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Name : Matr nr.
Physics 1 for Nanoscience & Nanotechnology

Level of knowledge 3
20.11.19

1. What is the kinetic energy of a harmonic oscillation of a spring ?

2. Give ansatz to derive the eigen frequency of a harmonic
oscillator ? What is the period of scillation of a spring oscillator ?

3. Express the wave equation ?

4. What is the relation between speed, frequency and wavelengh of a travelling wave

5. Give a relation between length of wire and the harmonics that can be excited



Name : Matr nr.
Physics 1 for Nanoscience & Nanotechnology

Level of knowledge 3
20.11.19

1. What is the kinetic energy of harmonic oscillation of a spring ?
|
E=K+U= ;kuz

2. Give ansatz to derive the eigen frequency of a harmonic
oscillator ? What is the period of scillation of a spring oscillator ?

‘'m
S (period).

m d?x/dt? + k x = 0; x(t)= x, cos (wt) ; T = p_%«" -

3. Express the wave equation ?
d?y 1 d?y
dx?2 12 dr?
4. What is the relation between speed, frequency and wavelengh of a travelling wave

v=Af

5. Give a relation between length of wire and the harmonics that can be excited

21 Vv v
- = 7 13 =—=pn—, forn=1.2,
A — forn=1273,.... f = "37 orn
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charges
-y
W Charges with the same electrical sign repel each other, and charges with opposite
electrical signs attract each other.
Charges are quantized

~N

F L q = ne, n==x1,Fx2F3....,

M Elementary charge
T Glass
W{AJ E=1.ﬁ'DEH1D_IgC-

(a)

The Charges of Three Particles

kg, Particle Symbol Charge
@&?ﬂ% Electron eore- —e
F_ -t

Plastic Proton P +&
MNeutron n 0

(&)



Coulomb’s law

— g .
F=k 3 T
1 -
k= — 8.99 % 10°N-m¥C2,
dareg

gp = 8.85 X 1072 CIYN -m.

— —

Filoga=Fp+ Fs+ Fy+ Fis+ -+

Similarity to gravitational force

mym;
2

F=G

r

G=6.67408 x 101 N m? kg

r (Newton's law),

Always draw the force
vector with the tail on

the particle.
‘ME;;;E push the
(a) particles apart.

e
_~—F~_~_—F
H Here too.

(&)

+ F,, e

fﬂ
But here the forces

()
pull the particles
together.



This is the first

This is the second

" This s the third

arrangement. arrangement. %R arrangement.
i ga i [ o fi & i
e & = — & —e 6
I R | — 4 R—

(a) (c)

(a) Figure 21-8a shows two positively charged particles fixed in
place on an x axis. The charges are g, = 1.60 X 10" Cand ¢, =
320 x 1077 C, and the particle separation is R = 0.0200 m.
What are the magnitude and direction of the electrostatic force
F, on particle 1 from particle 27

KEY IDEAS

Because both particles are positively charged, particle 1 is re-
pelled by particle 2, with a force magnitude given by Eq. 21-4.
Thus, the direction of force F.-, on particle 1 is away from parti-
cle 2,1in the negative direction of the x axis, as indicated in the
free-body diagram of Fig. 21-8b.

Two particles: Using Eq.21-4 with separation R substituted
for r, we can write the magnitude F;, of this force as

1 |"-]‘1| |f32|
47e, R?

= (8.99 x 10° N-m*C?)

o (160 X 10"° €)(3.20 X 107 C)
(0.0200 m)?

=115 x 107 N.

Thus, force F:z has the following magnitude and direction
(relative to the positive direction of the x axis):

F, =

L

1.15x 107*N and 180~ (Answer)
We can also write 1_:[2 in unit-vector notation as
= —(1.15 x 10 2 N)i. (Answer)

(e

(b) Figure 21-8¢ is identical to Fig. 21-8a except that particle
3 now lies on the x axis between particles 1 and 2. Particle 3
has charge g5 = —3.20 X 107" C and is at a distance 3 R from
particle 1. What is the net electrostatic force F] net OT1 partlc]e
1 due to particles 2 and 37

KEY IDEA

The presence of particle 3 does not alter the electrostatic
force on particle 1 from particle 2. Thus, force F, still acts on
particle 1. Similarly, the force F.3 that acts on particle 1 due
to particle 3 is not affected by the presence of particle 2.
Because particles 1 and 3 have charge of opposite signs,
particle 1 is attracted to particle 3. Thus, force F is di-
rected roward particle 3, as indicated in the free-body dia-
gram of Fig. 21-84.

Three particles: To find the magnitude of F:h we can
rewrite Eq.21-4 as

1 |I}|||l‘.]‘3|
4me, (IR)

= (8.99 x 10° N-m?*C?)

13 —

(1.60 x 10719 C)(3.20 x 107 C)
(3)7(0.0200 m)?

=2.05 x 107 N.
We can also write E; in unit-vector notation:

Fy = (205 X 10-% N)i.



The net force Fy e On particle 1 is the vector sum of F,
and F]3 that is, from Eq. 21-7, we can write the net force
F}mﬂ on particle 1 in unit-vector notation as

‘E-:.n:l = Fiz +- F;s
= —(1.15 x 10"%N)i + (2.05 x 10~*N)i

(9.00 x 10" N)i.
Thus, F;, _net 1138 the following magnitude and direction (relative
to the positive direction of the x axis):

9.00x 107N and 0°

(Answer)

(Answer)

(c) Figure 21-8e is identical to Fig. 21-8a except that particle
4 is now included. It has charge g, = —3.20 x 10" ¥ C,isata
distance 3R from particle 1, and lies on a line that makes an
angle #= 60° with the x axis. What is the net electrostatic
force F, et 0N particle 1 due to particles 2 and 47

KEY IDEA

The net force F‘;‘m is the vector sum of F';: and a new force
F. acting on particle 1 due to particle 4. Because particles 1
and 4 have charge of opposite signs, particle 1 is attracted to
particle 4. Thus, force F, on particle 1 is directed toward
particle 4, at angle # = 60°, as indicated in the free-body di-
agram of Fig. 21-8f.

Four particles: We can rewrite Eq. 21-4 as

_ 1 lgilgd
" 4me, CGRF
= (8.99 x 10° N-m*C?)
(1.60 x 107 C)(3.20 x 107 C)
(3)2(0.0200 m)?
=2.05 x 107*N.

Then from Eq. 21-7, we can write the net force F; et 0N particle
1as .
Fl.ntt = 'FIZ + Ed-'

Because the forces F:z and F[4 are not directed along the
same axis, we cannot sum simply by combining their mag-
nitudes. Instead, we must add them as vectors, using one of
the followine methods.

Method 1. Summing directly on a vector-capable calculator.
For Fp, we enter the magnitude 1.15 % 107> and the angle
180°. For F,,, we enter the magnitude 2.05 < 107** and the
angle 60°. Then we add the vectors.

."I'!'Btll"!l':anl:.l'_i 2. Summing in unit-vector notation. First we
rewrite F, as

Eiy = (Fqcos )i + (F,sin 6)].
Substituting 2.05 % 1072 N for F, and 60° for #, this becomes
Fy = (1025 x 10~ 2#N)i + (1.775 x 10~2N)j.
Then we sum:
F:.n:t = F, + Fy,
= —(1.15 x 10"N)i
+ (1.025 x 10"2#N)i + (L.775 x 10"#N)j
= (—1.25 X 10"3N)i + (1.78 X 10~2*N)j.

(Answer)

Method 3. Summing components axis by axis. The sum of
the x components gives us

= Fa, + R4, = Fy + Fyco0s 60°
= —1.15 x 107N + (2.05 x 10~* N)(cos 60°)
=—125x 107 N.

‘Fl_nrt,_x

The sum of the y components gives us
Fipery = Fay + Fay = 0 + Fysin 60°
= (2.05 x 10~ N)(sin 607)
= 1.78 x 107 N.
The net force F,

1, met

has the magnitude

Floet = VFipex + Fipey, = L78 X 1072 N.  (Answer)
To find the direction of F[_,ﬂ, we take
F.‘I‘IE
§ = tan'—=L = _86.0°.
Lnctx

However, this is an unreasonable result because Fl nct MUSE
have a direction between the directions of Fm and FH To
correct £, we add 180°, obtaining

—B6.0° + 180° = 94.0°. ( Answer)



Electric field

F
iy

E:

Pointing always from
positive to negative
charge

(electric field).  [N/C]

N2

Electric field exists
independent from $
a test charge

N

field lines

—

F

Posiave
test charge

Some Electric Fields

Field Location

or Situation Value (N/C)

At the surface of a

uranium nucleus 3 x 107
Within a hydrogen

atom, at a radius

of 529 x 10- "' m 5x 104
Electric breakdown

OCCUrs in air 3 » 108
MNear the charged

drum of a photocopier 10°
MNear a charged comb 10°
In the lower atmosphere 10°
Inside the copper wire

of household circuits 1077




Electric field of a point charge

. 1 go -
F 9% o

dame, 1o
. F 1 :
E = = E{, r { point charge).
qo dme, r- .
3
o . — — -
ky=Fy + Fp + + Fy,
E": F:J — !T:,‘” + F:]E + + F:‘Ilrl
0



Figure 22-Ta shows three particles with charges q, = +20,
q; = —20,and g; = —4(0, each a distance d from the origin.
‘What net electric field E is produced at the origin?

KEY IDEA

Charf_,es g1, g2, and g, produce electric field vectors f,, ._E'z,
and E;, respectively, at the origin, and the net electric field is
the vector sum E = E, + E2 + E3 To find this sum, we first
must find the magnitudes and orientations of the three field
vectors.

Magnitudes and directions: To find the magnitude of E s
which is due to g,, we use Eq. 22-3, substituting 4 for r and
2(Q for g and obtaining

1 20

E, = :
' dge, dP

Similarly, we find the magnitudes of E, and E, to be

‘ho\
d

i
307 ,/ﬁﬂ"‘ ;
Find the net fisld | 2"

i)

at this empty point. \o
&
(a)
¥ ¥
a ¥ ES v
Field toward /(
X 30° Ed
Field away — : E +E
W.I Ey N Field toward © ]+_ :

Filg. 22-7 (a) Three particles with charges q;. g2, and gz are at the

same ¢ distance d from the origin. (#) The electric field vectors E' E 7

and Ea at the origin due to the three particles. (¢) The electric field
vector E; and the vector sum E, + E ; at the origin.

1 20 140

= — and E; = —
dme, d° : dme, d°

We next must find the orientations of the three electric
field vectors at the origin. Because g, is a positive charge,
the field vector it produces points directly away from it,
and because g, and g, are both negative, the field vectors
they produce point directly toward each of them. Thus, the
three electric fields produced at the origin by the three
charged particles are oriented as in Fig. 22-7b. (Caution:
Note that we have placed the tails of the vectors at the
point where the fields are to be evaluated; doing so de-
creases the chance of error. Error becomes very probable
if the tails of the field vectors are placed on the particles
creating the fields.)

Adding the fields: We can now add the fields vectorially
just as we added force vectors in Chapter 21. However, here
we can use symmetry to simplify the procedure. From Fig.
22-7b, we see that electric fields E, and En have the same di-
rection. Hence, their vector sum has that direction and has
the magnitude

1 20 1 20
e, d? - dqe, d?
_ 140
" Ame, d?’

which happens to equal the magnitude of field E,.

E +E=

We must now combine two vectors, E, and the vector
sum Ef, + E;. that have the same magnitude and that are
oriented symmetrically about the x axis, as shown in Fig.
22-Te¢. From the symmetry of Fig. 22-7c, we realize that the
equal y components of our two vectors cancel (one is up-
ward and the other is downward) and the equal x
components add (both are rightward). Thus, the net electric
field E at the origin is in the positive direction of the x axis
and has the magnitude

E = 2E,, = 2E,co0s 3(°

1 5 03
= O e z

megd”

2:12 (0.866) = {Answer)



Elementary charge
F = gE.

Probe the field by a ,test” charge q

q = ne, forn=0%=1,Fx2.3,....

Fig. 22-14 The Millikan oil-drop appa-
ratus for measuring the elementary charge
e.When a charged oil drop drifted into
chamber C through the hole in plate Py, its
motion could be controlled by closing and
opemng switch S and thereby setting up or
eliminating an electric field in chamber C.
The microscope was used to view the drop,
to permit timing of its motion.



Sample Problem

Motion of a charged particle in an electric field

Figure 22-17 shows the deflecting plates of an ink-jet
printer, with superimposed coordinate axes. An ink drop
with a mass m of 1.3 x 107"" kg and a negative charge of
magnitude O = 1.5 x 107" C enters the region between
the plates, initially moving along the x axis with speed
v, = 18 m/s. The length I of each plate is 1.6 cm. The
plates are charged and thus produce an electric field at all
points between them. Assume that field E is downward
directed, is uniform, and has a magnitude of 1.4 x 10°
N/C. What is the vertical deflection of the drop at the far
edge of the plates? (The gravitational force on the drop is
small relative to the electrostatic force acting on the drop
and can be neglected.)

KEY IDEA

The drop is negatively charged and the electric field is directed
downward. From Eq. 22-28, a constant electrostatic force of
magnitude QF acts upward on the charged drop. Thus, as the
drop travels parallel to the x axis at constant speed v,, it
accelerates upward with some constant acceleration a,.

Calculations: Applying Newton’s second law (F = ma) for
components along the y axis, we find that

a, = F_eE (22:30)

m m

¥
Plate
! i
VE___9—
0 x=L
Plate

Fig. 22-17 Anink drop of mass m and charge magnitude () is
deflected in the electric field of an ink-jet printer.

Let ¢ represent the time required for the drop to pass
through the region between the plates. During ¢ the vertical

and horizontal displacements of the drop are
y=1a,2 and L =t (22-31)

respectively. Eliminating ¢ between these two equations and
substituting Eq.22-30 for a,, we find

_ QEL

- 2mv:

(15 x 107 C)(1.4 x 10°N/C)(1.6 X 102 m)?
(2)(1.3 x 107" kg)(18 m/s)?

=64 x 107*m

= (.64 mm.

(Answer)

PLUS Additional examples, video, and practice available at WileyPLUS




Electric field of a dipole

=

Bk

E= Eu— E .
_ 1 q_ 1 q L5
dmey riyy dme, 17
T+
= 4 _ 4 .
Amel(z — 1d)? dmeg(z + d)? e Up here the +q
B - field dominates.
E= q ng'rz . i d g + Q
dmregz? d \\° 2megz’ 4 VA2 "
@ =
1 P o Down here the —g
E = Tt ? (electric dipole ). field dominates.
] (&)
. ///"\ _
+q
- e
b . s _
= T = p X E (torque on adipole).
Positive side . - u-"_q E ::
—F -
p = qd.

1

{a)

@E{J _
8 E
T

(&)

Negative side

The dipole is being
torqued into alignment.

Dipole moment



Torque and energy of an electric dipole in an electric field

A neutral water molecule (H,O) in its vapor state has an
electric dipole moment of magnitude 6.2 % 107 C-m.

(a) How far apart are the molecule’s centers of positive and
negative charge?

KEY IDEA

A molecule’s dipole moment depends on the magnitude g
of the molecule’s positive or negative charge and the charge
separation 4.

Calculations: There are 10 electrons and 10 protons in a
neutral water molecule; so the magnitude of its dipole mo-
ment is

p = gqd = (10e)(d),
in which d is the separation we are seeking and e is the ele-
mentary charge. Thus,
p___ 62X 107 C-m
10e  (10)(1.60 x 1077 C)
=39 x107”m = 3.9 pm.

This distance is not only small, but it is also actually smaller
than the radius of a hydrogen atom.

(Answer)

(b) If the molecule is placed in an electric field of 1.5 x
10* N/C, what maximum torque can the field exert on it?
(Such a field can easily be set up in the laboratory.)

KEY IDEA

The torque on a dipole is maximum when the angle & be-
tween p and E is 90°.

Calculation: Substituting # = 90° in Eq. 22-33 yields
T=pEsinf
= (6.2 x 107" C-m)(1.5 % 10* N/C)(sin 90°)
=93 x 100" N-m, (Answer)
(c) How much work must an external agent do to rotate this

molecule by 180° in this field, starting from its fully aligned
position, for which # = 07

KEY IDEA

The work done by an external agent (by means of a torque
applied to the molecule) is equal to the change in the mole-
cule’s potential energy due to the change in orientation.

Calculation: From Eq. 22-40, we find
W, = Ugr — Uy
= (—pE cos 180°%) — (—pE cos 0)
= 2pE = (2)(6.2 x 107 C-m)(1.5 x 10* N/C)

=19 x 1075 1. (Answer)



The Electric Field Due to a Charged Disk

dg = odA = o (2ardr),

Surface charge

density o
zordar dr
dE = .
dmey(z? + r3)°
dE = %% 2r dr

B dey (22 + r?)" )

R
E= jdE == j (22 + r3)732(2r) dr.
430 |

b a7 [[23 + ,;:}—lrz ]H‘
4z 3 0
o A .
E = (1 — —) {charged disk)
2 Vi + R?

C/m?

&

Pe
i 7] 3
X=(+rY,
m+1
JX’”&’X= X .
m+ 1




Gauss law

\’\%//

W Gauss’ law relates the electric fields at points on a (closed) Gaussian surface to the — P —_—
net charpe enclosed by that surface. — ~—

Flux (of air flow)

i — - ® = (vcos #)A.
Adr flow ‘
] =y d=vAcosh=1v-A.

¥

(a) (b) (c) (d)



Electrical flux

\

\

>\
A\
WA

— e — —
== — d=3F-AA
— —
—4 Surface integral
-—:i—_: — —
A4 P = % E-dA
Pierce (electric flux through a Gaussian surface ).
inward: .
negative &
flux o flux

Skim: zero flux



Flux through a closed cylinder, uniform field

Figure 23-4 shows a Gaussian surface in the form of a
cylinder of radius R immersed in a uniform electric field E,
with the cylinder axis parallel to the field. What is the flux
® of the electric field through this closed surface?

KEY IDEA

We can find the flux @ through the Gaussian surface by inte-
grating the scalar product E - dA over that surface.

Calculations: We can do the integration by writing the flux as
the sum of three terms: integrals over the left cylinder cap a, the
cylindrical surface b, and the right cap c. Thus, from Eq. 234,

@zjgf-d}{
_ jg.dz +j§-dz+j§.dz.

a b c

(23-5)

For all points on the left cap, the angle # between E and
dA is 180° and the magnitude E of the field is uniform. Thus,

jE’-dEE = jE(cos 180°) dA = —EjdA = — EA,

where [ dA gives the cap’s area A (= wR?). Similarly, for the

dA A Gaussian
/ surface

::_b._;

dA

dA /_"-':'
a

- o
L -

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is
immersed in a uniform electric field. The cylinder axis is parallel to
the field direction.

right cap, where 6 = 0 for all points,

jE"+dﬁ’ = jE{cosﬂ)dA = EA.

Finally, for the cylindrical surface, where the angle #is 90° at
all points,

j E-dA = jE(cos 90°) dA = 0.
b
Substituting these results into Eq. 23-5 leads us to

b=-FEA+0+EA=0.
The net flux is zero because the field lines that represent the

electric field all pass entirely through the Gaussian surface,
from the left to the right.

(Answer)



Flux through two charges

"y

|" "H

.-""-'-'_-
‘EI
h__—\—_
T
.-"-'3'_.1
I |
T |
| ,l'
= -
—

E¢®P = G

{Gauss’ law).

Eu% E-dA = Jonc  (Gauss’ law).

Surface 5,. The electric field is outward for all points on this surface. Thus, the
flux of the electric field through this surface 1s positive, and so i1s the net
charge within the surface, as Gauss’ law requires. (That is, in Eqg. 23-6.if & is
positive, ., must be also.)

Surface 5;. The electric field is inward for all points on this surface. Thus, the flux of
the electric field through this surface 1s negative and so is the enclosed charge, as
Gauss’ law requires.

Surface 5,. This surface encloses no charge, and thus g.,. = 0. Gauss’ law (Eq.
23-6) requires that the net flux of the electric field through this surface be
zero. That is reasonable because all the field lines pass entirely through the
surface, entering it at the top and leaving at the bottom.

Surface 5,. This surface encloses no net charge. because the enclosed posi-
tive and negative charges have equal magnitudes. Gauss’ law requires
that the net flux of the electric field through this surface be zero. That 1s
reasonable because there are as many field lines leaving surface 5, as en-
tering it.



Gauss law and Coulomb law

i Gaussian ,/
—% — surface /
By f}i' E-dA = g f}? EdA = q,,,.. 2
@--—-—
9
eE(dmri) =g
E _ 1 {.F.. , Fig. 23-8 A spherical Gaussian

‘-]-'.ITE.;;. r

surface centered on a point charge g.

Gauss law for speherical density distribution

Enclosed

A ateata s Gaussian
charge is g ' surface
1 . / / P
E = 5 (spherical distribution, field at r = R). / \
doey r- | R '
r \ /
g __4q <
(charge enclosed by) %7‘-}‘-1‘ %-‘-J-R-1‘ ’
. sphere of radiusr /  full charge N N 2
(volume enclosed by full volume r3 @
' SphB]‘B of radius r ) q = q R.-{ N Enclosed
charge is ¢'— 5 .
\ Gaussian
L — surface
[ a , E, /) \
E = —— o7 " (uniform charge, field at r = R). |' 58
ey R- \ ]
r
1 {? r ot
E = — (spherical shell, field at r = R).
dme, r-

0 2



E-Field of a conducting plate

¥
. t—0O
¥
¥
+
¥

¥
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¥ ¥ ¥
£ ¥ + +
+ P + B + * of ¥ Gaussian
—y ¥ ¥ ¥ + surface
E oy ™TTE B
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** y F=r—
+ + + +
¥ + +
¥ + + _
+ + There is flux only
¥ ¥
b (a) through the
two end faces.
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Eﬂ% E-dA = (encs E

eo( EA + EA) = oA, A

o — surface charge density

E_

= (sheet of charge).
280

E-Field of two conducting plates
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Figure 23-17a shows portions of two large, parallel, non-
conducting sheets, each with a fixed uniform charge on one
side. The magnitudes of the surface charge densities are
o+, = 6.8 uC/m? for the positively charged sheet and a;_, =
4.3 uC/m? for the negatively charged sheet.

Find the electric field E (a) to the left of the sheets,
(b) between the sheets, and (c) to the right of the sheets.

KEY IDEA

With the charges fixed in place (they are on nonconduc-
tors), we can find the electric field of the sheets in Fig. 23-17a
by (1) finding the field of each sheet as if that sheet were iso-
lated and (2) algebraically adding the fields of the isolated
sheets via the superposition principle. (We can add the fields
algebraically because they are parallel to each other.)

Calculations: At any point, the electric field EH ) due to
the positive sheet is directed away from the sheet and, from
Eq.23-13,has the magnitude

Similarly, at any point, the electric field E[_ y due to the negative
sheet is directed toward that sheet and has the magnitude

_ 43 x 107 C/m?
25 (2)(8.85 X 102 CYN-m?)
= 2.43 x 10° N/C.
Figure 23-17b shows the fields set up by the sheets to the left of
the sheets (L), between them (B),and to their right (R).
The resultant fields in these three regions follow from the
superposition principle.To the left, the field magnitude is
E, = By — B
= 3.84 X 10° N/C — 2.43 X 10°N/C
= 1.4 x 10° N/C.
Because E ., is larger than E_ ), the net electric field E in this
region is directed to the left, as Fig. 23-17c shows. To the right of
the sheets, the electric field has the same magnitude but is di-
rected to the right, as Fig. 23-17¢ shows.
Between the sheets, the two fields add and we have
Ep = E(+) + E(
= 3.84 X 10°N/C + 2.43 X 10° N/C

U'[_}

E_,=

(Answer)

. T4y 6.8 X 10 7% C/m?
()7 2g,  (2)(8.85 X 10712 CYN-m?) = 6.3 X 105 N/C. (Answer)
= 3.84 X 10° N/C. The electric field f_fg is directed to the right.
-T— e — +
O (+ S En B T z + B
44: B i i Ei+) > L Ev i B
; - : - -8 - B
o B E E E
H L | B R =l e[| =
-t B — I — B — i B
- [ ZN o) N P : E
H - H H -
(a) + = () + = () +




Electrical potential energy

1)

AU = U;— U= —W. >

Work done to move a charge
from infinity to j U=—-W..

Electrical potential (potential per unit charge)

U U U AU
V- Aav-y-y-IL-—L -
] q ) i
W
AV =V, —V,=——
' q
V = —% (potential defined), 1 volt = 1 joule per coulomb.
AU=U;— U =W,
. W_  =qAV .
Applied work appl = G For E:
. N\ [1V-C\[ 1]
leV = e(1V) ]MCZ(.I?)(. 1] )(.IN-m
=1V/m.

= (1.60 X 107" C)(1 J/C) = 1.60 X 107" J.

|



Electrons are continually being knocked out of air molecules in
the atmosphere by cosmic-ray partlcles coming in from space.
Once released, each electmn experiences an electrostatic force F
due to the electric field E that is produced in the atmosphere by
charged particles already on Earth. Near Earth’s surface the elec-
tric field has the magnitude E = 150 N/C and is directed down-
ward. What is the change AU in the electric potential energy of a
released electron when the electrostatic force causes it to move
vertically upward through a distance d = 520 m (Fig.24-1)?

KEY IDEAS

(1) The change AU in the electric potential energy of the
electron 1s related to the work W done on the electron by the
electric field. Equation 24-1 (AU = —W) gives the relation.

=]

E| F
c

Fig. 24-1 Anelectron in the atmosphere is moved upward
through displacement d by an electrostatic force F due to an
electric field E.

(2) The work done by a constant force Fona particle under-
going a displacement d is
W=F-d (24-3)

(3) The electrostatic force and the electric field are related
by the force equation F = qE where here g is the charge
of an electron (= —1.6 X 1071 C).

Calculations: Substituting for Fin Eq. 24-3 and taking the
dot product yield

W = gE-d = qEd cos 6, (24-4)
where # is the angle between the directions of E and d.The
field E is directed downward and the displacement d is

directed upward; so # = 180°. Substituting this and other
data into Eq. 24-4, we find

W = (—1.6 X 10~ C)(150 N/C)(520 m) cos 180°
=12 X 107" 1].
Eguation 24-1 then yields
AU=-W=—-12X1041 (Answer)

This result tells us that during the 520 m ascent, the electric
potential energy of the electron decreases by 1.2 X 10714 ].

AV=AU/q=-1.2x101J/1.6 x10°C
=-7.5x10*V



Equipotential surfaces From definition of work :
W, = 9 AV

Equipotential surface

i Equal work is done along
/| these paths between the o
II | same surfaces. / Field line

Mo work is done along — \
|t |
AN

~7

this path on an
equipotential surface.

Mo work is done along this path J
that returns to the same surface. (a) 1)
P
No work is done on a
=

equipotential plane if AV=0



Calculating potential in an electric field

dW = F-ds.
dW = g,E - ds.

i‘i"=fj'.;;.’ Ed?
Ji

Give the potential V at any point f



The electric field points from

higher potential fo lower potential.

.
! Higher potential

Lower potential

The field is perpendicular to this ic path,
— so there is no change in the potential.

L L
1
e
LA

The field has a component
along this cf path, so there
is a change in the potential.

iaann

y [

r, ¥
B

We can find the potential difference between any two points
in an electric field by integrating E-ds along a path con-
necting those two points according to Eq. 24-18.

Calculations: We begin by mentally moving a test charge
g along that path, from initial point i to final point f. As we
move such a test charge along the path in Fig. 24-5a, its dif-
ferential displacement ds always has the same direction
as E.Thus, the angle #between E and d5 is zero and the dot
product in Eq.24-18 is

E-ds = Edscos 0 = E ds. (24-20)
Equations 24-18 and 24-20 then give us
f_, f

t-}—v;=—[ E-ds = —fEds. (24-21)

Since the field is uniform, E is constant over the path and
can be moved outside the integral, giving us

f
Vi—V,=—-E J ds = —Ed, (Answer)
in which the integral is simply the length d of the path. The
minus sign in the result shows that the potential at point f in
Fig. 24-5a is lower than the potential at point i. This is a general

(a) Figure 24-5a shows two points i and fin a uniform electric
field E. The points lie on the same electric field line (not
shown) and are separated by a distance d. Find the potential
difference V; — V; by moving a positive test charge g, from i to
f along the path shown, which is parallel to the field direction.

result: The potential always decreases along a path that extends
in the direction of the electric field lines.

(b) Now find the potential difference V;— V; by moving the
positive test charge g, from i to f along the path icf shown in
Fig.24-5b.

Calculations: The Key Idea of (a) applies here too, except
now we move the test charge along a path that consists of
two lines: ic and cf. At all points along line ic, the displace-
ment ds” of the test charge is perpendicular to E. Thus, the
angle # between E and d5 is 90°, and the dot product E-ds
is 0. Equation 24-18 then tells us that points i and c are at the
same potential: V. — V, = 0.
For line cf we have # = 45° and, from Eq. 24-18,

F,
— | E-ds =

f
= —E(cos45°]J' ds.

f
Vi—V, = —J' E(cos 45°) ds

The integral in this equation is just the length of line cf;
from Fig. 24-5b, that length is d/cos 45°. Thus,

Vi — V= —E(cos 45°) 7[{ —Ed.

—y (Answer)

This is the same result we obtained in (a), as it must be; the
potential difference between two points does not depend on
the path connecting them. Moral: When you want to find the
potential difference between two points by moving a test
charge between them, you can save time and work by choos-
ing a path that simplifies the use of Eq.24-18.



Potential due to a point charge

R
d:-l 1 L
0-v=-——1 dr=—1 | —
dmey v T doey | 7 g
1
V= 4
dme, r

To find the potential of
the charged particle,

we move this test charge
out to infinity.

E s
do (B —

I <]
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W




Net potential of several charged particles

What is the electric potential at point P, located at the cen-
ter of the square of point charges shown in Fig. 24-8a? The
distance d1s 1.3 m, and the charges are

g; = +12 nC, g; = +31 nC,
G, = —24 nC, g, = +17nC.

KEY IDEA

The electric potential V at point P is the algebraic sum of
the electric potentials contributed by the four point charges.

0 % P Y 2
Q—i—9Q P B o
] ] / \
! !
/ N
d P d - _/‘.,\P
J v=350V S——e
I \\
| L
Q—i—Q Q Q !
g3 94 \ e 9 )
LY 2 &
(a) (B) mme——m—mm—— e

Fig. 24-8 (a) Four point charges are held fixed at the cor-
ners of a square. (b) The closed curve is a cross section, in the
plane of the figure, of the equipotential surface that contains
point P. (The curve is drawn only roughly.)

(Because electric potential is a scalar, the orientations of the
point charges do not matter.)

Calculations: From Eq.24-27, we have

V=iV=L(ﬂ+ﬂ+£+£)
=1 dmeg \ r r r r/)

The distance r is d/v 2, which is 0.919 m, and the sum of the
charges is

G+ @t tg=(012-24+314+17) X 10°C
=36 X 10°°C.

[ _ (899 X 10°N-m¥/C?)(36 X 10~°C)

Thu
> 0.919 m

= 350 V. (Answer)

Close to any of the three positive charges in Fig. 24-8a, the
potential has very large positive values. Close to the single nega-
tive charge, the potential has very large negative values.
Therefore, there must be points within the square that have the
same intermediate potential as that at point P. The curve in Fig.
24-8b shows the intersection of the plane of the figure with the
equipotential surface that contains point P. Any point along that
curve has the same potential as point P.



Potential Due to an Electric Dipole

S 1 (a4 | —q
V=Y V=V, +V_,= ( + )
“ (+) O™ 4me,

q T-H—Th+H
4'?TE|:| J"[_j!]:+]

.rE_':I - r{+]=‘5dCDSﬁ' a]’ld r(_]r(_,_]*rz.
d cos 6
v =1 :
d7e, r?

Dipole moment p=q d

1 cos
V = py. P 2 (electric dipole),




Calculating E from V

—qodV = qyE(cos 6) ds,

dv
Ecos = —

ds
E cos #is the component of E in the direction of ds,

1% |
E=—" |
[:J'.'.'l- Two

equipotential
surfaces

— n
W# The component of E in any direction is the negative of the rate at which the electric
potential changes with distance in that direction.

Since E is vector

dV al aV
Ey,=—"—; y & > : — T T .
dx

dV_, SV_ 8V _

E = —gradV = —{EEI + EEP + EEE



Finding the field from the potential

The electric potential at any point on the central axis of a
uniformly charged disk is given by Eq. 24-37,

V= —2" (V22 + R — 7).
€p

Starting with this expression, derive an expression for the
electric field at any point on the axis of the disk.

KEY IDEAS

We want the electric field E as a function of distance z alon
the axis of the disk. For any value of z, the direction of E
must be along that axis because the disk has circular symme-

i,

try about that axis. Thus, we want the component E_ of E in
the direction of z. This component is the negative of the rate
at which the electric potential changes with distance z.

Calculation: Thus, from the last of Eqs.24-41, we can write

_a—V: o d '\,!zz_'_RZ_z)

E, = — —
2g, dz

B az

(Answer)

o Z
- (4 - )
290( Vz? + R?

This is the same expression that we derived in Section 22-7
by integration, using Coulomb’s law.



Electric Potential Energy

|

W The electric potential energy of a system of fixed point charges is equal to the work
that must be done by an external agent to assemble the system, bringing each charge in
from an infinite distance.

l q1
iti - V= —
V(q,) and position of q, : PP
1 qq
q Gz _ _ _ 1432
@ r + U_W_qzv_éiﬂsﬂ ro
Example : Potential energy
of 3 point charges
%2 U = U]z + U13 + U23
Energy is associated
7\ with each pair of _ 1 ((4‘(}’](—4@'} I (+q)(+2q) n (_4'?)("'2'?))
d 4 particles. dme, d d d
Ld;.—\@ _10g?
q VL] 41?80d

g, =+q. g¢=—4q, and g;= +1q,

= —17 m).
g =150 nC.



Capacity calculation

v Electric field lines

/A f?‘f
TIIIERINLL]

Two charged plates separated
by distance d form a capacitor

Gaussian o % E-dA = g.

Top side of
bottom
plate has
charge —g

Bottom side of
top plate has
charge +q

surface (@) (b)
e FA The charge q and the potential difference V
4= &bA, between the plates are proportional to each other
! d g=CV.
V = Eds=FE | ds = Ed.
R ! C - capacity
eoEA = CEd
-Efu.n"'"l
I:I - d Path of

Integration

1 farad = 1 F = 1 coulomb per volt = 1 C/V.



Charging the plates in a parallel-plate capacitor

In Fig. 25-7a, switch S is closed to connect the uncharged ca-
pacitor of capacitance C = 0.25 uF to the battery of potential
difference V = 12 V. The lower capacitor plate has thickness
L = 0.50 cm and face area A = 2.0 X 107*m?, and it consists
of copper. in which the density of conduction electrons isn =
8.49 x 10* electrons/m’. From what depth d within the plate
(Fig. 25-7b) must electrons move to the plate face as the ca-
pacitor becomes charged?

KEY IDEA

The charge collected on the plate is related to the capaci-
tance and the potential difference across the capacitor by

Eq.25-1(q = CV).
Calculations: Because the lower plate is connected to the

negative terminal of the battery, conduction electrons move
up to the face of the plate. From Eq. 25-1, the total charge

e —
]

T

(a) (b)
Fig. 25-7 (a) A battery and capacitor circuit. (b) The
lower capacitor plate.

magnitude that collects there is
g=CV=(025x10"°F)(12V)
=3.0x107°C.

Dividing this result by e gives us the number N of conduc-
tion electrons that come up to the face:

g 30x10°°C

e 1.602 x 107 C
= 1.873 x 10" electrons.

These electrons come from a volume that is the product of the
face area A and the depth d we seek. Thus, from the density of
conduction electrons (number per volume), we can write

n = i
Ad’
or
g N 1.873 x 10" electrons

An (2.0 X 10~*m?) (849 X 10®electrons/m’)

=11x107"”m = 1.1 pm. (Answer)

In common speech, we would say that the battery charges
the capacitor by supplying the charged particles. But what
the battery really does is set up an electric field in the wires
and plate such that electrons very close to the plate face
move up to the negative face.



Parallel and Series connection of capacities

g=4q,+ g+ qg:=1(C, + C; + C3)V.

q
CL"';-l=? =C| T I'__'1+C3-
i}
Cm=Eq

1 1 1
V= Vit vt V=g
! I:l'—_|| f:j C_'.l,
1
r:aq - 1 = .
]-"'r 1.' f, + L'IC: LE I.'rC;.
1 1 1 1
= + +
Ceq G G -
1 —T |
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)
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+g
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]
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Series capacitors .



(a) Find the equivalent capacitance for the combination of

capacitances shown in Fig. 25-10a, across which potential

difference Vis applied. Assume

C,=120uF, C,=530uF,

C,,=C, + C, = 12.0 uF + 530 uF = 17.3 uF.

1 1 1
= +
Cl 23 Cl A CB

and C, = 4.50 uF.

1 1
= -+ = (. —1
173 uF T as0uF  O280mFT
We first reduce the  The equivalent of The equivalent of
o . : . . Next, we work
circuit to a single parallel capacitors ~ series capacitors backward " .
capacitor. s larger. is smaller. ackwards to the ﬁfpplylng q=CV
\ | desired capacitor. yields the charge.
2 ‘= \—.—I — e
G, = C, - C12 = Set|V=12.5V| find charges|, 2 ~
12.0 uF 5.30 uF 17.3 uF : 14.6 pC
Vv 7 v B v G- 125V 125V
+ 3.57 uF Cizz = | Vigs = Cizs = | Vizs =
Cy = Cy = 3.57 uF | 125V 357 uF [ 125V
4.50 #F| 4.50 uF
= — L
(a) (&) (c) (d)
Series capacitors and Parallel capacitors and
their equivalent have Applying V= g/C yields their equivalent have Applying g= CV
_— the potential difference. the same V (“par-V"). yields the charge.
the same g (“seri-q").
1z = Tz = ¥ ¥ o= 9 =
44.6 pC 44.6 uC | 31.0 uC 18.7 uC
Cl? = Cl Q9 = li-"rJ g9 = {Cl - s Iil =:,- - {:2 = li-iz =r {:1 = I‘rl = (:p = I’r-p =
L 1T yf 175 4F| 258V 120pF | 2.58 V 5.30 uF| 2.58 V 12.0 uF [ 2.58 V 5.80 uF | 2.58 V
125V s = 125V qs = r T3 = =
44.6 pC 44.6 uC 125V 44.6 pC 125V  44.6 uC
Cs = - 3= Cqy = £ Cy = o =
4. 50 FFl 4,50 .HFl 992V 4.50 ;U-F 992V ) 4.50 F'F 9-99 v
e, O
() (g) (h) (i)



Capacitor 1, with C; = 3.55 uF, is charged to a potential
difference V,; = 6.30 V, using a 6.30 V battery. The battery is
then removed, and the capacitor is connected as in Fig. 25-11
to an uncharged capacitor 2, with C; = 8.95 uF. When switch
S is closed, charge flows between the capacitors. Find the
charge on each capacitor when equilibrium is reached.

go=C,V,= (355X 107°F) (6.30 V)
=22.365 X 1076 C.

When switch S in Fig. 25-11 is closed and capacitor 1 begins to
charge capacitor 2, the electric potential and charge on capaci-
tor 1 decrease and those on capacitor 2 increase until

V=1V, (equilibrium).
From Eq.25-1, we can rewrite this as
4 = 1 (equilibrium).
C, G

Because the total charge cannot magically change, the total
after the transfer must be

(charge conservation);

d1t q2=4qo

9o
G Cy
thus 42= 4o — q1-
We can now rewrite the second equilibrium equation as
91 _ 9o~ 4
G G

Solving this for g, and substituting given data, we find

q, = 6.35 nC. (Answer)

The rest of the initial charge (g, = 22.365 . C) must be on
itor 2:

capacttor q,=16.0 nC. (Answer)



