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Angular velocity derived from angular acceleration

A child’s top is spun with angular acceleration
a = 56 — 4t

with 7 in seconds and « in radians per second-squared. At
t = 0, the top has angular velocity 5 rad/s, and a reference
line on it is at angular position # = 2 rad.

(a) Obtain an expression for the angular velocity w(r) of the
top. That is, find an expression that explicitly indicates how the
angular velocity depends on time. (We can tell that there is
such a dependence because the top is undergoing an angular
acceleration, which means that its angular velocity is changing. )

KEY IDEA

By definition, a(r) is the derivative of w(t) with respect to
time. Thus, we can find w(f) by integrating a(r) with respect
to time.

Calculations: Equation 10-8 tells us
dw = a dt,

SO IdmZJadr.

From this we find

© = J(SF —4f)dt =3* — 31> + C.

To evaluate the constant of integration C, we note that w = 5
rad/s at r = 0. Substituting these values in our expression for
wYyields

Sradls=0—-0+ C,
so C = 5rad/s. Then

w=3t"—2%+5. (Answer)

(b) Obtain an expression for the angular position #(t) of the
top.

KEY IDEA

By definition, w(f) is the derivative of 6(¢) with respect to
time. Therefore, we can find #(r) by integrating «(f) with
respect to time.

Calculations: Since Eq. 10-6 tells us that

) df = wdt,
we can write

9=fwdr=j(§:4—252+5)dr

=1 - +5+C

_ 1.5 _ 2.3
=3~ + 5 +12, (Answer)

where C’ has been evaluated by noting that # = 2rad att = 0.



Vector quantity

Axis Axis Axis

(8]
“

Spindle

< : Yo
This right-hand rule
establishes the
direction of the (a) (B)
angular velocity
vector.

z The order of the
‘ rotations makes
, 2 big difference

in the resuilt.




The velocity vector is The acceleration always

always tangent to this has a radial (centripetal)
¥ circle around the y  component and may have
Relation between linear Gircle 5 rotation axis. a tangential component.
traveled by P
and angular variables - @
P / P
i L .'.l. ﬂ.r
1+ ! — X 'I X
The POSItlon I'.Rt}t.':l.li.lZ}Tl -'I I'-Rﬂl.aljun .'I
"‘\ axis J.-"'I I"‘-x axis _.-"'
| S S| S
§ = Br  (radian measure).
(a) i b)
The Speed
ﬂ _ ﬁ ’ vV = wr (radian measure).
dt — dt
. ) 27r _ 27 .
period of revolution T = T'=—= (radianmeasure).
- - == v
The Acceleration  angential acceleration radial acceleration
7
e
% = i—w . a, = ar (radian measure), ap=—-= w’r (radian measure).
t t



In spite of the extreme care taken in engineering a roller
coaster, an unlucky few of the millions of people who ride
roller coasters each year end up with a medical condition
called roller-coaster headache. Symptoms, which might not
appear for several days, include vertigo and headache, both
severe enough to require medical treatment.

Let’s investigate the probable cause by designing the
track for our own induction roller coaster (which can be ac-
celerated by magnetic forces even on a horizontal track). To
create an initial thrill, we want each passenger to leave the
loading point with acceleration g along the horizontal track.
To increase the thrill, we also want that first section of track
to form a circular arc (Fig. 10-10), so that the passenger also
experiences a centripetal acceleration. As the passenger
accelerates along the arc, the magnitude of this centripetal
acceleration increases alarmingly. When the magnitude a of
the net acceleration reaches 4g at some point P and angle 6p
along the arc, we want the passenger then to move in a
straight line, along a tangent to the arc. - 3

(a) What angle 6, should the arc subtend so that a is 4g at
point P?

KEY IDEAS

(1) At any given time, the passenger’s net acceleration @ is
the vector sum of the tangential acceleration a, along the
track and the radial acceleration a, toward the arc’s center
of curvature (as in Fig. 10-9b6). (2) The value of a, at any
given time depends on the angular speed w according to Eq.
10-23 (a, = w’r, where ris the radius of the circular arc). (3)
An angular acceleration a around the arc is associated with
the tangential acceleration a, along the track according to
Eq. 10-22 (a, = ar ). (4) Because a, and r are constant, so is
a and thus we can use the constant angular-acceleration
equations.

Calculations: Because we are trying to determine a value
for angular position 6, let’s choose Eq. 10-14 from among
the constant angular-acceleration equations:

o = wi + 2a(0 — 6). (10-24)
For the angular acceleration a, we substitute from Eq. 10-22:
a=2 (10-25)

r
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both tangential
and radial
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point
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acceleration.

Fig. 10-10 An overhead view of a horizontal track for a roller
coaster. The track begins as a circular arc at the loading point and
then. at point P, continues along a tangent to the arc.

We also substitute w; = 0 and 6, = 0, and we find

W = ﬂ (10-26)
r
Substituting this result for w? into
a,= w’r (10-27)

gives a relation between the radial acceleration, the tangen-

tial acceleration, and the angular position #:
a, = 2a,6. (10-28)

Because a, and a, are perpendicular vectors, their sum has
the magnitude

a= Val+ a’

Substituting for @, from Eq. 10-28 and solving for flead to

aZ
9:%”"1—!2— 1.

When a reaches the design value of 4¢, angle #is the angle
6p we want. Substitutinga = 4g, 6 = 6p,and a, = g into Eq.
10-30, we find

4 2
Bp =1, H% — 1 =1.94rad = 111°.
g

(b) What is the magnitude a of the passenger’s net accelera-
tion at point P and after point P?

(10-29)

(10-30)

(Answer)
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Rotational Inertia
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Rotational inertia of a two-particle system

Figure 10-13a shows a rigid body consisting of two particles of
mass m connected by a rod of length L and negligible mass.

(a) What is the rotational inertia /., about an axis through the
center of mass, perpendicular to the rod as shown?

KEY IDEA

Because we have only two particles with mass, we can find
the body’s rotational inertia /_,, by using Eq. 10-33 rather
than by integration.

Calculations: For the two particles, each at perpendicular
distance ; L from the rotation axis, we have

I=3 my} = (mGL) + (m)ELY

= 1ImlL> (Answer)
(b) What is the rotational inertia / of the body about an axis
through the left end of the rod and parallel to the first axis
(Fig. 10-13b)?

KEY IDEAS

This situation is simple enough that we can find [ using
either of two techniques. The first is similar to the one used in
part (a). The other, more powerful one is to apply the paral-
lel-axis theorem.

First technique: We calculate / as in part (a), except here the
perpendicular distance r; is zero for the particle on the left and

| —Rotation axis
through
center of mass

(a) Here the rotation axis is through the com.

L —— Rotation axis through
end of rod

m COIm

r‘

I

. " E

(®) Here it has been shifted from the com

without changing the orientation. We
can use the parallel-axis theorem.

Fig. 10-13 A rigid body consisting of two particles of mass m
joined by a rod of negligible mass.

L for the particle on the right. Now Eq. 10-33 gives us
I =m(0)* + mL*>=mlL>.
Second technique: Because we already know /_,, about
an axis through the center of mass and because the axis here
is parallel to that “com axis,” we can apply the parallel-axis
theorem (Eq.10-36). We find
1= 1.+ Mh=imL*+ 2m)GL)?

=mlL>.

(Answer)

(Answer)



Rotational inertia of a uniform rod, integration

Figure 10-14 shows a thin, uniform rod of mass M and length
L, on an x axis with the origin at the rod’s center.

(a) What is the rotational inertia of the rod about the
perpendicular rotation axis through the center?

KEY IDEAS

(1) Because the rod is uniform, its center of mass is at its cen-
ter. Therefore, we are looking for /. (2) Because the rod is
a continuous object, we must use the integral of Eq. 10-35,

= frzdm,

to find the rotational inertia.

(10-38)

Calculations: We want to integrate with respect to coordi-

This is the full rod.
We want its rotational

Rotation inertia.
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nate x (not mass m as indicated in the integral), so we must
relate the mass dm of an element of the rod to its length dx
along the rod. (Such an element is shown in Fig. 10-14.)
Because the rod is uniform, the ratio of mass to length is the
same for all the elements and for the rod as a whole. Thus,
we can write

rod’s mass M
rod’s length L

element’s mass dm
element’s length dx

M
or dm = T dx.
We can now substitute this result for dm and x for r in
Eq. 10-38. Then we integrate from end to end of the rod
(from x = —L/2 to x = L/2) to include all the elements.
We find

x=+1L72 M
I= JER P
J;:—sz (L) *

L] (]

_ 1
L M2,

1z

(Answer)
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Newton’s Second Law for Rotation

Newton’s 2nd law F, = ma,.

torque acting on the particle 7= F,r=ma,r.

a, = ar 7= m(ar)r = (mr?)a.

7= Ila  (radian measure).

Rotanon axis

Work and Rotational Kinetic Energy
AK = K, — K; = %Im% — %Im!- = W  (work—kinetic energy theorem).
[}
W = j ' 7df  (work.rotation about fixed axis). W= T(f?f - ‘95) (work, constant torque).
;

P=—=1w (power, rotation about fixed axis).

dt



Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Direction)

Pure Rotation (Fixed Axis)

Position X

Velocity v = dx/dt
Acceleration a = dvidt
Mass m
Newton's second law F.. = ma
Work W= [Fdx
Kinetic energy K = sm?
Power (constant force) P = Fv

Work —kinetic energy theorem W = AK

Angular position f

Angular velocity w = dide
Angular acceleration o = delds
Rotational inertia I
Newton's second law Toet = ¥
Work W= [rdf
Kinetic energy K = 31’
Power (constant torque) P = rw

Work —kinetic energy theorem W = AK




The torque due to the
cord's pull on the rim
causes an angular
acceleration of the disk.

These two forces

= determine the block's
" (linear) acceleration.
m
E
We need to relate
those two

{a) (B accelerations.

Fig. 10-18 (a) The falling block causes the disk to rotate. (b) A
free-body diagram for the block. (¢) An incomplete free-body dia-
gram for the disk.

KEY IDEA

We can find K with Eq. 10-34 (K = %huz). We already know
that / = ;MR?, but we do not yet know w at t=25s.
However, because the angular acceleration « has the con-
stant value of —24 rad/s?, we can apply the equations for
constant angular acceleration in Table 10-1.

Calculations: Because we want w and know a and w, (= 0),
we use Eq. 10-12:
w=wy+at =0+ at = at.
Substituting w = arand [ = %j‘l-ﬂ::'2 into Eq.10-34, we find
K =11 = \GMR?)(at)? = ;M(Rat)?
= 7(2.5kg)[(0.20 m)(—24 rad/s?)(2.5 )]
=901

KEY IDEA

We can also get this answer by finding the disk’s kinetic
energy from the work done on the disk.

(Answer)

Let the disk in Fig. 10-18 start from rest at time ¢t = 0 and
also let the tension in the massless cord be 6.0 N and the an-
gular acceleration of the disk be —24 rad/s®. What is its rota-
tional kinetic energy K atr = 2.5 57

atic energy, torque, disk

Calculations: First, we relate the change in the Kinetic
energy of the disk to the net work W done on the disk, using
the work —kinetic energy theorem of Eq. 10-32 (K, — K; = W).
With K substituted for K and 0 for K, we get

K=K+W=0+W=W. (10-60)

Next we want to find the work W. We can relate W to
the torques acting on the disk with Eq. 10-53 or 10-54. The
only torque causing angular acceleration and doing work is
the torque due to force T on the disk from the cord, which is
equal to —TR. Because « is constant, this torque also must
be constant. Thus, we can use Eq. 10-54 to write

W=1(6— 6)=—TR(6; — 6). (10-61)
Because a is constant, we can use Eq. 10-13 to find
0 — 6,. With w; = 0, we have
O — 6, = ot + 301> = 0 + 30* = Jar®
Now we substitute this into Eq. 10-61 and then substitute the

result into Eq. 10-60. Inserting the given values 7 = 6.0 N
and @ = —24 rad/s%, we have

K =W = —TR(6; — 6) = —TR(or’) = —;TRat’
= —1(6.0 N)(0.20 m)(—24 rad/s?)(2.5 s)?

=901 (Answer)
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Angular momentum .
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Angular momentum of a two-particle system

Figure 11-13 shows an overhead view of two particles moving
at constant momentum along horizontal paths. Particle 1, with
momentum magnitude p; = 5.0 kg - m/s, has position vector 7
and will pass 2.0 m from point O. Particle 2, with momentum
magnitude p, = 2.0 kg - m/s, has position vector 7, and will pass
4.0 m from point O. What are the magnitude and direction of
the net angular momentum L about point O of the two-
particle system?

KEY IDEA

To find L we can first find the individual angular momenta
4?1 and fz and then add them. To evaluate their magnitudes,
we can use any one of Egs. 11-18 through 11-21. However,
Eq. 11-21 is easiest, because we are given the perpendicular
distances r;, (=2.0m) and r,, (= 4.0 m) and the momen-
tum magnitudes p, and p-.

Calculations: For particle 1, Eq. 11-21 yields
€, = rpp = (20m)(5.0 kg-m/s)
= 10 kg-m?s.
To find the direction of vector E_;,WE use Eq. 11-18 and the
right-hand rule for vector products. For 7} X p), the vector
product is out of the page, perpendicular to the plane of Fig.

11-13. This is the positive direction, consistent with the
counterclockwise rotation of the particle’s position vector

Fig. 11-13 Two particles
pass near point 0.

ry around O as particle 1 moves. Thus, the angular momen-
tum vector for particle 1 is

€, = +10 kg - m?s.
Similarly, the magnitude of 0yis
€, =r,p, = (4.0m)(2.0 kg-m/s)
= 8.0 kg - m%s,

and the vector product r; X p, is into the page, which is the
negative direction, consistent with the clockwise rotation of
r, around O as particle 2 moves. Thus, the angular momen-
tum vector for particle 2 is

€, = —8.0kg-m?%s.
The net angular momentum for the two-particle system is
L=+¢ + €= +10kg-m¥s + (—8.0 kg-m%¥s)
= +2.0 kg-m?%s. (Answer)

The plus sign means that the system’s net angular momen-
tum about point O is out of the page.



Conservation of Angular Momentum

L. = a constant (isolated system).

(net angular rnomentum) B (net angular momentum

) Rotation axis
at some initial time ¢, at some later time 1, /°

(a)

I:i = Ef (isolated system).




Conservation of angular momentum, cockroach on disk

In Fig. 11-21, a cockroach with mass m rides on a disk of mass
6.00m and radius R. The disk rotates like a merry-go-round
around its central axis at angular speed w; = 1.50 rad/s. The
cockroach is initially at radius r = 0.800R, but then it crawls
out to the rim of the disk. Treat the cockroach as a particle.
What then is the angular speed?

KEY IDEAS

(1) The cockroach’s crawl changes the mass distribution (and
thus the rotational inertia) of the cockroach-disk system.
(2) The angular momentum of the system does not change
because there is no external torque to change it. (The forces

Calculations: We want to find the final angular speed. Our
key is to equate the final angular momentum L,to the initial
angular momentum L;, because both involve angular speed.
They also involve rotational inertia /. So, let’s start by finding
the rotational inertia of the system of cockroach and disk
before and after the crawl.

The rotational inertia of a disk rotating about its central
axis is given by Table 10-2c as ;M R?. Substituting 6.00m for
the mass M, our disk here has rotational inertia

I, = 3.00mR>. (11-36)
(We don’t have values for m and R, but we shall continue
with physics courage.)

From Eq. 10-33, we know that the rotational inertia of
the cockroach (a particle) is equal to mr?. Substituting the
cockroach’s initial radius (r = 0.800R) and final radius
(r = R), we find that its initial rotational inertia about the

rotation axis is
I; = 0.64mR? (11-37)

and its final rotational inertia about the rotation axis is

oo,
>

i

Rotation axis

Filg. 11-21 A cockroach rides at radius r on a disk rotating like
a merry-go-round.

and torques due to the cockroach’s crawl are internal to the
system.) (3) The magnitude of the angular momentum of a
rigid body or a particle is given by Eq. 11-31 (L = lw).

Ly = mR% (11-38)
So, the cockroach—disk system initially has the rotational
inertia
L=10+1;=364mR% (11-39)
and finally has the rotational inertia
I =1 + I; = 400mR". (11-40)

Next, we use Eq. 11-31 (L = lw) to write the fact that
the system’s final angular momentum L, is equal to the sys-
tem’s initial angular momentum L;:

Lw; = Lw,
or 4.00mR*w; = 3.64mR*(1.50 rad/s).

After canceling the unknowns m and R, we come to
wy = 1.37 rad/s. (Answer)

Note that the angular speed decreased because part of the
mass moved outward from the rotation axis, thus increasing
the rotational inertia of the system.



More Corresponding Variables and Relations for Translational

and Rotational Motion®

Translational Rotational

Force F Torque F(=F % F)
Linear momentum il Angular momentum f(=7x7)
Linear momentum?® F(=Z2F) Angular momentum® L{=%T)
Linear momentum?® P=M7V__ Angular momentums® L= lw

dFP dL
Newton's second law® Foop = — Newton's second law® T et = o

! !

Conservation law P = aconstant | Conservation law4 I. = a constant




Conservation of angular momentum

L = a constant (1solated system).

— —

Lf=L_|F

Rotation axis

ia)

Print 318 + 319

Next chapter 15,
412, see script

The student now has
angular momentum,
and the net of these
two vectors equals
the initial vector.



Angular momentum in quantum mechanics

the magnitude of angular momentum, L

L=I(I +1)h 2=

can have only the values, 1 =0,1..,n-1,
where n is principal quantum number.
Different projections of L with respect to
z-axis define the magnetic quantum
number, m,:-/...0,.. 4,

compared to classical physics only
discrete values of L are possible in QM



