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current, and potential difference do not decay exponentially with time but
vary sinusoidally (with period T and angular frequency v).0Oscillations of
a capacitor’s electric field and the inductor’s magnetic field are

electromagnetic oscillations.
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(a) Capacitor with maximum charge, no currenta®stCapacitor discharging, current increasing.
(c) Capacitor fully discharged, current maximuire'eéd) Capacitor charging but with polarity
opposite that in (a), current decreasing. (e) Capacitor with maximum charge having polarity
opposite that in (a), no current. (f ) Capacitor discharging, current increasing with direction



Electrical - Mechanical analogy

Block —Spring System [.C Oscillator
Element Energy Element Energy
Spring Potential, {;.ﬁ:r! Capacitor Electrical, -Lrl[ 1/C)g?
Block Kinetic, ymy? Inductor Magnetic, 3 L.i°
v = dx/dlt i = dgldt
. 1 -
W = /: (block —spring system). @ v 1LC (LC circuit).



We analyzed block —spring oscillations in Chapter 15 in terms of energy transfers
and did not—at that early stage—derive the fundamental differential equation
that governs those oscillations. We do so now.

We can write, for the total energy U of a block—spring oscillator at any
instant,

U= U, + U =3mv> + Tkx?, (31-5)

where U, and U, are, respectively, the kinetic energy of the moving block and the
potential energy of the stretched or compressed spring. If there is no friction—
which we assume—the total energy U remains constant with time, even though
v and x vary. In more formal language, dU/dt = 0. This leads to

dU d | 5 .1, 5

— =—(3 + 5 = mv— + kx— = 0. i}

i g @mv skx*) = mv ) kx ) 0 (31-6)

However, v = dx/dt and dv/dt = d*x/dt>. With these substitutions, Eq. 31-6
becomes

2

i
dt?

+ kx =0  (block—spring oscillations). (31-7)

Equation 31-7 is the fundamental differential equation that governs the friction-
less block —spring oscillations.

The general solution to Eq. 31-7—that is, the function x(¢) that describes the
block —spring oscillations—is (as we saw in Eq.15-3)

x = Xcos(wt + ¢)  (displacement), (31-8)

in which X is the amplitude of the mechanical oscillations (x,, in Chapter 15), wis
the angular frequency of the oscillations, and ¢ is a phase constant.



The LC Oscillator
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7, _-4=0 (LCoscillations).
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dt? C

g = Q cos(wt + ¢)

= % = —wQsin(wt + ¢) I'= w0, i=—Isin(wt + ).

= —w?Q cos(wt + B).

— L*Q cos(wt + ¢) + % QO cos(wt + ¢p) = 0. VLC




LC

- oscillator

The electrical and magnetic
energies vary but the total
Is constant.

0 /2 T

Time

(p=0)

The electric energy stored in LC circuit at time t:

g O
U.' pr— p—
e 2c

cos?(wt + ).

The magnetic energy.
b = sLi? = 2L Q" sin*(wt + ).

1
Y~ VIC
U, = i sinf(wt + ).
Ay ( )

1. The maximum values of U, and U, are both Q%/2C.
2. At any instant the sum of U and Uy is equal to Q%/2C, a constant.
J. When U} is maximum, Uy is zero, and conversely.



LC oscillator: potential change, rate of current change

A 1.5 pF capacitor is charged to 57 V by a battery, which is
then removed. At time ¢t =0,a 12 mH coil is connected in series
with the capacitor to form an LC oscillator (Fig. 31-1).

(a) What is the potential difference v, (¢) across the inductor
as a function of time?

KEY IDEAS

(1) The current and potential differences of the circuit (both
the potential difference of the capacitor and the potential
difference of the coil) undergo sinusoidal oscillations. (2)
We can still apply the loop rule to these oscillating potential
differences, just as we did for the nonoscillating circuits of
Chapter 27.

Calculations: At any time ¢ during the oscillations,
the loop rule and Fig.31-1 give us

v(t) = ve(d); (31-18)
that is, the potential difference v, across the inductor must
always be equal to the potential difference v across the
capacitor, so that the net potential difference around the circuit

is zero. Thus, we will find v, (¢) if we can find v(f), and we can
find v(f) from g(¢) with Eq.25-1 (g = CV).

1 1

“TVIC  [(0012H)(15 X 10 F)*S

= 7454 rad/s = 7500 rad/s.

Thus, Eq.31-21 becomes

v, = (57 V) cos(7500 rad/s)z. (Answer)

(b) What is the maximum rate (di/dt),, at which the cur-
rent i changes in the circuit?

KEY IDEA

With the charge on the capacitor oscillating as in Eq. 31-12,
the current is in the form of Eq. 31-13. Because ¢ = 0, that
equation gives us

Because the potential difference v(f) is maximum
when the oscillations begin at time t = 0, the charge ¢ on the
capacitor must also be maximum then. Thus, phase constant
¢ must be zero; so Eq.31-12 gives us

g = O cos wt. (31-19)

(Note that this cosine function does indeed yield maximum g
(= O) when ¢t = 0.) To get the potential difference v(t), we
divide both sides of Eq.31-19 by C to write

4q _0Q

= — COs wl,
C C

and then use Eq. 25-1 to write

ve = Vicos wt. (31-20)

Here, V- is the amplitude of the oscillations in the potential
difference v across the capacitor.
Next, substituting v = v, from Eq. 31-18, we find

v, = Vcos wt. (31-21)

We can evaluate the right side of this equation by first not-
ing that the amplitude V- is equal to the initial (maximum)
potential difference of 57 V across the capacitor. Then we
find wwith Eq. 31-4:

i = —w( sin wt.
Calculations: Taking the derivative, we have
di d
= (- i = — 2
i I (—w0 sin wr) w Q Cos wt.
We can simplify this equation by substituting CV for O
(because we know C and V- but not Q) and 1/VLC for @
according to Eq.31-4. We get
di 1 V
?; = el CVcos wt = —chos wt.
This tells us that the current changes at a varying (sinusoidal)
rate, with its maximum rate of change being
Ve 57V

I = 00DH - 4750 A/s = 4800 A/s.

(Answer)



RCL Oscillator

As R is present, the total energy of the system is no longer YR

constant. It decreases with time as energy is transfered to VA
thermal energy in the resistor. Because of this, the oscillations of
charge, current and potential difference continuously decrease L C

in amplitude, and the oscillations are damped.

) , ) Li® q* ]
U=Up+ Up=——+ T The total energy at any instant
d ;; — —r. The energy is decreasing as it is tmnsferred to heat.
: >
dl/ i g dg .
—=Li—+ = —i’R.
i € dr

Substituting dg/dt for i and d?g/ds* for dildt,

d’g dqg 1

dit RF B F":F =10 { RLC circuit),

L

S —Rir21. ' i 0
q= Qe it Oscilloscope tmce of RCL osczllator

o = Vo — (R2LY., with an exponentially decaying
amplitude.
) 2 t,_,—.f':‘r.-'l.'. cos(wm't + & 2 l':': ) . ,
U = ;C = [© gém 2 = £C e ML cos?(w't + o).



Damped RLC circuit: charge amplitude

A series RLC circuit has inductance L = 12 mH, capaci-
tance C = 1.6 uF, and resistance R = 1.5 () and begins to os-
cillate at time ¢ = 0.

(a) At what time ¢ will the amplitude of the charge oscilla-
tions in the circuit be 50% of its initial value? (Note that we
do not know that initial value.)

KEY IDEA

The amplitude of the charge oscillations decreases exponen-
tially with time t: According to Eq. 31-25, the charge ampli-
tude at any time ¢ is Qe *"*! in which Q is the amplitude at
timez = 0.

Calculations: We want the time when the charge ampli-
tude has decreased to 0.50Q. that is, when

Qe Rl = 0.50Q.

We can now cancel Q (which also means that we can answer
the question without knowing the initial charge). Taking the
natural logarithms of both sides (to eliminate the exponen-
tial function), we have

Rt

_ 2 h0.50.
"

Solving for ¢ and then substituting given data yield

_ 2L _(9)(12 x 107% H)(In 0.50)
t=——"In050 = —

= 0.0111 s = 11 ms.

(Answer)

(b) How many oscillations are completed within this time?

KEY IDEA

The time for one complete oscillation is the period T =
27w, where the angular frequency for LC oscillations is
given by Eq.31-4 (0 = 1/VLC).

Calculation: In the time interval At = 0.0111 s, the number
of complete oscillations is

A m
T 2o\IC
B 0.0111s ~13
2@[(12 X 1073 H)(1.6 X 107°F)]'# '
(Answer)

Thus, the amplitude decays by 50% in about 13 complete
oscillations. This damping is less severe than that shown in
Fig. 31-3, where the amplitude decays by a little more than
50% in one oscillation.



Alternating Current

Emf and the current is varying sinusoidally with time, reversing
direction , which means oscillating.

Forced Oscillations
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A generator,
represented by
a sin wave in a
circle,
produces an

alternating emf
that establishes

an alternating
current
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When the external alternating emfis
connected to an RLC

circuit, the oscillations of charge,
potential difference, and current are
driven oscillations or forced oscillations.
These oscillations always occur at the
driving angular frequency o,.

When eigenfrequeny o equals the driving

Jrequqncy o, , resonance occurs, the

amplitude of I is maximum.



A capacitive load

€ =€, sin wyl. i = Isin(wgt — ¢),

Ve = Viesin wyt, \

ge = Cvpe = CVesin ayl.

ﬁi@ C=léﬂ Vi

. dgc
e dt

= wd'CV[ COS wyl.

1 Xc has unit

X- = o.C (capacitive reactance). ohm, ] ust a

cos wyl = sin(wyt + 90°),

V-
i = (?‘i) sin(aw,t + 90°).
C

ic = Iesin(wyt — @), -

For a purely capacitive load the phase constant ¢
for the current is -90° with respect to applied EMF.



Ve = IcX¢ (capacitor).

For a capacitive load, the
current leads the potential
difference by 90°.

Ve B _ Rotation of
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|
| | current peaks at an
| . .
b Ly earlier time than the

Instanis
represented in ()

potential difference.

The quantities voand i are 90°, n/2 rad, or one-quarter cycle, out of phase.
Furthermore, we see that iC leads vC, which means that, if you monitored the
current iC and the potential difference vC in the circuit, you would find that iC
reaches its maximum before vC does, by one-quarter cycle.

The phasors representing these two quantities rotate counterclockwise together,
the phasor labeled IC does indeed lead that labeled VC, and by an angle of 90°, that
18, the phasor IC coincides with the vertical axis one-quarter cycle before the
phasor VC does.



An inductive load

v, =V, sin wyt,

= I dt;
é{@ L l*f- vy : dt
X di, = V sin wyl
dt

X, = wyl. (inductive reactance).

—cos wyl = sin{w,t — 90°).
'V
[, = ( X, )sm{mdr — 90°).

| _ a purely inductive load the phase
ip = I sin(wgt — @), constant f for the current is 90° with
o T respect to applied EMF



Vi =11 X, (inductor).

For an inductive load,
the current lags the
potential difference

by 90°.
Vi B, \ Romtion of
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| | , \ FALE oy
r 1 1 Y e Ii- I §
1-]' — I ¥, I B
A I \ . |
I I 'I.I'. I y I,ml'."l
! | v { -~
{ . ' .
; 1= . “Lags™ means that the
i i -5 current peaks at a
I I

later time than the

() . .
T—mm.][;;f potential difference.

represented in (&)

the quantities iL and vL are 90° out of phase. In this case, however, iL lags vL; that is,
monitoring the current iL and the potential difference vL in the circuit shows that iL
reaches its maximum value after vL does, by one-quarter cycle.

The phasor diagram also contains this information. As the phasors rotate
counterclockwise in the figure, the phasor labeled IL does indeed lag that labeled
VL, and by an angle of 90°.



Phase and Amplitude Relations for Alternating Currents and Voltages

Circuit Resistance Phase of Phase Constant Amplitude
Element Symbol or Reactance the Current (or Angle) ¢ Relation
Resistor KR R In phase with v 0° (= O rad) Vp= IR
Capacitor C Xe=la,C Leads v by 90° (= =2 rad) —90° (= —«f2 rad) Ve=1-X-
Inductor I. X = ayl. Lags vy by 90" (= =2 rad) +90° (= + /2 rad) Vi, =1 X,

When an applied alternating voltage produces an alternating current in these

elements, the current is always in phase with the voltage across a resistor,

always leads the voltage across a capacitor, and always lags the voltage across an

inductor.



RLC circuit WW—
"
L = "‘-.-/RE + (X, — e (impedance defined). f+® C l';
@ I
_ '._rrr , —rW
I = A Complex Ohm’s law -—
i

i -
I = — (current amplitude).

VR + (0l — Ve, Y

The current that we have been describing in this section is the
steady-state current that occurs after the alternating emf has
been applied for some time. When the emfis first applied to a
circuit, a brief transient current occurs. Its duration is
determined by the time constants 1;=L/R and t,= RC as the
inductive and capacitive elements “turn on.”

X — Xe
R

tan ¢ = (phase constant).



X, — X-
tan ¢ = L R - (phase constant).

X, > X The circuit is more inductive than capacitive
X, > X,: The circuit is more capacitive than inductive.
X, = X;: The circuit is in resonance

the current amplitude I in an RLC circuit

£

-l.r — ll =
VR? + (wl. — VwyC)

For a given resistance R, that amplitude is a maximum when

the_ auantity
w::’.!'f' o 1"II{‘:".:4'E =
the natural angular frequency of the
1 RLC circuit

(maximum [ ).

(resonance ).
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Current amplitude, impedance, and phase constant ~
In Fig. 31-7, let R=200 Q, C=150uF, L =230mH,  We then find
fs=60.0Hz, and €, = 36.0 V. (These parameters are those % 6.0V
used in the earlier sample problems above.) I = ;’ = 21’9 q - 0.164 A. (Answer)

(a) What is the current amplitude I?

KEY IDEA

The current amplitude / depends on the amplitude €, of the
driving emf and on the impedance Z of the circuit, accord-
ing to Eq.31-62 (I = €,/Z).

Calculations: So, we need to find Z, which depends on resis-
tance R, capacitive reactance X, and inductive reactance X;.
The circuit’s resistance is the given resistance R. Its capacitive
reactance is due to the given capacitance and, from an earlier
sample problem, X = 177 () Its inductive reactance is due
to the given inductance and, from another sample problem,
X = 86.7 (). Thus, the circuit’s impedance is

Z=VR + (X, - X
= V(200 Q)2 + (86.7 Q — 177 Q)?
=219 Q.

(b) What is the phase constant ¢ of the current in the
circuit relative to the driving emf?

KEY IDEA

The phase constant depends on the inductive reactance, the
capacitive reactance, and the resistance of the circuit,
according to Eq. 31-65.

Calculation: Solving Eq. 31-65 for ¢ leads to

Xc _, 8670 — 1771}

X —
=tan ' —Lt—5X =t
b an R an 200 Q0

= —24.3° = —0.424 rad. (Answer)

The negative phase constant is consistent with the fact that
the load is mainly capacitive; that is, X > X, . In the com-
mon mnemonic for driven series RLC circuits, this circuit is
an /CE circuit—the current /eads the driving emf.
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Each curve peaks at
its maximum
current amplitude I
when the ratio o; /o
1S 1, but the
maximum value of 1
decreases with
increasing R. In
addition, the curves
increase in width
with increasing R

R- damping term.

Driving @ ; equal to natural @
* high current amplitude \

» circuit Is in resonance »
» equally capacitive and inductive .

« X, equals X
« current and emf in phase
* zero ¢

:

R=53010

Current arnplitade §

F=1001L

0.90 0.95 .00 .05 1.10

05/t
Low drving @, High driving @
* low current amplitude * low current amplitude
» ICE side of the curve * ELI side of the curve
* more capacitive * more inductive
* X is greater * X| is greater
+ current leads emf + current lags emf
* negative @ * positive @
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Ansatz:
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