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Faraday’s law of induction

An EMF is induced in a loop when
the number of magnetic field lines
that passing the loop is changing

b, = f E - dﬁ' {magnetic flux through area A).

1weber=1Wb=1T-m".

. dd

€= —?ﬂ ( Faraday's law),
1P

€= —N il (coil of N turns).

dt

The magitude of EMF induced in a
conducting loop is equal to the rate at
which the magnetic flux through the
loop is changing

The magnet's motion
creates a current in
the loop.

Experiment 1

Closing the switch
causes a current in
the left-hand loop.

Experiment 2



Here are the general means by which we can change the magnetic flux
through a coil:

1. Change the magnitude B of the magnetic field within the coil.

2. Change either the total area of the coil or the portion of that area that lies
within the magnetic field (for example, by expanding the coil or sliding it into
or out of the field).

3. Change the angle between the direction of the magnetic field B and the plane
of the coil (for example, by rotating the coil so that field B is first perpendicu-
lar to the plane of the coil and then is along that plane).



example

The long solenoid S shown (in cross section) in Fig. 30-3
has 220 turns/cm and carries a current { = 1.5 A its diam-
eter D is 3.2 cm. At its center we place a 130-turn closely
packed coil C of diameter d = 2.1 cm. The current in the
solenoid is reduced to zero at a steady rate in 25 ms. What
is the magnitude of the emf that is induced in coil C while
the current in the solenoid is changing?

S: n =220 turns/cm

1. Because it is located in the interior of the solenoid, coil C lies - - el
within the magnetic field produced by current i in the i=1.5 A, reduced to i=0 within 25ms
solenoid: thus, there is a magnetic flux @, through coil C. C: N= 130 turns d=2.1cm

2. Because current i decreases. flux @ also decreases.
3. As @y decreases, emf € is induced in coil C.

What is the emf induced in coil C

4. The flux through each turn of coil C depends on the area
A and orientation of that turn in the solenoid’s magnetic
field B. Because ¥ is uniform and directed perpendicular
to area A, the flux is given by Eq. 30-2 (®; = BA).

5. The magnitude B of the magnetic field in the interior of a so-
lenoid depends on the solenoid’s current ¢ and its number n
of turns per unit length, according to Eq.29-23 (B = ugin).



example

The long solenoid S shown (in cross section) in Fig. 30-3
has 220 turns/cm and carries a current { = 1.5 A its diam-
eter D is 3.2 cm. At its center we place a 130-turn closely
packed coil C of diameter 4 = 2.1 cm. The current in the
solenoid is reduced to zero at a steady rate in 25 ms. What
is the magnitude of the emf that is induced in coil C while
the current in the solenoid is changing?

S: n =220 turns/cm

1. Because it is located in the interior of the solenoid, coil C lies . . oLl
within the magnetic field produced by current [ in the i=1.5 A' reduced to i=0 within 25ms
solenoid: thus, there is a magnetic flux & through coil C. C: N=130 turns d=2.1cm

2. Because current i decreases. flux @ also decreases.
3. As @y decreases, emf € is induced in coil C.

What is the emf induced in coil C

4. The flux through each turn of coil C depends on the area
A and orientation of that turn in the solenoid’s magnetic
field B. Because ¥ is uniform and directed perpendicular
to area A, the flux is given by Eq. 30-2 (®; = BA).

5. The magnitude B of the magnetic field in the interior of a so-
lenoid depends on the solenoid’s current ¢ and its number n

of turns per unit length, according to Eq.29-23 (B = pin). ddy _ ADy, _ Dy — Dy,
dt At At
(0 — 1.44 X 1075 Wb)
®p; = BA = (uoin)A 25 X 1073
— —4 — _ —4
= (47 x 107" T-m/A)(1.5 A)(22 000 turns/m) = =576 X 107 Wbis = —5.76 X 107 V.
X (3.464 X 10* m? dd
= 14(;4 % 10~5 Wh : = 5 = (130 turns)(5.76 x 1074 V)

=75 x 1072V =75mV. (Answer)



Lenz’s Law

1. Opposition (o Pole Movement.

2. Opposition o Flux Change.

The magnet's motion
creates a magnetic
dipole that opposes
the motion.

: An induced current has a direction such that the magnetic field due to the current
opposes the change in the magnetic flux that induces the current.

Increasing the external Decreasing the external
field Binduces a current  field B induces a current
with a field B, that with a field B4 that

opposes the change. opposes the change.

The induced
current creates
this field, trying
to offset the
change.

Increasing the external Decreasing the external
field Binduces a current  field B induces a current
with a field B, 4 that with a field B, that
opposes the change. opposes the change.




Induction and energy transfer

Decreasing the area
decreases the flux,
inducing a current.

Electrical power

i=6/R




Induction and energy transfer

Decreasing the area
decreases the flux,
inducing a current.
Electrical power

B21.22
P=Fyv= T (rate of doing work).



Induced electric field

¥ b ow ox ox

(a)
If the magnetic field increase, a
constant current is induced

(c)

Electric field forms a ring system

A changing magnetic field produces an electric field.

Circular
path 4

(5)

An electric field
appears at Radius r

(d)
Equal emf are induced in loops
1 and 2 but lessin 3 and 4



Faraday’s Law improved
W, =qAV=q

appl —

Circular

W = f F-ds = (goE)2mr),

It yields € = 27rE.

(€ = —ddyld),

L ddy, |
ﬂgE ds = s (Faraday's law).

field lines of induced electric fields form closed loops,

r_, i
;«'I_LJ"J.z—J;E-d:T‘. E}JE’-d§=ﬂ.

Static charges Induced field



dB/dt=0.13T/s

A )Find E at r=5.2 cm -2 inside the field

Find E at r=12.5.2 cmm =2 outside the field



Example  R=8.5cm
dB/dt= 0.13 T/s

A )Find E at r=5.2 cm -2 inside the field

ng-dfz 56545 = Eﬁgds = EQur).

®, = BA = B(wr?).

dB
EQmnr) = (wr?) — (52 x 1072 m)
dt = =
_ r dB = 0.0034 V/m = 3.4 mV/m.

2 dt’

E

(013 T’s)

Find E at r=12.5.2 cmm =2 outside the field

®; = BA = B(wR?). 6
=
g K a8 £t
2r dt’ =
2
(8.5 X 1072 m)>

E= (013 Tk) 0
(2)(125 X 1072 m) 0 10 20 30 40

=38 % 1073 V/m = 3.8 mV/m. r {cm)




Inductors, Inductance

Changing magnetic flux induces an emf + Electric current
produces magnetic field
SO
Changing current in one circuit ought to induce an emf and a
cuurent in second nearby circuil and even induce an emfin itself.

Inductors can be used to produce a desired magnetic field.

(ﬁmmmm If we establish a current i in the windings (turns) of the solenoid we are
taking as our inductor, the current produces a magnetic flux @ through the
central region of the inductor. The inductance of the inductor is then

Nd,

I

I =

(inductance defined), N is the number of turns.



Ny

I

L= (inductance defined), 1 henry = 1H =1T-m¥A.

IEductance—like capacitance —depends only on the geometry of the device.

Inductance of a solenoid :

When a changing current passes through a solenoid, a changing magnetic flux is
produced inside the coil, and this in turn induces an emf in that same coil. This
induced emf opposes the change in the flux.The magnetic flux is proportional to
the current by L.

long solenoid of cross-sectional area A,
N®y = (n))(BA), , _ NOy _ (nl)(BA) _ (nl)(noin)(A)
N=nl i [ I

@, = BA — P'..[}HEIA.

B = pyin, L _ non?A  (solenoid) Inductance per unit length: ~n?
: .

1wy = 47 x 1077 T-m/A
= 47 x 107 H/m.



Self- inductance

If two coils—which we can now call inductors—are near each other, a current i
in one coil produces a magnetic flux @, through the second coil. We have seen that if
we change this flux by changing the current, an induced emf appears in the second
coil according to Faraday’s law. An induced emf appears in the first coil as well.

J An induced emf €, appears in any coil in which the current is changing.
If i is changed by varying the position of on a

"
W i variable resistor, a self induced emf will
? appear in the coil.

’gi% 1_2
N@
‘? L= : z (inductance defined),
— [
Ny, = Li.
) d(ND di
€ = — ( o ) . €L = —L?i (self-induced emf).

Magnitude of i has no influence on magnitude of emf, only the rate of change in i.

N@, = Li.




i (increasing)
—

l:E!'.
The changing

current changes
() the flux, which
creates an emf
that opposes
the change.

3
]

1 (decreasing)
— -
(&)

%;'H—o

' CHECKPOINT 5

Fig. 30-14 (a)The current ; is increasing,
and the self-induced emf ¥; appears along
the coil in a direction such that it opposes
the increase. The arrow representing €, can
be drawn along a turn of the coil or along-
side the coil. Both are shown. (b) The cur-
rent i is decreasing, and the self-induced emf
appears in a direction such that it opposes
the decrease.

The figure shows an emf €; induced in a coil. Which of
the following can describe the current through the coil: (a)
constant and rightward, (b) constant and leftward, (c) in-
creasing and rightward, (d) decreasing and rightward,
(e) increasing and leftward, (f ) decreasing and leftward?

— L —



RL Circuits

When S is closed on a, the current in the
resistor starts to rise.

If there is no L, it would rise rapidly to ¢/R.
As we have L, ¢; appears, from Lenz’s Law,
this emf opposes the rise of current.

As long as ¢; 18 present, the current will be
less than ¢/R.

As time goes on, the rate at which 1
increases becomes less rapid.

The magnitude of ¢;, becomes smaller.
The current through the resistor
approaches /R R asymptotically.

Initially the inductor acts to oppose changes in the
current through it. After a long time, it acts like

ordinary connecting wire.



RL Circuits

current is increasing:

The resistor's potential
difference turns on.
The inductor's potential
difference turns off.

Vq=IR
i (ms)
(a)
€ o | .
b= E {1 — e ') (rise of current). Ig ;
= 4
2
L |
T;. = — (time constant). 0 9 4 6 3
K i {ms)
li_lﬂ(lv-s)(lu-g)_ls )
0  Q\1H-A v /T

1, 1S the time it takes 1 Lo reach
63% of ¢/R.



« Ifthe switch is thrown to b, the battery will be
removed from the circuit.

 The current through th eresistor will decrease.

« It must decay to zero over time.

di
L+ iR=0.
d

i (decay of current).

E_T.I—‘
R



Example i=0 at t>=0

R=9.0Q,L=2.0mH, =18V

|
(a) What is the current i through the battery just after the
switch is closed? I R R
- +
'gi_= Hg - R%
Just after the switch is closed, the inductor acts to oppose a R L R
change in the current through it.
—l'f il - |
- : € 18V ’
€ —iR=0. - =—2Y _90A. {a) (B) " -
'R To00 Initially, an inductor

acts like broken wire.

(b) What is the current i through the battery long after the
switch has been closed?

R
_ % _ 18V _ o B e = R — R/3
e =60A. R,=RB=(900)3=30Q" = E
R
() (d)

Long later, it acts

like ordinary wire. 1/R =3/9.0Q



RL circuit, current during the transition

A solenoid has an inductance of 53 mH and a resistance of 0.37
Q. If the solenoid is connected to a battery, how long will the
current take to reach half its final equilibrium value? (This is a
real solenoid because we are considering its small, but nonzero,
internal resistance.)

KEY IDEA

We can mentally separate the solenoid into a resistance and
an inductance that are wired in series with a battery, as in
Fig. 30-16. Then application of the loop rule leads to
Eq. 30-39, which has the solution of Eq. 30-41 for the current
i in the circuit.

Calculations: According to that solution, current i in-
creases exponentially from zero to its final equilibrium
value of é/R. Let t, be the time that current i takes to reach
half its equilibrium value. Then Eq. 30-41 gives us

4 :

2 R
We solve for £, by canceling €/R, isolating the exponential,
and taking the natural logarithm of each side. We find

L 53 x 107 H
:.‘D—*r;_ln2—§ln2— 037 0 In 2

€
= (L= e,

= 0.10s. (Answer)



Energy stored in a magnetic field

!u\

If a differential amount of charge dg passes through the battery of emf € in
Fig. 30-16 in time dt, the battery does work on it in the amount € dg. The
rate at which the battery does work is (€ dg)/dt, or €i. Thus, the left side of
Eq. 30-47 represents the rate at which the emf device delivers energy to the
rest of the circuit.

The rightmost term in Eq. 30-47 represents the rate at which energy appears as
thermal energy in the resistor.

. Energy that is delivered to the circuit but does not appear as thermal en-

ergy must, by the conservation-of-energy hypothesis, be stored in the mag-
netic field of the inductor. Because Eq. 30-47 represents the principle of
conservation of energy for RL circuits, the middle term must represent the
rate dUpg/df at which magnetic potential energy Up is stored in the mag-
netic field.



Energy stored in a magnetic field




Energy stored in a magnetic field

A coil has an inductance of 53 mH and a resistance of
0.35 ().

(a) If a 12 V emf is applied across the coil, how much en-
ergy is stored in the magnetic field after the current has built
up to its equilibrium value?

KEY IDEA

The energy stored in the magnetic field of a coil at any time
depends on the current through the coil at that time, accord-
ing to Eq.30-49 (U = 1Li%).

Calculations: Thus, to find the energy Up. stored at
equilibrium, we must first find the equilibrium current. From
Eq.30-41, the equilibrium current is

€ 12V
= T 0350 343 A. (30-51)
Then substitution yields
Us-. = sLi% = (3)(53 x 1073 H)(34.3 A)?
=311J. (Answer)

(b) After how many time constants will half this equilib-
rium energy be stored in the magnetic field?

Calculations: Now we are being asked: At what time ¢ will

the relation :
U = EUBm

F—.‘_

be satisfied? Using Eq. 30-49 twice allows us to rewrite this
energy condition as

172 17
Lt = (3)zLE

: (e

This equation tells us that, as the current increases from its ini-
tial value of O to its final value of i, the magnetic field will
have half its final stored energy when the current has in-

creased to this value. In general, we know that i is given by Eq.
30-41, and here i. (see Eq. 30-51) is é/R; so Eq. 30-52 becomes

(30-52)

E(] — —f'r'n} — i
R V2R
By canceling /R and rearranging, we can write this as
1
i =1 — —= = 0.293,
¢ V2

which yields

L L 1n0293 =123

or t=127. (Answer)

Thus, the energy stored in the magnetic field of the coil by
the current will reach half its equilibrium value 1.2 time
constants after the emf is applied.



Mutual induction , .

shows two circular close-packed coils near each other and sharing a common
central axis. With the variable resistor set at a particular resistance R, the battery
produces a steady current i, in coil 1. This current creates a magnetic field repre-
sented by the lines of §1 in the figure. Coil 2 is connected to a sensitive meter but
contains no battery; a magnetic flux @.; (the flux through coil 2 associated with
the current in coil 1) links the N, turns of coil 2.
We define the mutual inductance M5, of coil 2 with respect to coil 1 as
M, = N, @ . By

f/.a-_\‘
| \{(/ 4 h definition

L = Noii, remember

AW
."; T l \'. Emf
ol ) ' )
\ - |/ appe anri
ngin
| L i ) coil 2
Coil 1 Coil 2 Coil 1 (]Dm due to
(a) {f) t h e




Mutual inductance of two
Figp{ﬁﬂ@lﬂ@@sml@u]ar close-packed coils, the

smaller (radius R,, with N, turns) being coaxial with the
larger (radius R,, with N, turns) and in the same plane.

(a) Derive an expression for the mutual inductance M for
this arrangement of these two coils, assuming that R, > R,.

/

The magnetic flux through the fl

L
+17=

Small COil due tO the Current Fig. 30-20 A small coil is located at the center of a large

coil. The mutual inductance of the coils can be determined by

through the large COil ’is sending current i, through the large coil.

aggmgeﬁmately uniform.

I
©yy = BiAy  Flux through each turn of the smaller co N,®,,

Ty N1N2R§

N,®,, = N,B,A,. Fluxlinkagein the small coil with N, turns

.F-*[:HIIR3
B(z) = —
(z) 2R + 72 ﬁ

Set 2=0, B1, the field p _ y Ko N,®,, — oMM, RE:

the larger coil 2R, 2R
produces at points
within the smaller

2R,



Mutual inductance of two
parallel coils

(b) What is the value of M for N, =N, =1200 turns,
R, =1.1cm,and R, = 15 cm?

_ (m)(47 x 10~ H/m)(1200)(1200)(0.011 m)’

M 1]
(2)(0.15 m) | -
Fig. 30-20 A small coil is located at the center of a large
— 2 29 W ].D,—?r H = 2 3 ITlH (AI’ISWEI') coil. The mutual inductance of the coils can be determined by

sending current i, through the large coil.

From hereon !l11 At 17.12.



