The nomal force Mormal force .T;,‘
Fo — _ iz the force on T L
N T Mg = ma,. the block from the
supporting table. Fy
F = e + = Block
N g T ma, m(g + a_v)
x
Ifa,=0
The gravitational 7 The forces
Fy = mg. force on the block . balance.
iz due to Earth's v
downward pull. ) (B

Fg. 5-7 (a) A block resting on a table experiences a normal force E,. perpendicular to
the tabletop. (5) The free-body diagram for the block.



Friction is resistance to an attempt to slide

Direction of
— attempted
slide

<3

—

J

Fig. 5-8 A frictional force f opposes the
attempted slide of a body over a surface.

Tension is a force applied to a cord (or similar) to keep it streched

=~

T T
mkﬂ%/{.\ ,,,,,,,,,,, 7%

The forces at the two ends of
the cord are equal in magnitude.




Book % Crate C

{ a)

Newton’s 3™ |law

Newton’s Third Law: When two bodies interact, the forces on the bodies from each
other are always equal in magnitude and opposite in direction.

Actio equals reactio

— —
Fye = —Fcp  (equal magnitudes and opposite directions),



