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Summarizing our knowledge

Gauss S |aWS b, = i{\' B-dA =0 {Gauss’ law for magnetic fields).

D The simplest magnetic structure that can exist is a magnetic dipole. Magnetic
monopoles do not exist (as far as we know).

-

- e Jenc )
by = j‘ E-dA=— (Gauss’ law for electric fields).
E|]

Flux throughout Gauss surface measures included net electric charges

(Faraday’s law of induction).

Induced fields f# Foge_ _ 4Py
' dt

IS

a changing magnetic flux induces an electric field

Analogy predicted by James Clark Maxwell

— ;. -['lrr-I-"'I' ] ]
B -ds = pge : {Maxwell's law of induction).

A changing electric flux induces an magnetic field
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The changing of the
electric field between
the plates creates a
magnetic field.



We know a similar equation :

3{\' B-ds = Bofene  (Ampere’s law),

- Combining : A current and a changing electric field
give a magnetic field exactly in same form

. dd E , During charging, magnetic
B - d5 =|ppeq T + polene  (Ampere—Maxw field is created by both
[ Before charging, there the real and fictional currents.
is no magnetic field. i
I \'. J .". '-.III
1 : ,Displ “ AN & VR
st term: , Displacement current (@ == | =
| [ |
I. Ir j \ +
' J " I"\/’l I
EII"-IJ;- B B B
Iy = &g - (displacement current).
dt During charging, the
right-hand rule works for both
the Feal and ﬁi:t|:::nnal currents. After charging, there
. ff‘;-l-‘j- d{ EA } dE L. L is no magnetic field.
g = &g — =gy = E.'-D..-q . ‘ A
dt dt dt I i e
() I = = |= () - —
= - . . \ / 7 \ 1
B-ds = ppigene + pofene (Ampere—Maxwell law), \J \J/ \J
B B b3

A changing electric flux induces an magnetic field



A parallel-plate capacitor with circular plates of radius R is
being charged as in Fig. 32-5a.

(a) Derive an expression for the magnetic field at radius r
for the case r = R.

(B)(27r) = poto

B = HoEgl ﬁ

(b) Evaluate the field magnitude B for r = R/5 = 11.0 mm
and dE/dt = 1.50 x 10> V/im-s.

Calculation: From the answer to (a), we have

1 dE
B = 5 HoEor
= (47 x 107 T~ m/A)(8.85 X 10"2 CYN - m?)
* (11.0 X 10— m)(1.50 % 10" V/m - s)

=918 X 1078 T. (Answer)

This equation tells us that, inside the capacitor, B increases
. linearly with increased radial distance r, from 0 at the cen-
2 dt tral axis to a maximum value at plate radius R.

(c) Derive an expression for the induced magnetic field for
the case r = R.

A = 7R?
o R dE
2r dt

Outside B decreases with increased radial distance r.



Maxwell's Equations® Inte gral form

Mame Equation

Gauss’ law for electricity 5{7 E-dA =g, /s, Relates net electric flux to net enclosed electric charge
Gauss’ law for magnetism 5{7 B-dA = Relates net magnetic flux to net enclosed magnetic charge

. — . ﬂl‘I’ﬂ- ) . . )
Faraday's law E-ds 3 Relates induced electric field to changing magnetic flux

. ﬂr‘I"j; . - . . X
Ampere—Maxwell law B -ds = pgs, p + fpd e Relates induced magnetic field to changing electric flux
! and to current
divE = £ . .
£0 Material equations:

divB =0

D=c¢c¢gyE
Differential form rotE — —dd—g B=puuyH
r j=0E

dF

—= —
rotB = poj + #HEHW




Usage of Maxwell’s equations to derive the wave equation

7 Per hand
— d
Ampere-Maxwell law rot B = Iu[;E[;F j=0
2nd time derivative irm‘ﬁ _ i . @ r{;r@ e d*E
dt IV TLRPT ar ~ M

, — f dB d*E — EFE
Substitute dB/dt  rot E = rot—pm = Hte—s 3 - rotrot E = peg e

Using relation (math) rotrotE = —AFE + graddi vE

And consider: No charges divE =0 Gauss law for electrical charges, but p=0
i PN
Provides 3D wave equation M E = pgeg 1 AE = I + 0 + d:z}
d’E d*E
For 1D

dxz - HOE0 s

o d’E 1 d*FE [

Considering C =
\ 1oeo

dx2 2 dt?



Analogy to Wave equation in Mechanics

d?y

dx?

1 d?y
v dt?

d?E
d x2

= Egio

d*E 1
dt? “ T JEO L

Ansatz : y=vy_ sin (ot - kx)

dy/dt = ® y,, sin (ot - kx)
d?y/dt* =-@? y,, sin (ot - kx)
dy/dx =k y,, sin (ot - kx)
d?y/dx* = -k? vy, sin (ot - kx)

E=E, exp (i(mt-kx)

-@? y,,, sin (ot - kx) = 1/v? (-k? y,, sin (ot - kx))

“? = 1V (-k?)
v=Af

= Af

Wogo= 1/c?

=471 107 N/A**8.86 1012 As/Vm

=111.3 10'1°[Nm/mA? *As/Vm

- Ws/mAZ*As/Vm

- VAs/mA? * As/Vm =2s¥m?]
c=1/(111.3 10192 m/s

c =299 792 458 m/s
Speed of light



Wave properties

, — . dd Y
Faraday'slaw  § £-ds = - R &
] FTEE _.f:'+{!’.f_’x
Define L l /Il'il
rectangle 53’ E-ds =(E+ dE)Yh — Eh = hdE. . R
Flux dg through rectangle
ddy dB
by = (B)(h dx), = hdx—.
w = (B)(h dx) 5 "
The oscillati tic field
o dB dE _ dB poome
1dE = — X ? dx di ' perpendicular electric field.
dE
: = kE,, kx —
E = Epnsin(kx — wt), ax cos(hx — w)
: i B
B = B, sin(kx — wt), = —wh,, cos(kx — wt).

E, w
kE, cos(kx — wt) = wB,, cos(kx — wi). B_ = E =
m



Alternative approach

E
- B - ﬂrt_I_}! 1’J;f
Maxwell’s law %B'H’F = Mo ~ bl
dt / B i
i

f‘]{)ﬁdf= —(B + dB)h + Bh = —h dB.

by = (E)(h d), WP _ paxdE
dt dt
The oscillating electric field
— E - 0 o ) induces an oscillating and
X it perpendicular magnetic field.

—kB,, cos(kx — wt) = —pgegwk,, cos(kx — wt),

Em 1 1 1
B,  pegolwk)  pogsc Moo




Wave propagation in Eand B

d2E 1 d2E d*B 1 d*B
4y 2 di? dz2 2 di?
Wave propagates along x- direction Amplitudes are:

—Wavefronts— Ray
e T h
|
1
|

Electric Magnetic
component component
. . l
For propagatlon OUtSIde vacuum o=

VHIOEED

1
RO o — = Dy

Eg——08) =
HIOEED EE( EE€Q

Amplitude ratio

Hu EEN

Wave resistance Z,,

Zw = 22— 376,70

£p



Energy transport y o Planc of

oscillation

]|

'l .
? _ —fx? Right hand rule
L0

5 ( energy/time ) B ( power ) X
\ area A inst . dred .insll

1
E and B are perpendicular to each other S = E EB.
Since B=E/c & = E? (instantaneous energy flow rate).
Ciy
1 i Fo_r
intensity I= S5y = Chto [E_]a\'g - Citg [Emsin“(kx — "'-'-"r}]a\-g*
Root mean square value of E N Ve Dependence on
distance
E, 1 -/
Ep = v I = - E: .. S [ — power _ P,
e area 4ar

2 5



Light wave: rms values of the electric and magnetic fields

When you look at the North Star (Polaris), you intercept light
from a star at a distance of 431 ly and emitting energy at a rate
of 22 X 10° times that of our Sun (P,, = 3.90 X 10°°* W).
Neglecting any atmospheric absorption, find the rms values of
the electric and magnetic fields when the starlight reaches you.

KEY IDEAS

1. The rms value E_,, of the electric field in light is related to
the intensity 7 of the light via Eq.33-26 (I = EZ,.Jcu)-

2. Because the source is so far away and emits light with
equal intensity in all directions, the intensity / at any
distance r from the source is related to the source’s
power P, via Eq.33-27 (I = P /4mr?).

The magnitudes of the electric field and magnetic field
of an electromagnetic wave at any instant and at any
point in the wave are related by the speed of light ¢
according to Eq. 33-5 (E/B = c¢). Thus, the rms values of
those fields are also related by Eq. 33-5.

s

Electric field: Putting the first two ideas together gives us

P _ B
4w ey

Pcuy
d E.=.—>5-
an rms e

Substituting P, = (2.2 X 10°)(3.90 X 10** W), r = 431 ly =
4.08 % 10" m, and values for the constants, we find

E,.. =124 %107 V/m = 1.2 mV/m.

(Answer)

Magnetic field: From Eq.33-5, we write
_En. 124 x1073V/m

™ ¢ 300 % 108m/s
=41 x 1072T =41 pT.

B

Cannot compare the fields: Note that £, (= 1.2 mV/m)
is small as judged by ordinary laboratory standards, but B,
(= 4.1 pT) is quite small. This difference helps to explain why
most instruments used for the detection and measurement of
electromagnetic waves are designed to respond to the elec-
tric component of the wave. It is wrong, however, to say that
the electric component of an electromagnetic wave is
“stronger” than the magnetic component. You cannot compare
quantities that are measured in different units. However, these
electric and magnetic components are on an equal basis be-
cause their average energies, which can be compared, are equal.



Intensity

ultraviolet visible range infrared ,
Derived by Max Planck 1900

BLACKBODY RADIATION

EO\T) - 2he? 1
’ e ehc/AkT_ :

Radiation is quantized

T=6000K ||nmodes E=hv
WIEN$ law

h =6,626 1034 Ws?
Mnax T F 2898 uprK ’
max /E IJV/ \(ilanck's constant

T'=4000 K

T =3000

/ ;Lmax < 5000 K\
I

//, \
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Wavelength



Electromagnetic spectrum

Wavelength (nm)
700 B L 400

-~ _ Visible spectrum _ _ -

=— Wavelength (m)

I_mlg waves Eadio waves Infrared Ultraviolet X rays Gamma rays
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i ) TV channels CTEme
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: Marinme and AM acronautical, = - - citizens bamd,

i acronautical uses radio and mobile radio o - — and mobile radio
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Electromagnetic radiation

@ (= 1VLC) . power __P,

Vv area dar
Transformer
S/ \\

\Traw:ling wave

1".\,]‘\]" I'|

- |
Energy | — = ™, ™, | I | | P
source L WM | | DjﬁLanl_
Transmission f ——
R line /I C:rr:atcsl.
A : d
. Electric '}r / E’ magl[wi,u “ E
LT oscillator . — a —
dipole B P B P
anbeEnna I
(k) ()
Fig. 33-3 Anarrangement for generating a traveling electromagnetic wave in the l '
shortwave radio region of the spectrum: an LC oscillator produces a sinusoidal current in Zero
the antenna, which generates the wave. P is a distant point at which a detector can monitor Pe magnitudes o p
the wave traveling past it. (g} {c)
. . _ PaetsD P
1. The electric and magnetic fields £ and B are always perpendicular to the ‘5 E ‘Ef
N (el

direction in which the wave is traveling. Thus, the wave is a fransverse wave, as

discussed in Chapter 16. | pe B J
\[E’

2. The electric field 1s always perpendicular to the magnetic field.

3. The cross product ExB always gives the direction in which the wave travels. Greatest
4. The fields always vary sinusoidally, just like the transverse waves discussed ma”’[‘;;“d“

in Chapter 16. Moreover, the fields vary with the same frequency and in phase
(in step) with each other.

Variation of E and B
at point P



Elements of emission antenna

LC oscillator

LC oscillator

transformator

Primary Secondary
N,
vV, = Vp N (transformation of voltage).
P
Np
I, = IPT (transformation of currents).
5

Linear oscillator = antenna

Elektronik-Kompendium.de
O L'
v =—

A 2

o (= UVLC).

Linear oscillator

@!@%

(=)

)
b)

Hertz oscillator :
Dipol radiation

s—_ o
SEHIEQ{%}E

sintd

Gerthsen: Physik, 22.Ed, pages 431ff

Wave emission always

maximum perpendicular
to direction of electronic
oscillation with power P

2 .4
_P e &
bmege?

Time dependence of
emission



Wave propagation in media with conductivity o

Per hand
Here phase velocity v = c/Ve In conductive medium the current j=cE
dE
mrﬁ = UpEEQ—— + unr:rf
dt
. d*E dE o
AE = pupeeg 772 —+ ,H[:CI'F Wave equation in media

E _ Eﬂf,:{mr—kx} + E—Ex

] k? — 8% = pgeegew”
(8 +ik) = pooiw — poeegw®

20k = pgow

(0 == ac? § =< k Penetration depth > wave length

1 w 1
- E el= _ n = e R —
I = |EI| = IDE 2% _ IDE_'H Eﬂﬂm L k W HOEED

w << pgoc’ k== ,l'l."f oo Penetration depth < wave length

1
2



examples

seewater: 6= 12 QIm?! €280 =2 c=3 10" m/s

28 =~ 41107 Tm/A 12 A/V m 3 107 m/s = 452 m’! To/A
—_ 2
Decay depth 1/e > 1/28 =0.002 m = 2 mm = Ws/mA
=VAs/mA?

= 4000 A for visible light (0.5 um) or
< 1 A for radio waves

Copper:6=6 10’ QIm1e=80 > c=310"m/s
20= 4107 Tm/A 6 10’ A/Vm 310’ m/s=2.2510°m1?
1/26 =0.410° m =0.4 nm ( 2 atomic layers) = see later

Quartzglass: 6= 10 QO'm?! €=2 2 ¢c=210°m/s
20= 41107 Tm/A 101> A/V m210°m/s=251013 m
1/26 =4 10 m (limited by absorption)



Radiation due to accelerated charges

Dipole moment of
antenna of lenght |

p=cel
dp—ev—fm!’
p=ev=

2
%p=€ﬂ=ﬁw”

- Each charge accelerated
by a radiates with energy
density S and power P

¢ _ 1 e2a? sin?e
1672 gged 2
p 1 e2a?

b ggc?

Electron bunch

Bending Magnet




Name : Matr nr.

Physics 1 for Nanoscience & Nanotechnology
Level of knowledge 5 8.1.19

1. Give the equation of Ampere’s law, what is its physical meaning ?

2. Give the equation for Faraday’s law ? What is the physical
meaning ?

3. Apply Gauss’law for the case of an enclosed electrical charge.

4. Show the analogy of Gauss’law for magnetic charges. Apply Gauss’law for the
case of an enclosed magnetic dipole.



