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Harmonic oscillation of a spring

00000000 - Solution via differential equation
—J|C x=10 +x
F =-kx
= —kx,
— A2 2
F = ma = —(me*)x. ma + kx =0 a=dix/dt
. . m d?x/dt>+ kx=0
k = mo-. a(t) = —w’x(1),
d*x/dt? +k/mx= 0
k
w = \/: (angular frequency). Ansatz: x(t)= x, cos (wt)
i
2 2_ 2
T=27t/c d?x/dt*= -m? x
-2 = 9 (DZ = k m
— Zw\l % (period). @™ + k/m x =0 /




A block whose mass m is 680 g is fastened to a spring whose
spring constant k is 65 N/m. The block is pulled a distance
x =11 cm from its equilibrium position at x = 0 on a fric-
tionless surface and released fromrestatz = 0.

(a) What are the angular frequency, the frequency, and the
period of the resulting motion?

KEY IDEA

The block—spring system forms a linear simple harmonic
oscillator, with the block undergoing SHM.

Calculations: The angular frequency is given by Eq. 15-12:

3 5 N/m
= == 22— 978 rads
@\ 0.68 kg rads

~ 9.8 rad/s. (Answer)

The frequency follows from Eq. 15-5, which yields

() 9.78 rad/s
=—=——""—=156Hz=16Hz. (A
! 2@ 2ar rad ‘ (Answer)
The period follows from Eq. 15-2, which yields
1 1
= ? = 156 H = (0.64s = 640 ms. (Answer)

(b) What is the amplitude of the oscillation?

KEY IDEA

‘With no friction involved, the mechanical energy of the spring—
block system is conserved.

Reasoning: The block is released from rest 11 cm from
its equilibrium position, with zero kinetic energy and the
elastic potential energy of the system at a maximum. Thus,
the block will have zero kinetic energy whenever it is
again 11 cm from its equilibrium position, which means it
will never be farther than 11 cm from that position. Its

maximum displacement is 11 cm:
x, =11 cm. (Answer)

(c) What is the maximum speed v,, of the oscillating block,
and where is the block when it has this speed?

KEY IDEA

The maximum speed v,, is the velocity amplitude wx,, in Eq. 15-6.

Calculation: Thus, we have

Vi = @x, = (9.78 rad/s)(0.11 m)

= 1.1 m/s. (Answer)

This maximum speed occurs when the oscillating block is rush-
ing through the origin; compare Figs. 15-4a and 15-4b, where
you can see that the speed is a maximum whenever x = 0.

(d) What is the magnitude a,, of the maximum acceleration
of the block?

KEY IDEA

The magnitude a,, of the maximum acceleration is the accel-
eration amplitude «’x,, in Eq. 15-7.

Calculation: So,we have
a,, = o’x,, = (9.78 rad/s)*(0.11 m)

=11 m/s?. (Answer)

This maximum acceleration occurs when the block is at the
ends of its path. At those points, the force acting on the
block has its maximum magnitude; compare Figs. 15-4a and
15-4c, where you can see that the magnitudes of the dis-
placement and acceleration are maximum at the same times.

(e¢) What is the phase constant ¢ for the motion?

Calculations: Equation 15-3 gives the displacement of the
block as a function of time. We know that at time t =0,
the block is located at x = x,,. Substituting these initial
conditions, as they are called, into Eq. 15-3 and canceling x,,
give us

1 = cos ¢. (15-14)
Taking the inverse cosine then yields
¢ = Orad. (Answer)

(Any angle that is an integer multiple of 27 rad also satisfies
Eq. 15-14; we chose the smallest angle.)

(f) What is the displacement function x(t) for the
spring —block system?

Calculation: The function x(f) is given in general form by
Eq. 15-3. Substituting known quantities into that equation

gives us
x(t) = x,, cos(wt + ¢)

(0.11 m) cos[(9.8 rad/s)t + 0]

= (.11 cos(9.81),
where x is in meters and ¢ is in seconds.

(Answer)



At t = 0, the displacement x(0) of the block in a linear oscil-
lator like that of Fig. 15-5 is —8.50 cm. (Read x(0) as “x at
time zero.”) The block’s velocity v(0) then is —0.920 m/s,
and its acceleration a(0) is +47.0 m/s%,

(a) What is the angular frequency w of this system?

KEY IDEA

With the block in SHM, Eqgs. 15-3, 15-6, and 15-7 give its dis-
placement, velocity, and acceleration, respectively, and each
contains w.

Calculations: Let’s substitute 1= 0 into each to see
whether we can solve any one of them for w. We find

x(0) = x,, cos ¢, (15-15)
v(0) = —wx,, sin b, (15-16)
and a(0) = —w’x,, cos o. (15-17)

In Eq. 15-15, o has disappeared. In Eqgs. 15-16 and 15-17, we
know values for the left sides, but we do not know x,, and ¢.
However, if we divide Eq. 15-17 by Eq. 15-15, we neatly elim-
inate both x,, and ¢ and can then solve for w as

[ a(0) _ \X 47.0 m/s*
w=.]—2L=_[—
x(0) —0.0850 m
= 23.5 rad/s.
(b) What are the phase constant ¢ and amplitude x,,?

(Answer)

Calculations: We know w and want ¢ and x,,. If we divide
Eq. 15-16 by Eq. 15-15, we eliminate one of those unknowns
and reduce the other to a single trig function:

v(i0) _ —wx,sing _
x(0)  x,cos¢ @tan ¢.

Solving for tan ¢, we find

vO) _ —0.920 m/s
wx(0) (23.5 rad/s)(—0.0850 m)
= —0.461.

tan ¢ = —

This equation has two solutions:
¢ =—25" and ¢ =180° + (—257) = 155°.

Normally only the first solution here is displayed by a calcu-
lator, but it may not be the physically possible solution. To
choose the proper solution, we test them both by using them
to compute values for the amplitude x,. From Eq. 15-15, we
find that if & = —25°, then

_ x(0) _ —0.0850 m

o cos¢  cos(—25°%

We find similarly that if ¢ = 155" then x, = 0.094 m.
Because the amplitude of SHM must be a positive constant,
the correct phase constant and amplitude here are

¢ =155" and x,=0.0949m=94cm. (Answer)

= —0.094 m.




Energy in Simple Harmonic Motion

Potential energy of a spring, =2 x(t) E

Energy

U(t) = 3kx? = kxZ, cos’(wt + o).

Kinetic energy of a spring =2 v(t) = o x(t)

K(t) = %mv2 = %mwzxfn sin*(wt + ). 0

®?*=k/m

K(t) = 3mv? = skx2, sin%(wt + o).

E=U+K

= tkxZ cosi(wt + ¢) + skxl, sin’(wt + ¢)

= Tkx2 [cosX(wt + ¢) + sinX(wt + ¢)].

sin%a + cos?a =1

Total energy of a spring

E=U+K =1k

me

/U + K(1)

T/2 T
‘9 As time changes, the

energy shifts between

the two types, but the

total 1s constant.

~Ulx) + K(x)

Ulx)

Energy

K(x)

As position changes, the
energy shifts between
the two types, but the
total is constant.



SHM potential energy, kinetic energy, mass dampers

Many tall buildings have mass dampers, which are anti-sway
devices to prevent them from oscillating in a wind. The de-
vice might be a block oscillating at the end of a spring and
on a lubricated track. If the building sways, say, eastward,
the block also moves eastward but delayed enough so that
when it finally moves, the building is then moving back west-
ward. Thus, the motion of the oscillator is out of step with
the motion of the building.

Suppose the block has mass m = 2.72 x 10° kg and is
designed to oscillate at frequency f = 10.0 Hz and with am-
plitude x,, = 20.0 cm. -

(a) What is the total mechanical energy E of the
spring—block system?

KEY IDEA

The mechanical energy E (the sum of the kinetic energy
K = 3mv? of the block and the potential energy U = skx? of
the spring) is constant throughout the motion of the oscillator.
Thus, we can evaluate E at any point during the motion.

Calculations: Because we are given amplitude x,, of the
oscillations, let’s evaluate E when the block is at position
x = x,,, Where it has velocity v = 0. However, to evaluate U

at that point, we first need to find the spring constant k.
From Eq.15-12 (w = M) and Eq.15-5 (w = 2f), we find
k = me® = m2af)?
= (2.72 x 10° kg)(27)*(10.0 Hz)?
= 1.073 X 10° N/m.
We can now evaluate E as

E =K+ U=imv? + 3kx?
= 0 + 3(1.073 x 10° N/m)(0.20 m)?

= 2147 x 107 = 2.1 X 107 1. (Answer)

(b) What is the block’s speed as it passes through the equi-
librium point?

Calculations: We want the speed at x = 0, where the
potential energyis U = %kxz = 0 and the mechanical energy
is entirely kinetic energy. So, we can write

E =K+ U=;mv? + 3kx?
2.147 X 107 ] = 3(2.72 X 10° kg)v? + 0,
or v = 12.6 m/s. (Answer)

Because E is entirely kinetic energy, this is the maximum
speed v,,,.
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In Fig. 15-11a, a meter stick swings about a pivot point at
one end, at distance h from the stick’s center of mass.

(a) What is the period of oscillation 77

KEY IDEA

The stick is not a simple pendulum because its mass is not
concentrated in a bob at the end opposite the pivot point—
so the stick is a physical pendulum.

Calculations: The period for a physical pendulum is given
by Eq. 15-29, for which we need the rotational inertia [ of
the stick about the pivot point. We can treat the stick as a
uniform rod of length I. and mass m. Then Eq. 15-30 tells us
that /=1mL? and the distance h in Eq. 15-29 is1L.
Substituting these quantities into Eq. 15-29, we find

1 zml-
T=2 —_— =2 _ 15-32
"N mgh ~ "N mglL) (15-32)
2L

= 2“1'1‘1 IIE (]5—33)
_ (2)(1.00 m)
=2 3)O8mls) 1.64s.  (Answer)

Note the result is independent of the pendulum’s mass m.

(b) What is the distance L, between the pivot point O of
the stick and the center of oscillation of the stick?

Calculations: We want the length L; of the simple pendu-
lum (drawn in Fig. 15-11b) that has the same period as the

[ e

(a) (B)

Fig. 15-11 (a) A meter stick suspended from one end as a physi-
cal pendulum. (b) A simple pendulum whose length L; is chosen so
that the periods of the two pendulums are equal. Point P on the
pendulum of (a) marks the center of oscillation.

physical pendulum (the stick) of Fig. 15-11a. Setting Eqgs.
15-28 and 15-33 equal yields

T= Zﬂﬁ = EGT\/E. (15-34)
g 38
You can see by inspection that
Lo=:L (15-35)
= (3)(100 cm) = 66.7 cm. (Answer)

In Fig. 15-11a. point P marks this distance from suspension
point (. Thus, point P is the stick’s center of oscillation for
the given suspension point. Point P would be different for a
different suspension choice.



Damped Simple Harmonic Motion
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For the damped oscillator of Fig. 15-14, m = 250g. k =
83 N/m,and b =70 g/s.

(a) What is the period of the motion?

KEY IDEA

Because b < vkm = 4.6 kg/s, the period i1s approximately
that of the undamped oscillator.

Calculation: From Eq. 15-13, we then have

_ [m _ [0.25 kg _
T=2w X =2 35 N/m 0.34 s.

(b) How long does it take for the amplitude of the damped
oscillations to drop to half its initial value?

KEY IDEA

The amplitude at time ¢ is displayed in Eq. 15-42 as x, e %™,

(Answer)

Calculations: The amplitude has the value x,, at t = 0.
Thus, we must find the value of ¢ for which

—be2m — 1
X, € ==

Canceling x,, and taking the natural logarithm of the equa-
tion that remains, we have In % on the right side and

In(e~*"") = —bt/2m

on the left side. Thus,

_2m In; _ —(2)(025kg)(In3)
b 0.070 kg/s

=50s

(Answer)

Because T = 0.34 s, this is about 15 periods of oscillation.

(c) How long does it take for the mechanical energy to drop
to one-half its initial value?

KEY IDEA

From Eq. 15-44, the mechanical energy at time  is skx2, e >

Calculations: The mechanical energy has the wvalue
tkx% at t = 0. Thus, we must find the value of t for which

%kx,zn e~ bim — %(%kxi)
If we divide both sides of this equation by %kx:f,, and solve for
i as we did above, we find
L m In;  —(025kg)(In3)

=25s.
b 0.070 kg/s ;

(Answer)

This is exactly half the time we calculated in (b), or about
7.5 periods of oscillation. Figure 15-15 was drawn to illus-
trate this sample problem.



d?x dx B |
Forced Oscillations and Resonance 5 T W +wix = feos(wct) x(1) = x(hom + X(Vinhom
X()inhom = Xmeos(wet + @] = Xm[cos(g)cos(wet ) — sin(g)si n{wet )]
ot Dhinkom . _ ¥po? (cos(p)eoswet) — sin@)sin(we)
damging) T mi[cos(p)cos(w, sin(@)sin(wet)]

b=T0g/s
cos(w.t)A + sin(w.1)B =0

A= X,[(w? —mf}::r:rs{gu} — 28 5in(@)) — f
B = X,[(w; —w*)sin(g) — 28, cos(p)]

b=140g/s

.L‘unp]iturln

06 0.8 1.0 1.2 1.4

@,/ A and B have to be zero, using A=0 or B=0 we get
f /
2 _ 2 _
(w? —wl)cos(y) — 2wesin(g) m .ﬂmz _ wg}z 1 452,

Complete solution
XY =x(hom X)) inhom = Imf_‘sf::m{mr + @) + Xmeos(wet + @)
Fort>>1/8 X(t) =x()inhom = Xmcos(wet + @)

For§<>0 >X=X__ for ®=w, Resonance !!! For =0 = X=oo divergence !!!
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Name : Matr nr.

Physics 1 for Nanoscience & Nanotechnology
Level of knowledge 2 06.11.19

1. Give the relation between angular velocity and trangential velocity ? Give a
relation for kinetik energy for translation and for rotation ?

2. Give expression for angular force (torque) and angular
momentum. For which quantity yields the law of conservation ?.

3. Give the relation between Force and potential energy

4. What characterized a ,,conservative force” ?



Name : Matr nr.

Physics 1 for Nanoscience & Nanotechnology
Level of knowledge 2 06.11.19

1. Give the relation between angular velocity and trangential velocity ? Gvie a
relation for kinetik energy of translation and for rotation ?

V=or K= % m v? K=% 0 o

2. Give expression for angular force (torque) and angular
momentum. For which quantity yields the law of conservation ?.

2 Fx F T=FxF=m7 x7) conserved

3. Give the relation between Force and potential energy

4. What characterized a ,,conservative force” ?

The work done by a conservative force on a particle moving between two points does
not depend on the path taken by the particle.
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Speed of travelling wave

kx — wt = aconstant.
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Transverse wave, amplitude, wavelength, period, velocity

A wave traveling along a string is described by
y(x,t) = 0.00327 sin(72.1x — 2.72¢), (16-18)

in which the numerical constants are in SI units (0.00327 m,
72.1 rad/m, and 2.72 rad/s).

(a) What is the amplitude of this wave?

KEY IDEA

Equation 16-18 is of the same form as Eq.16-2,

so we have a sinusoidal wave. By comparing the two equa-
tions, we can find the amplitude.
Calculation: We see that

VY = 0.00327 m = 3.27 mm.

(b) What are the wavelength, period, and frequency of
this wave?

(Answer)

Calculation: The speed of the wave is given by Eq. 16-13:
® 2.72 rad/s

v=—=

k 721 rad/m
= 3.77 cm/s.

= 0.0377 m/s

(Answer)

Because the phase in Eq. 16-18 contains the position variable x,
the wave is moving along the x axis. Also, because the wave
equation is written in the form of Eq. 16-2, the minus sign in
front of the wt term indicates that the wave is moving in the pos-
itive direction of the x axis. (Note that the quantities calculated
in (b) and (c) are independent of the amplitude of the wave.)

(d) What is the displacement y of the string at x = 22.5 cm
andr = 18.9s?

Calculations: By comparing Egs. 16-18 and 16-19, we see
that the angular wave number and angular frequency are

k=721rad/m and = 2.72rad/s.
We then relate wavelength A to k via Eq. 16-5:
2 27 rad

A= =
k 72.1 rad/m
= 0.0871 m = 8.71 cm. (Answer)
Next, we relate T to w with Eq. 16-8:
2 2mrad .

T= o 272rads 2.31s, (Answer)

and from Eq. 16-9 we have

1 1
f= T 231s 0.433 Hz. (Answer)

(c) What is the velocity of this wave?

Calculation: Equation 16-18 gives the displacement as a
function of position x and time t. Substituting the given val-
ues into the equation yields

y = 0.00327 sin(72.1 x 0.225 — 2.72 X 18.9)
= (0.00327 m) sin(—35.1855 rad)
= (0.00327 m)(0.588)
=0.00192 m = 1.92 mm.

Thus, the displacement is positive. (Be sure to change your
calculator mode to radians before evaluating the sine. Also,
note that we do not round off the sine’s argument before evalu-
ating the sine. Also note that both terms in the argument are
properly in radians, a dimensionless quantity.)

(Answer)



In the preceding sample problem, we showed that at r = 18.9
s the transverse displacement y of the element of the string at
x = 22.5 cm due to the wave of Eq.16-181s 1.92 mm.

(a) Whatis u, the transverse velocity of the same element of
the string, at that time? (This velocity, which is associated
with the transverse oscillation of an element of the string, is
in the y direction. Do not confuse it with v, the constant ve-
locity at which the wave form travels along the x axis.)

KEY IDEAS

The transverse velocity u is the rate at which the displacement
y of the element is changing. In general, that displacement is

given by

v(x,t) = y,sin(kx — wt). (16-20)

For an element at a certain location x, we find the rate of
change of y by taking the derivative of Eq. 16-20 with re-
spect to f while treating x as a constant. A derivative taken
while one (or more) of the variables is treated as a constant
is called a partial derivative and is represented by the symbol
d/dx rather than d/dx.

Calculations: Here we have

d
u=-2= —wy,, Cos(kx — wt).
dt
Next, substituting numerical values from the preceding sam-

ple problem, we obtain

(16-21)

u = (—2.72rad/s)(3.27 mm) cos(—35.1855 rad)

= 7.20 mm/s. (Answer)

Thus, at 1 = 18.9 5, the element of the string at x = 22.5 cm is
moving in the positive direction of y with a speed of 7.20 mm/s.

(b) What is the transverse acceleration a, of the same ele-
ment at that time?

KEY IDEA

The transverse acceleration a, is the rate at which the trans-
verse velocity of the element is changing.

Calculations: From Eq. 16-21, again treating x as a
constant but allowing ¢ to vary, we find

du

— = —w?y, sin(kx — wt).
= @y, sin( wt)

a, =

Comparison with Eq. 16-20 shows that we can write this as

We see that the transverse acceleration of an oscillating string
element is proportional to its transverse displacement but
opposite in sign. This is completely consistent with the action
of the element itself—namely, that it is moving transversely
in simple harmonic motion. Substituting numerical values
yields

a, = —(2.72 rad/s)*(1.92 mm)

= —14.2 mm/s2. (Answer)

Thus, at + = 18.9s, the element of string at x = 22.5 cm is
displaced from its equilibrium position by 1.92 mm in the
positive y direction and has an acceleration of magnitude
14.2 mm/s” in the negative y direction.



Energy transport of a
travelling wave

Ekin = Emax for y =0
max speed, max kin energy

Epot = Emax for y =0
Max stretch, max elastic

potentianlenergie

Both Ey;,, andE are minaty,,

Rate of energy
transmission
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Wave equation

d?y 1 d?y

dx?2  v2 d¢2

Ansatz : y=y, sin (ot - kx)

dy/dt = ® y,, cos (ot - kx)
d?y/dt* = -@? y,, sin (ot - kx)
dy/dx = -k y,, cos (ot - kx)
d?y/dt* = -k? y,, sin (ot - kx)

-@? ., sin (ot - kx) = 1/v? (-k* y_, sin (ot - kx))
-2 =1/v?(-k?)

v=Af



Su perposmon of When two waves overlap,

waves we see the resultant wave,
—  not the individual waves.

R

—

Y (x.1) = yilx, 1) + yo(x, 0). J\/L




Being exactly in phase,
the waves produce a

Interference

Being exactly out of
phase, they produce

This is an intermediate

situation, with

an

large resultant wave. a flat string. intermediate result.
¥ ¥ y
yi(x ) y1(x, &) yo(x, f) yi(x, t) yo(x, 1)
and
/ﬂm ¥a\
N\ ' '
9=0 ¢ =m rad ¢=2n rad
(a) (2) (e)
Y =y tyxl). s )
/Y_}‘"(x, 3)/\ y(x 1)
1.’{ 2 t] ﬂ A
/ S U\
(d) (e) (f)

_‘P'{I, E} = yl(xs f) + yl{xr I}
= ynsin(kx — wt) + y, sin(kx — ot + ¢).

sin @ + sin 8 = 2sinJ(a + B) cos H(a — B).

y'(x, 1) = [2y,, cos 1] sin(kx — ot + 30).

Displacement

e

¥y (2 ) = [2y,y, cos %c;: | sin(kx— @i + %i.nfl

Magnitude

amplitude

gives

Oscillating
term



Interference of two waves, same direction, same amplitude

Two identical sinusoidal waves, moving in the same
direction along a stretched string, interfere with each other.
The amplitude y,, of each wave is 9.8 mm, and the phase dif-
ference ¢ between them is 100°.

(a) What is the amplitude y,, of the resultant wave due to the
interference, and what is the type of this interference?

KEY IDEA

These are identical sinusoidal waves traveling in the same
direction along a string, so they interfere to produce a sinu-
soidal traveling wave.

Calculations: Because they are identical, the waves have
the same amplitude. Thus, the amplitude y,, of the resultant
wave is given by Eq. 16-52:

Vo = 12y,, cos %qbl = 1(2)(9.8 mm) cos(100°/2)I

=13 mm. (Answer)

We can tell that the interference is intermediate in two ways.
The phase difference is between 0 and 1807, and, correspond-
ingly, the amplitude y,, is between 0 and 2y,, (= 19.6 mm).

(b) What phase difference. in radians and wavelengths, will
give the resultant wave an amplitude of 4.9 mm?

Calculations: Now we are given y,, and seek ¢. From Eq.
16-52,
Vin = 12y, cos 36,
we now have
4.9 mm = (2)(9.8 mm) cos 3¢,
which gives us (with a calculator in the radian mode)
4.9 mm
(2)(9.8 mm)
= *2.636rad = +2.6rad.

¢ = 2cos!

(Answer)

There are two solutions because we can obtain the same re-
sultant wave by letting the first wave lead (travel ahead of)
or lag (travel behind) the second wave by 2.6 rad. In wave-
lengths, the phase difference is

b +2.636 rad
27r rad /wavelength

24 rad/wavelength

= *=0.42 wavelength. (Answer)



Standing waves
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y, (X,t)=y,, sin (kx — ot) ; vy, (x,t)=y,, sin (kx + ot)

sina +sin b =2 sin % (a+b) cos % (a-b)

y'(x,t)= 2y, sin (kx) cos(wt)




Phase change at

reflection || ‘.M

antinode
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x= (n - E) Y forn=0,1.2,... {antinodes).

node —

-q_
/-\—
x=n—_, forn=20,1.2,... {nodes), ‘_\ kl:f'lT-i'lT-?lT-u-
N
L

(a) ()



Harmonics

A= . form=1,23,....
n
f=%=ﬂi, form=1,2.3.....
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Resonance of transverse wav

Figure 16-22 shows a pattern of resonant oscillation of a
string of mass m = 2.500 g and length L = 0.800 m and that is
under tension 7= 325.0 N. What is the wavelength A of the
transverse waves producing the standing-wave pattern, and
what is the harmonic number n? What is the frequency f of
the transverse waves and of the oscillations of the moving
string elements? What is the maximum magnitude of the
transverse velocity u,, of the element oscillating at coordinate
x = 0.180 m (note the x axis in the figure)? At what point

¥

1

8.00
lTlmI I\"'-—-—/\_/\'ﬁ__.o'
0

x (m)
0.800

Fig. 16-22 Resonant oscillation of a string under tension.

KEY IDEAS

(1) The traverse waves that produce a standing-wave pat-
tern must have a wavelength such that an integer number »n
of half-wavelengths fit into the length L of the string. (2)
The frequency of those waves and of the oscillations of the
string elements is given by Eq.16-66 (f = nv/2L). (3) The dis-
placement of a string element as a function of position x and
time t is given by Eq. 16-60:

Vv'(x,t) = [2y,,sin kx] cos wt. (16-67)
Wavelength and harmonic number: In Fig. 16-22, the
solid line, which is effectively a snapshot (or freeze frame) of
the oscillations, reveals that 2 full wavelengths fit into the
length L = 0.800 m of the string. Thus, we have

2A=1L,
or A= i (16-68)
2
0.800
=220 0.400 m. (Answer)

2

By counting the number of loops (or half-wavelengths) in

Fig. 16-22, we see that the harmonic number is
n=4.

‘We reach the same conclusion by comparing Egs. 16-68 and

16-65 (A = 2L/n). Thus, the string is oscillating in its fourth
harmonic.

(Answer)

Frequency: We can get the frequency f of the transverse
waves from Eq. 16-13 (v = Af) if we first find the speed v of the
waves. That speed is given by Eq. 16-26, but we must substitute
m/L for the unknown linear density w. We obtain

[ _ [ _ [
Yo w NmiL N m
(325 N)(0.800 m)
= (RN 555 49 .
250 x 10 kg °

After rearranging Eq. 16-13, we write

322.49 m/s

L _ SEmar il
A 0400m
= 806.2 Hz = 806 Hz.

fi=
(Answer)

Note that we get the same answer by substituting into Eq.
16-66:

4 2200w
~ "L T " 2(0.800m)
= 806 Hz. (Answer)

Now note that this 806 Hz is not only the frequency of the
waves producing the fourth harmonic but also it is said to be
the fourth harmonic, as in the statement, “The fourth har-
monic of this oscillating string is 806 Hz.” It is also the fre-
quency of the string elements as they oscillate vertically in
the figure in simple harmonic motion, just as a block on a
vertical spring would oscillate in simple harmonic motion.
Finally, it is also the frequency of the sound you would hear
from the string as the oscillating string elements periodically
push against the air, sending out sound waves.

Transverse velocity: The displacement y’ of the string ele-
ment located at coordinate x is given by Eq. 16-67 as a func-
tion of time t. The term cos wf contains the dependence on
time and thus provides the “motion”™ of the standing wave.
The term 2y, sin kx sets the extent of the motion—that is,
the amplitude. The greatest amplitude occurs at an anti-
node, where sin kx is +1 or —1 and thus the greatest ampli-
tude is 2y,. From Fig. 16-22, we see that 2y,, = 4.00 mm,
which tells us that y,, = 2.00 mm.

We want the transverse velocity—the velocity of a
string element parallel to the y axis. To find it, we take the
time derivative of Eq. 16-67:

u(x, f) = % = % [(2y,, sin kx) cos wi]
= [—2y,w sin kx| sin wt. (16-69)

Here the term sin wt provides the variation with time and
the term —2y,w sin kx provides the extent of that varia-
tion. We want the absolute magnitude of that extent:

u,, = | =2y, sin kx|.

To evaluate this for the element at x = 0.180 m, we first note
that y, = 2.00 mm, k =2#/A = 2#/(0.400 m), and & =
2af = 2m(806.2 Hz). Then the maximum speed of the ele-
ment atx = 0.180 m is

u,, = ‘—2(2.00 % 107% m)(27)(806.2 Hz)

b'e Sin(zi?r
0.400 m

= 6.26 m/s.

(0.180 m)) |

(Answer)

To determine when the string element has this maximum
speed, we could investigate Eq. 16-69. However, a little
thought can save a lot of work. The element is undergoing sim-
ple harmonic motion and must come to a momentary stop at
its extreme upward position and extreme downward position.
It has the greatest speed as it zips through the midpoint of its
oscillation, just as a block does in a block —spring oscillator.



Resonance frequency of a pipe of length L

f=—= BT forn =1,2,3,...  (pipe two open ends).
L
Corresponds to wave length A nzgﬁhwg: .
Second . ‘-"
ZL n=>3 A=2L/5
A=— forn=1,2,3,..., Thia ~ o

m - -
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(a) .
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v nv
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Sound resonance in double-open pipe and single-open pipe

Weak background noises from a room set up the fundamen-
tal standing wave in a cardboard tube of length . = 67.0 cm
with two open ends. Assume that the speed of sound in the
air within the tube is 343 m/s.

(a) What frequency do you hear from the tube?

KEY IDEA

With both pipe ends open, we have a symmetric situation in
which the standing wave has an antinode at each end of the

tube. The standing wave pattern (in string wave style) is that
of Fig. 17-13b.

Calculation: The frequency is given by Eq. 17-39 with
n = 1 for the fundamental mode:

nv_ (1)(343 m/s)
2L 2(0.670 m)

If the background noises set up any higher harmonics, such
as the second harmonic, you also hear frequencies that are

= 256 Hz.

f:

(Answer)

integer multiples of 256 Hz. (Thus, the lowest frequency is
this fundamental frequency of 256 Hz.)

(b) If you jam your ear against one end of the tube, what
fundamental frequency do you hear from the tube?

KEY IDEA

With your ear effectively closing one end of the tube, we
have an asymmetric situation—an antinode still exists at
the open end, but a node is now at the other (closed) end.
The standing wave pattern is the top one in Fig. 17-14b.

Calculation: The frequency is given by Eq. 17-41 with
n = 1 for the fundamental mode:
nv _ (1)(343 m/s)
4L 4(0.670 m)
If the background noises set up any higher harmonics, they

will be odd multiples of 128 Hz. That means that the frequency
of 256 Hz (which is an even multiple) cannot now occur.

= 128 Hz.

=

(Answer)



Sound waves L \fi _ \x elastic property
M

inertial property
B p—__4r
v = ? (speed of sound) T AVIV
Moving air (fluid element)
870K p+ApV+ Av The Speed of Sound®

Medium Speed (m/s)
(rases

Air (0°C) 331
Air (20°C) 343
Helium 965
Hydrogen 1284
Liquids

Water (0°C) 1402
Water (20°C) 1482
Seawater® 1522
Solids

Aluminum (4720
Steel 5041

Granite B000




Traveling sound waves

Compression |__ 1 __I
g
\ = g 2= ok sy =0
i = N A
= —B——. (5}
P % = . jé_ -10 \
i S () The element oscillates = "
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moves through it. -
AV = AAs. —| |—as = ool A\ M A\ -0,
g ol N1/ i
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Pressure amplitude, displacement amplitude

The maximum pressure amplitude Ap,, that the human ear
can tolerate in loud sounds is about 28 Pa (which is very
much less than the normal air pressure of about
10° Pa). What is the displacement amplitude s,, for such a
sound in air of density p = 1.21 kg/m?, at a frequency of 1000
Hz and a speed of 343 m/s?

KEY IDEA

The displacement amplitude s,, of a sound wave is related
to the pressure amplitude Ap,, of the wave according to
Eq.17-14.

Calculations: Solving that equation for s,, yields

Ap,, Ap,,
S — =

" vpw vp(2wf)

Substituting known data then gives us
B 28 Pa

B (343 m/s)(1.21 kg/m*)(24)(1000 Hz)
=11x10"m =11 um.

SH‘I

(Answer)

That is only about one-seventh the thickness of a book page.
Obviously, the displacement amplitude of even the loudest
sound that the ear can tolerate is very small. Temporary ex-
posure to such loud sound produces temporary hearing loss,
probably due to a decrease in blood supply to the inner ear.
Prolonged exposure produces permanent damage.

The pressure amplitude Ap,, for the faintest detectable
sound at 1000 Hz is 2.8 X 107> Pa. Proceeding as above
leads to s,, = 1.1 X 107" m or 11 pm, which is about one-
tenth the radius of a typical atom. The ear is indeed a sensi-
tive detector of sound waves.



Diffraction

Long Wave Length Short Wave Length

Diffraction-- Waves spread out when they pass
through narrow openings.

Each narrow slit is source of a speherical wave



Interferce

B '.- :

Interference .
AL =1L, — Lyl
P
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¢ AL
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S.4~7  The interference at P
AL AL  depends on the difference
b= 0 2. in the path lengths to reach P.
. Interference -- Constructive & Destructive
AL
b = m(2m), form=0,1,2,... (fully constructive interference). N 0,1,2,...

AL
é=02m+ 1)m, form=20,1,2, ... (fully destructive interference). ~ 05,15,25,...



(a)

()

The difference in these
path lengths equals 0.

Thus, the waves arrive exactly
in phase and undergo fully
constructive interference.

1.0A &
_____ _0ALb
The difference
in these path .
LOZ  Jengths 1.0
equals 1.04.

Thus, the waves arrive exactly
in phase and undergo fully
constructive interference.

(e)

(f)

—s—

S,
The difference in these
path lengths is D,
which equals 1.54.

Sa

Thus, the waves arrive

i

()

exactly out of phase
and undergo fully
Py destructive interference.

We find six points
of fully constructive

interference.
ul.0d 1.0A &
allid DA
Zero J
*1.04 phase 1.OA®
difference

(d)

Maximum phase
difference

wl.0A

*1.0. phase
difference

Maximum phase
difference

(2

Fig. 17-8 (a) Two point sources §, and §,, separated by distance D, emit spherical sound waves in phase. (b) The waves travel equal
distances to reach point P;. (c¢) Point P; is on the line extending through §; and S-. (d) We move around a large circle. (¢) Another point of
fully constructive interference. (f) Using symmetry to determine other points. (g) The six points of fully constructive interference.



Single slit experiment

a . A
2smi‘f:‘— >

asin = A (first minimum).
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wave

D -

Totally destructive
interference

Central axis

Viewing
screen

C

This pair of rays cancel
each other at P4. So
do all such pairings.

This path length
difference shifts

Path length

difference one wave from the
other, which
determines

the interference.



Multiple slit experiment
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Interference of sound waves

5 = _5'] — 51 = .Im{l:-l:l'ﬂ {I’.J]E + COS fl'.;"lf]- () JWUUWUWWUWW

Time

s = 25, EDE[%I:Lm — o )t] EDS[%I:Lm + wo )t

Whe = 20" = (2)3) (@1 — w2) = @1 — w2

=2
0] 7, @

foew =fy —f  (beat frequency).




Doppler effect

Fi'lr"ﬂ

When the motion of detector or source 1s toward the other, the sign on 1ts speed must

_f' f = f————— give an upward shift in frequency. When the motion of detector or source 1s away from
v vy the other, the sign on 1ts speed must give a downward shift 1n frequency.

Movement of the source alters
the wavelength and the received
frequency of sound, even though
source frequency and wave
velocity are

unchanged.
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of frequency fgource
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of frequency fgq e
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Bats navigate and search out prey by emitting, and then
detecting reflections of, ultrasonic waves, which are
sound waves with frequencies greater than can be heard
by a human. Suppose a bat emits ultrasound at fre-
quency f,. = 82.52 kHz while flying with velocity
¥, = (9.00 m/s)i as it chases a moth that flies with veloc-
ity v, = (8.00 mfsﬁ. What frequency f,,, does the moth
detect? What frequency f,; does the bat detect in the
returning echo from the moth? S

KEY IDEAS

The frequency is shifted by the relative motion of the bat and
moth. Because they move along a single axis, the shifted fre-
quency is given by Eq. 1747 for the general Doppler effect.
Motion toward tends to shift the frequency up, and motion away
tends to shift the frequency down.

Detection by moth:The general Doppler equation is

v vp

ff=rf (17-56)

v
Here, the detected frequency f’ that we want to find is the
frequency f,,; detected by the moth. On the right side of
the equation, the emitted frequency f is the bat’s emission
frequency f,, = 8252 kHz, the speed of sound is
v = 343 m/s, the speed v, of the detector is the moth’s speed
v,, = 8.00 m/s, and the speed vg of the source is the bat’s
speed v, = 9.00 m/s.

These substitutions into Eq. 17-56 are easy to make.
However, the decisions about the plus and minus signs can
be tricky. Think in terms of toward and away. We have the
speed of the moth (the detector) in the numerator of Eq.

17-56. The moth moves away from the bat, which tends to
lower the detected frequency. Because the speed is in the
numerator, we choose the minus sign to meet that tendency
(the numerator becomes smaller). These reasoning steps
are shown in Table 17-3.

We have the speed of the bat in the denominator of Eq.
17-56. The bat moves roward the moth, which tends to in-
crease the detected frequency. Because the speed is in the
denominator, we choose the minus sign to meet that ten-
dency (the denominator becomes smaller).

With these substitutions and decisions, we have

Vo= Vi
ﬁnd = fbe _
vV —
343 m/s — 8.00 my/
= (82.52 kHz) —

343 m/s — 9.00 m/s

= 82.767 kHz = 82.8 kHz. (Answer)

Detection of echo by bat: In the echo back to the bat, the
moth acts as a source of sound, emitting at the frequency f,,;
we just calculated. So now the moth is the source (moving
away) and the bat is the detector (moving toward). The rea-
soning steps are shown in Table 17-3. To find the frequency
frq detected by the bat, we write Eq. 17-56 as

_ v+ vy
fua = Fra =y
343 m/s + 9.00 m/s
343 m/s + 8.00 m/s

= 83.00 kHz = 83.0 kHz.

= (82.767 kHz)

(Answer)

Some moths evade bats by “jamming” the detection system
with ultrasonic clicks.



Supersonic Speeds, Shock Waves

. vt v 5 Vg
snmfh=——=— (Mach cone angle). >—x
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