Physics 1

UNIVERSITAT SIEGEN

FESTKORPERPHYSIK

Lecture 5b: Capacitors, dielectrics,
electric circuits

Prof. Dr. U. Pietsch




A fixed potential difference V exists between a pair of close parallel plates carrying
opposite charges +Q and —Q. Which of the following would not increase the
magnitude of charge that you could put on the plates?

(a) Increase the size of the plates.

(b) Move the plates farther apart.

(c) Fill the space between the plates with paper.
(d) Increase the fixed potential difference V.
(e) None of the above.



A capacitor 15 a device that can store electric charge, and normally consists of two
conducting objects (usually plates or sheets) placed near each other but not
touching, Capacitors are widely used in electronic circuits. They store charge for
later use, such as in a camera flash, and as energy backup in computers if the
power [ails. Capacitors also block surges of charge and energy lo protect circuils.
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FIGURE 24-5 Key on a computer
keyboard. Pressing the key reduces
the capacitor spacing thus increasing
the capacitance which can be
detected electronically.



Capacity calculation

v Electric field lines
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Two charged plates separated
by distance d form a capacitor

Gaussian o % E-dA = g.

Top side of
bottom
plate has
charge —g

Bottom side of
top plate has
charge +q

surface (@) (b)
e FA The charge q and the potential difference V
4= &bA, between the plates are proportional to each other
! d g=CV.
V = Eds=FE | ds = Ed.
R ! C - capacity
eoEA = CEd
-Efu.n"'"l
I:I - d Path of

Integration

1 farad = 1 F = 1 coulomb per volt = 1 C/V.



Charging the plates in a parallel-plate capacitor

In Fig. 25-7a, switch S is closed to connect the uncharged ca-
pacitor of capacitance C = 0.25 uF to the battery of potential
difference V = 12 V. The lower capacitor plate has thickness
L = 0.50 cm and face area A = 2.0 X 107*m?, and it consists
of copper. in which the density of conduction electrons isn =
8.49 x 10* electrons/m’. From what depth d within the plate
(Fig. 25-7b) must electrons move to the plate face as the ca-
pacitor becomes charged?

KEY IDEA

The charge collected on the plate is related to the capaci-
tance and the potential difference across the capacitor by

Eq.25-1(q = CV).
Calculations: Because the lower plate is connected to the

negative terminal of the battery, conduction electrons move
up to the face of the plate. From Eq. 25-1, the total charge

e —
]

T

(a) (b)
Fig. 25-7 (a) A battery and capacitor circuit. (b) The
lower capacitor plate.

magnitude that collects there is
g=CV=(025x10"°F)(12V)
=3.0x107°C.

Dividing this result by e gives us the number N of conduc-
tion electrons that come up to the face:

g 30x10°°C

e 1.602 x 107 C
= 1.873 x 10" electrons.

These electrons come from a volume that is the product of the
face area A and the depth d we seek. Thus, from the density of
conduction electrons (number per volume), we can write

n = i
Ad’
or
g N 1.873 x 10" electrons

An (2.0 X 10~*m?) (849 X 10®electrons/m’)

=11x107"”m = 1.1 pm. (Answer)

In common speech, we would say that the battery charges
the capacitor by supplying the charged particles. But what
the battery really does is set up an electric field in the wires
and plate such that electrons very close to the plate face
move up to the negative face.



Parallel and Series connection of capacities

g=q,+q;+q:=(C, + C; + G)V.

{i'_ Termmmal

q
Cou=—7 =0C+ G + G,
I o N [ +q5 + iy +qy
,. B ¥ v § A —
Coy = ;Ei G l —-gslc, —#|c, -0
) Terminal
The net effect of connecting capacitors in parallel is thus to increase the capaci-
tance. This makes sensc because we are essentially increasing the arca of the plates Terminal
where charge can accumulate (see, for example, Eq. 24-2), s
k)
1 1 1 p g m—
V=L1+L5+Lf_;=q( +—+ ) "Iil_ u
G G G —9|Cy
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‘:"‘— Termimnal

Notice that the equivalent capacitance C,q 1s smaller than the smallest contributing

capacitance.

(|

Series capacitors .



(a) Find the equivalent capacitance for the combination of

capacitances shown in Fig. 25-10a, across which potential

difference Vis applied. Assume

C,=120uF, C,=530uF,

C,,=C, + C, = 12.0 uF + 530 uF = 17.3 uF.

1 1 1
= +
Cl 23 Cl A CB

and C, = 4.50 uF.

1 1
= -+ = (. —1
173 uF T as0uF  O280mFT
We first reduce the  The equivalent of The equivalent of
o . : . . Next, we work
circuit to a single parallel capacitors ~ series capacitors backward " .
capacitor. s larger. is smaller. ackwards to the ﬁfpplylng q=CV
\ | desired capacitor. yields the charge.
2 ‘= \—.—I — e
G, = C, - C12 = Set|V=12.5V| find charges|, 2 ~
12.0 uF 5.30 uF 17.3 uF : 14.6 pC
Vv 7 v B v G- 125V 125V
+ 3.57 uF Cizz = | Vigs = Cizs = | Vizs =
Cy = Cy = 3.57 uF | 125V 357 uF [ 125V
4.50 #F| 4.50 uF
= — L
(a) (&) (c) (d)
Series capacitors and Parallel capacitors and
their equivalent have Applying V= g/C yields their equivalent have Applying g= CV
_— the potential difference. the same V (“par-V"). yields the charge.
the same g (“seri-q").
1z = Tz = ¥ ¥ o= 9 =
44.6 pC 44.6 uC | 31.0 uC 18.7 uC
Cl? = Cl Q9 = li-"rJ g9 = {Cl - s Iil =:,- - {:2 = li-iz =r {:1 = I‘rl = (:p = I’r-p =
L 1T yf 175 4F| 258V 120pF | 2.58 V 5.30 uF| 2.58 V 12.0 uF [ 2.58 V 5.80 uF | 2.58 V
125V s = 125V qs = r T3 = =
44.6 pC 44.6 uC 125V 44.6 pC 125V  44.6 uC
Cs = - 3= Cqy = £ Cy = o =
4. 50 FFl 4,50 .HFl 992V 4.50 ;U-F 992V ) 4.50 F'F 9-99 v
e, O
() (g) (h) (i)



Capacitor 1, with C; = 3.55 uF, is charged to a potential
difference V,; = 6.30 V, using a 6.30 V battery. The battery is
then removed, and the capacitor is connected as in Fig. 25-11
to an uncharged capacitor 2, with C; = 8.95 uF. When switch
S is closed, charge flows between the capacitors. Find the
charge on each capacitor when equilibrium is reached.

go=C,V,= (355X 107°F) (6.30 V)
=22.365 X 1076 C.

When switch S in Fig. 25-11 is closed and capacitor 1 begins to
charge capacitor 2, the electric potential and charge on capaci-
tor 1 decrease and those on capacitor 2 increase until

V=1V, (equilibrium).
From Eq.25-1, we can rewrite this as
4 = 1 (equilibrium).
C, G

Because the total charge cannot magically change, the total
after the transfer must be

(charge conservation);

d1t q2=4qo

9o
G Cy
thus 42= 4o — q1-
We can now rewrite the second equilibrium equation as
91 _ 9o~ 4
G G

Solving this for g, and substituting given data, we find

q, = 6.35 nC. (Answer)

The rest of the initial charge (g, = 22.365 . C) must be on
itor 2:

capacttor q,=16.0 nC. (Answer)



Energy stored in a capacitor
aw = V' dg' =L ag szdwzlﬁ dg' =L
S R c T 2

Work is stored as potential
energy of the capacitor

-4 U=1Lcy?
- 2C 2

The potential energy of a charged capacitor is stored in the electric field
between the plates

Energy Densit r : Y
9y y u = v = CV_. C =g Ald = %S“ (_) '
Ad  2Ad 4
E=—AV/As

u = %S[}El (energy density).

The electric energy stored per unit volume in any region of space is proportional to the
square of the electric filed in that region.



CONCEPTUAL EXAMPLE 24-9 | Capacitor plate separation increased. A
parallel-plate capacitor carries charge Q and is then disconnected from a battery.
The two plates are initially separated by a distance d. Suppose the plates are
pulled apart until the separation 1s 2d. How has the energy stored in this
capacitor changed?

RESPONSE If we increase the plate separation d, we decrease the capacitance
according to Eq. 24-2, C = e;A/d, by a factor of 2. The charge Q hasn’t
changed. So according to Eq. 24-5, where we choose the form U =3Q°/C
because we know (J 1s the same and C has been halved, the reduced C means the
potential energy stored increases by a lactor of 2.

NOTE Wec can sce why the energy stored increases from a physical point of view:
the two plates are charged equal and opposite, so they attract each other. If we
pull them apart, we must do work, so we raise their potential energy.




Capacitor calculations. () Calculate the capacitance of a
parallel-plate capacitor whose plates are 20 cm X 3.0 cm and are separated by a
1.0-mm air gap. (b) What is the charge on each plate if a 12-V battery is connected
across the two plates? (¢) What is the electric field between the plates? (d) Estimalte
the area of the plates needed to achieve a capacitance of 1 F, given the same air gap d.
APPROACH The capacitance is found by using Eq. 24-2, C =€, A/d. The
charge on each plate is obtained from the definition of capacitance, Eq. 24-1,
Q = CV. The electric field is uniform, so we can use Eq. 23-4b for the
magnitude F = V/d. In (d) we use Eq. 24-2 again.

SOLUTION (a) The area A = (20 X 107 m})(3.0 X 1072 m) = 6.0 X 107 m®. The
capacitance C is then

6.0 X 10~ m?
1.0 X 10~ m

A
C = = = (885X 107°C?/N-m’) 53 pF.

L LW S~ LWr i

(d) We solve for A in Eq. 24-2 and substitute C = 1.0F and d = 1.0mm to
find that we neced plates with an arca

Cd 1F)1.0 x 107 m
A= Gl )(_Ez gﬁlﬂﬂmz.
€9 (9 % 1072 C%/N-m?)
NOTE This is the area of a square 10° m or 10km on a side. That is the size of a city like
San Francisco or Boston! Large-capacitance capacitors will not be simple parallel plates.




Dielectrics

The initial electric field
inside this nonpolar
dielectric slab is zero.

(a)

The applied field
aligns the atomic
dipole moments.

()

The field of the aligned
atoms is opposite the
applied field.

(e)

Gaussian surface

Gaussian surface

(Gauss’ law with dielectric).

(&)

+q




Dielectric Dielectric

A Constant  Strength
C = Ke ilg Material K (kV/mm)
_ _ Air (1 atm) 1.00054 3
K: dielectric Polystyrene 2.6 24
constant Paper 3.5 16
Transformer
oil 4.5
Dielectric strength Pyrex 4.7 14
the max. € before Ruby mica >4
Porcelain 6.5
breakdown occurs Silicon 12
Germanium 16
Ethanol 25

Water (20°C) 804
Water (25°C) 785
Titania
ceramic 130
Strontium
titanate 310 8



Current and current density —

i=dg/dt 1 Ampere=1A=1 coulomb per secol T i;
! Battery
- |+ — | -—
The current into the
junction must equal
the current out
(charge is conserved). ,/l 3 . . . o . . .
; A current arrow is drawn in the direction in which positive charge carriers would move,
— ’ even if the actual charge carriers are negative and move in the opposite direction.
=1 + Iy %
f
current density J, which has the same direction as the velocity of the moving f ;.o
: n . : s : L= ’
charges if they are positive and the opposite direction if they are negative. For

each element of the cross section, the magnitude J is equal to the current per umit
area through that element. We can write the amount of current through the ele- 7



Resistance and resistivity Resistivity,p  Temperature

Material (£1-m) Coefficient
of Resistivity,
. . K
Resisitance: R = V/I ok )
Tvpical Metals
_ _ Silver 1.62 »x 108 41 % 103
10hm =1€2=1volt per ampere Copper 1.69 x 10 % 43 % 1073
Gold 2.35 x 1078 4.0 » 1073
P I . _ Aluminum  2.75 x 108 44 %103
Resisitivity: p = E/) [Qm] Manganin®  4.82 X 10°°  0.002 x 103
Tungsten 525 = 10-8 4.5 » 1073
o Iron 9,68 » 103 6.5 x 1073
Conduct|v|ty; o= 1/p [1/Om] Platinum 10.6 % 105 3.9 % 10-3
Tvpical
Semiconductors
— — Silicon,
J=ck R p L/A pure 2.5 % 103 —70 % 103
Silicon,
Ohw’s law is a statement that — woee 87x007
. L 5
the current throngh a device is  ptwes 2810
alwavys directly proportioval to Typical
. . . Insulators
the potential differevce applied  cias 101010
. Fused
+O +M6 d@V‘O@. qu‘-:'lrtx —_ |_|j':|2'.‘|




Series and Parallel Resistors and Capacitors

Series Parallel

Resistors
|
Iy

n R 1
R.,= 2 R Eq.27-7 = E]? Eq.27-24
i i

=1 ]
Same current through Same potential difference
all resistors across all resistors
Series Parallel

Capacitors

1 . 1 = .| - - -
c._ & B2 Cu=2 G Eq.2519
eg =1 &) j=1
Same charge on all Same potential difference

capacitors across all capacitors




Power in Electric Circuits

The principle of conservation of energy tells us that
the decrease in electric potential energy from a to b
IS accompanied by a transfer of energy to some other

P =iV (rate of electrical energy transfer).
| FIN, C) ] _
1V-A =( —J( —J=]—=1w.
C 5 3
Using Ohm’s law P=i’R (resistive dissipation)
Ve R
.F —— (resistve dlﬁ]pﬂlli]ﬂj-

The battery at the left
supplies energy to the
conduction electrons
that form the &l.r_rent.

.-y )

L
i =

p b

In a resistor, electric potential energy is converted to internal thermal
energy via collisions between charge carriers and atoms.



Electrical circuits

emf of an emf device is the work per unit charge that the device does in moving
charge from its low-potential terminal to its high-potential terminal.

—l!I-

I

|

dW } |
+

E=—0 {definition of €).

Single loop circuit s

-
W LOOP RULE: The algebraic sum of the changes in potential encountered in a

The battery drives current o
complete traversal of any loop of a circuit must be zero.

through the resistor, from
high potential to low potential.

ol Vo + € —IR=V,
L — Nd
“ \/

€ —IiR=10.

Lower
potential




Potential loop of a circuits

i

o—=E —
i & a
I W WM
=] Rl

— |
: = I ; [} | I
. r » ; 8 I ~}ir B | |
G | £ 1 |
ig - _ I ' it . '

/ Emf device Resistor

Real battery N
{a (b

&€ —ir—iR=10

__€
R+



Multiloop circuits

-y
W JUNCTION RULE: The sum of the currents entering any junction must be equal to
the sum of the currents leaving that junction.

E| 1":?
i - b _- €
| |

i, +i3=1, !

If we traverse the left-hand loop in a counterclockwise direction from point

b.the loop rule gives us _ _
-'£| - .E|Rl + EI_'.LR_'.!' = (),

If we traverse the right-hand loop in a counterclockwise direction from point b,
the loop rule gives us iRy — iRy — €, = 0.
Substitute : 3R,

.:£| - .!-|H|_ —_ EIR:._- — EI = D.



Iy .
—AMA—1—AA— AA—1
example Ry Ry R, =200

s - i I i
"ﬂ‘t:- g-'?-.r Ei_— Roy= 120
R, R,=R.00Q
-'ﬂ [ 2 m [
7
{a) ()
Applying the loop rule Applying V=R yields
yields the current. the potential difference.
i =0.30 A i =030 A
& [
1 Ay
R,=200 R,=200Q
i i, =030 A N i, =030 A
g:lgwfi_ ln.ﬂ:mn =12V i_ 1":>s=3-5"'§l;{23=199
R,=800 R,=800
. A . b v .
i =0.30 A i, =0.30 A
() (&)
Parallel resistors and
their equivalent have Applying i= WR
the same V (“par-V"). yields the current.
i, =030 A iy i, =030 A ig=0.12 A
AV ' AV My ' A
By=900 Rs=300 Ry =200 Ra=300
. V=36V Vz=3.6V
bl . ) Iz o hEL . . ;=018 A
g-12v | = Vy=36V J,R._anﬂ s-12v % Vp=36YV l;atfszm

Ry=8.00 Ry=800

M . A -

—-— ——

i, =030A

f| ='D.3"Dﬁ-.
(gl



RC - circuits

_ _ o . ANN—
When switch S is closed on a, the capacitor is
charged through the resistor. When the switch is

+ o]
afterward closed on b, the capacitor discharges i‘[—— .
through the resistor..

€—iR——L—o.

charging equation).

g = CE(1 — e IRC)

(charging a capacitor). 0o 2

2 4 6 8 10

Time (ms)

L)
49 _

[ = (E)f}_mf {charging a capacitor)
dt R : '

dimaA

I'-? T
V= — = &[] — g VRC
8 C [ € )

{charging a capacitor).

2 4 6 8 10
. Time (ms)
Time constant: 1= RC

{ &)



b
W A capacitor that is being charged initially acts like ordinary connecting wire relative
to the charging current. A long time later, it acts like a broken wire.

- b
Ve = % = %1 — e"®C)  (charging a capacitor). !

A A A
4 6 8 10
Time (ms)

La)

This tells us that Vi- =0 at t = 0 and that V- = ¢ when the capacitor becomes |
fully charged as t— .

Rl B

-

fmd




Discharging a Capacitor

d
R {I'? + g =0 (discharging equation).
)
g = qpe "RC (discharging a capacitor),

d
9 _ _ (i)e_’m': (discharging a capacitor).

RC




21 I PR P Discharging RO circuit. In the RO circuil shown in

FIGURE 26-19 Example 26-12. Fig. 26-19, the ballery has lully charged the capacitor, so ; = C¥, Then al

. i =10 the swilch is thrown from position a 1o b The battery emflis 20,0V, and the

s R capacitance C = 1.0Z uF. The current [ 158 observed to decrease to (L50 of its

&= "_I__h‘\_mmj_c= initial value in 40 ws. (@) What is the value of (2, the charge on the capacitor, at
00v-T T TLZuE | = 07 (b) What is the value of R? (¢) What is Q at t = 60 us?

APPROACH At f = 0, the capacitor has charge (), = C%, and then the battery
is removed from the circuit and the capacitor begins discharging through the
resistor, as in Fig, 2618, AL any time § later {Eq. 26—%9a) we have

E — QE_E—E.-'RE — C"EE_!".RC-

SOLUTION (a)} At ¢ — 0

-

@ = 0y = C& = (102 % 10°F){200V) = 2.04 % 107°C = 20.4 uC.

(&) To find R, we are given that at f = 40 us, f = 0L.50/,. Hence
0.508, = [, "8,
Taking natural logs on both sides (ln (0L.50 = —0.693):

) i
0693 = Tl
¢ (40 = 107 s)

® 7 T0e3)c T 0693102 % 10 F)

57 LL

(c) AL = 60 s,

S 0

O = QpeC = (204 % 10°C)e O OHIETF - 53,0




CONCEPTUAL EXAMPLE 26-13 | Bulbin RC circuit. In the circuit of Fig. 26-20,
the capacitor is originally uncharged. Describe the behavior of the lightbulb from the
instant switch S is closed until a long time later.

I

Vo= R —

7

RESPONSE When the switch is first closed, the current in the circuit 15 high and

the hightbulk burns brghtly, As the capacitor charges, the vollage across the
capacitor increases causing the current 1o be reduced, and the highthulb dims, As

the potential difference across the capacitor approaches the same voltage as the
battery, the current decreases toward zero and the lightbulb poes out.



CONCEPTUAL EXAMPLE 25-3 | Current and potential. Current / enters a

resistor K as shown in Fig. 25-10. {a} Is the potential higher at point A or at point B?
() Is the current greater at point A or at point B?

RESPONSE (a) Positive charge always [lows [rom + 1o —, [rom high potential 1o
low potential. Think again of the gravitational analogy: a mass will fall down from
high gravitational potential to low. 50 for positive current [, point A 18 at a higher
potential than point B.

(B) Conservation of charge requires that whatever charge flows into the resistor
al point A, an egqual amount of charge emerges at point B. Charge or current
does not get “used up™ by a resistor, just as an object that falls through a gravita-
tional potential difference does not gain or lose mass. So the current is the same

at A and B.



IR TFIRITN ESTIMATE | Lightning bolt. Lighining is a spectacular

example of electric current in a natural phenomenon (Fig, 25-18). There is much
variability to lightning balts, but a typical event can transfer 107 J of energy across
a potential difference of perhaps 5 x 107V during a time interval of about 0.2 s,
Use this information to estimate (a) the total amount of charge transferred
between cloud and ground, (#) the current in the lightning bolt, and (c) the
average power deliverad over the (.28

APPROACH We estimate the charge {J, recalling that potential energy change
equals the potential difference AV times the charee Q. Eq. 23-3. We equate AL
with the encrgy transferred, AU = 10" ). Next, the current [ is /1 (Eq. 25-1a'
and the power P 15 conergy/time.

SOLUTION (a) From Eq. 23-3, the energy transformed is AL = (0 AV, We solve
for

AU 10°)

- W " Ssxwv

20 coulombs.

(&) The current during the 0.2 s is about

o _ 2c

; 07 5 LEHD A

(¢} The average power delivered is

eneray 1071
time 0.2s

5% 10°W 5GW.

We can also use Eq. 25-6:
P = IV = (100A)5 = 10°V) = 5GW.
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CONCEPTUAL EXAMPLE 26-2 | Series or parallel? (a)The lightbulbs in Fig. 26-6

!

~ S
)
-

(1) Series

A

y

(2) Parallel

w
5

arc identical. Which configuration produces more light? (5) Which way do you think the
headlights of a car arc wired? lgnore change of filament resistance R with current.

RESPONSE (a) The equivalent resistance of the parallel circuit is found from Eq. 264,
/Ry = 1/R + 1/R = 2/R. Thus R, = R/2. The parallel combination then has
lower resistance (= K/2) than the series combination I:.'i'ﬂI =R+ R= ER]. There
will be more total current in the paralle] configuration (2), since T = V/R,, and Vis
the same lor both circuts, The tolal power transformed, which is related 1o the light
produced, 15 P = TV, so the greater current in (2) means more hght prodoced.
() Headlhights are wired in parallel (2), because if one bulb goes out, the other bulb can
stay lit. If they were in series (1), when one bulb burned out (the filament broke), the
circuit would be onen and no current would Oow. 50 neither bulb would Lieht



L

d
2

20 ﬂa.

FIGURE 26-13 Clurrenls can be 4

calculated wsing Kirchhoff's rules,
see Example 269,

APPROACH AND SOLUTION

Label the corrents and their directions. Figure 26—13 uses the labels [, f, |, and
Iy Tor the current in the three separate branches. Since (positive) current lends
o move away from the posilive terminal of a battery, we choose [; and /5 o
have the directions shown in Fig. 2613, The direction of [, is not obvious in
advance, so we arbitrarily chose the direction indicated. If the current actually
flows in the opposite direction, our answer will have a nepative sign.

Identify the unknowns. We have three unknowns and therefore we need three
equations, which we get by applying Kirchhoff's junction and loop rules.
Junction rule: We apply Kirchhoff's junction rule to the currents at point a,
where [; enters and [, and [, leave:

L =1 +k. (a)
This same equation holds at point d, so we get no new information by writing
an equation for point d.
Loop rule: We apply Kirchhofls loop rule to two different closed loops. First
we apply it to the upper loop ahdcha. We start (and end) at point a. From
a to h we have a potential decrease ¥, = —(1,)(3041). From h to d there is no
change, but from d to ¢ the potential increases by 45 V: that i5, V3 = +45 V.
From ¢ to a the potential decreases through the two resistances by an amount
Vie = —(L)J(40 0 + 10) = —(41 01, Thus we have Vi, + Vg + Ve = 0, or

=301, + 45 — 411, = 0, ]
where we have omitted the units {volts and amps) so we can more easily do
the algebra. For our second loop, we take the outer loop ahdefga. (We could
have chosen the lower loop abedefga instead.) Again we start at point a and
have ¥, = —{IJHD ), and Vg = 0. But when we take our positive test
charge from d to e, it actually is going uphill, against the current—or at least
againsl the asswmed direction of the current, which is what counts in this
calculation, Thus V= L(200}) has a posittve sign. Stmilarly, ¥, = L1 {1).
From [ to g there 15 a decrease in potential of B0V since we go from the high
potential terminal of the battery to the low. Thus Vi = —B0V. Finally,
Vi = 0, and the sum of the potential changes around this loop is

—300, + (20 + 1)1, — &0 = 0. (€)
Cur major work is done. The rest is algebra.



Solid sphere of charge. An clectric charge (0 is distributed
uniformly throughout a nonconducting sphere of radius iy, Fig, 22-12. Determine
the electnc held (a) outside the sphere II:r = r,) and (b) inside the sphere |:i" < r{,:l

APPROACH Since the charge is distributed symmetrically in the sphere, the
zlectric field at all points must again be symmetric. E depends only on r and is
dirccted radially outward {or inward if @ < 0).

SOLUTION (a) For our gaussian surface we choose a sphere of radius r {r = ).
labeled A, in Fig. 22-12. Since F depends only on r, Gauss's law gives, with

'Qem:l = Qr

%ﬁ*di = E(4mwr’) = Q
Eq
ar 1 Q
k= mu?

Apain, the feld outside a spherically symmetric distribution of charge is the
same as that for a point charge of the same magnitude located at the center of
the sphere.

{b) Inside the sphere, we choose for our gaussian surface a concentric sphere of
radius r (r < ry), labcled A, in Fig, 22-12. From symmetry, the magnitude of E is
the same at all points on A,, and E is perpendicular to the surface, so

%i‘z cdA = E(4mri).

We must equate this to @ a0/ €, where (0. is the charge enclosed by A, . Qg is not
the total charge (2 but only a portion of it. We define the charge density, pg, as the
charge per unit volume I::,.:rE = dﬂ.-"dl-":li and here we are given that pg = constant.
5o the charge encloscd by the paussian surface 4., a sphere of radius », is
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Hence, from Gauss's law,
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