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Force is a vector quantity

Newton’s First Law: If no force acts on a body, the body’s velocity cannot change;
that is, the body cannot accelerate.

- Fig. 5-1 A force F on the standard kilo-
7 gram gives that body an acceleration a.
\“‘-——J \

Considering principle of superposition of forces, F_, is the resultant
force of all forces acting at the body

F1

Newton’s First Law: If no net force acts on a body {F;ﬂ = 0), the body’s velocity
cannot change; that is, the body cannot accelerate.

e ﬂ%, Our earth is stricktly
speaking not an intertial
system

An inertial reference frame is one in which Newton’s laws hold.

e

(a) (b)



Newton’s 2"9 [aw

Newton’s Second Law: The net force on a body 1s equal to the product of the body’s
mass and its acceleration.

In equation form,

—

F,

net — ma (Newton’s second law). {5_1)

Mass is scalar my 4

g (15%

As acceleration is a vector, also Force is a vector

F, = ma,, and F

Fnu:l..r — ma net,y v net,z — M.

x?

The acceleration component along a given axis is caused only by the sum of the force
components along that same axis, and not by force components along any other axis.

Use a free-body diagram -

Dimension: 1 N=1kg m/s?



1D force
diagram

Parts A, B, and C of Fig. 5-3 show three situations in which
one or two forces act on a puck that moves over frictionless
ice along an x axis, in one-dimensional motion. The puck’s
mass is m = 0.20 kg. Forces F, and F, are directed along the
axis and have magnitudes F; = 4.0 N and F, = 2.0 N. Force
F; is directed at angle § = 30° and has magnitude F; = 1.0
N. In each situation, what is the acceleration of the puck?

KEY IDEA

In each situation we can relate the acceleration @ to the net
force F,. acting on the puck with Newton’s second law,
F,.. = ma.However, because the motion is along only the x

7 The horizontal force
_=——> . causes a horizontal
acceleration.

This is a free-body

Puck ;"l :
— diagram.

= 7  These forces compete.
K F >

<—E==———>, Their net force causes

a horizontal acceleration.

Ez K, . Thisis a free-body
diagram.
(d)
Cc
7 Only the horizontal

4:%_ « component of Fy
Fg competes with Fo.

Fy This is a free-body

Y7 * diagram.

axis, we can simplify each situation by writing the second
law for x components only:

Fncl..r = ma,. (5'4)
The free-body diagrams for the three situations are also
given in Fig. 5-3, with the puck represented by a dot.
Situation A: For Fig. 5-3b, where only one horizontal force
acts, Eq. 5-4 gives us
F, = ma,,

which, with given data, yields
a,=—-= —g = 20 m/s2. (Answer)

The positive answer indicates that the acceleration is in the
positive direction of the x axis.

Situation B: In Fig. 5-3d, two horizontal forces act on the
puck, F, in the positive direction of x and F, in the negative
direction. Now Eq. 5-4 gives us

F] = Fz = ma,,
which, with given data, yields

_F—-F, 40N-20N _ 5
a, = - = 020 kg = 10 m/s=.

(Answer)
Thus, the net force accelerates the puck in the positive direc-
tion of the x axis.

Situation C: In Fig. 5-3f, force F; is not directed along the
direction of the puck’s acceleration; only x component F; ,
is. (Force F; is two-dimensional but the motion is only one-
dimensional.) Thus, we write Eq. 5-4 as

F3..t o F2 = max. (5'5)
From the figure, we see that F;, = F; cos 6. Solving for the
acceleration and substituting for F;, yield
F}..r T FZ = F3COSO T3 F2
m m
_ (LON)(cos 30°) — 20N
B 0.20 kg a

a; —

—5.7 m/s%.

(Answer)



In the overhead view of Fig. 5-4a.a 2.0 kg cookie tin 1s accel-

erated at 3.0 m/s* in the direction shown by @, over a fric- , .

tionless horizontal surface. The acceleration is caused by 2D force vector’s dlagram
three horizontal forces, only two of which are shown: F| of

magnitude 10 N and F, of magnitude 20 N. What is the third

force F, in unit-vector notation and in magnitude-angle

notation?
¥
= o . We draw the product
These are two 2 This is the resulting F :
- _ of mass and acceleration
of the three horzontal acceleration
. as a vector.
honzontal force vector.
vectors. —H: P/—j’p
*\51]" gl —f
T
o X
i
F, :
(a) ()

Then we can add the three
vectors to find the missing

third force vector.

Fig. 5-4 (a) An overhead view of two of three horizontal forces that act on a cookie tin,
resulting in acceleration @. F; is not shown. (b) An arrangement of vectors ma, —Fj.and
— F; to find force Fs.



Gravitational force

body of mass m is in free fall with the free-fall acceleration of magnitude g.

—F,=m(—g)
F, = mg.

Weigth

As vector

e -~

F,= —F,j

g

—mgj = mg,

The weight W of a body is the magnitude of the net force required to prevent the body from falling freely,

W —F, =m(0)

W=F

g

The weight W of a body is equal to the magnitude F, of the gravitational force on the

body.

Note: weigth is not mass!!

W

mg

(weight),

How to measure weight

Scale marked
in either
weight or
mass units




Normal Force

Fnel.}-' = mﬂ}'
.1'.
Fy = Fg = ma, The nomal force : .ok
Mormal force Fy,
B is the force on L
Fy — mg = ma,. the block from the
supporting table. i
Fy=mg+ ma,= m(g + a,) f Block
&
Ifa,=0
The gravitational 7 The forces
Fy = mg. force on the block £ balance.
iz due to Earth's v
downward pull. [ ) (B

Fig. 5-7 (a) A block resting on a table experiences a normal force F, perpendicular to
the tabletop. (b) The free-body diagram for the block.



Friction is resistance to an attempt to slide
Fk = pk FN

Direction of
——= attempted
slide

<

—

f

Fig. 5-8 A frictional force f opposes the
attempted slide of a body over a surface.

Tension is a force applied to a cord (or similar) to keep it streched

T T
m&:ﬂ%’m __.____..__...____

The forces at the two ends of
the cord are equal in magnitude.




Newton’s 3 |aw

Newton’s Third Law: When two bodies interact, the forces on the bodies from each
other are always equal in magnitude and opposite in direction.

Actio equals reactio

Book % Crate C

— —
(a) Fpe = —Fep (equal magnitudes and opposite directions),



Applying
Newton’s law

Figure 5-12 shows a block § (the sliding block) with mass
M = 33 kg. The block is free to move along a horizontal
frictionless surface and connected, by a cord that wraps over
a frictionless pulley, to a second block H (the hanging
block), with mass m = 2.1 kg. The cord and pulley have neg-
ligible masses compared to the blocks (they are “massless™).
The hanging block H falls as the sliding block § accelerates
to the right. Find (a) the acceleration of block S, (b) the ac-
celeration of block H, and (c) the tension in the cord.

Q What is this problem all about?

You are given two bodies—sliding block and hanging
block—but must also consider Earth, which pulls on both
bodies. (Without Earth, nothing would happen here.) A to-
tal of five forces act on the blocks, as shown in Fig. 5-13:

1. The cord pulls to the right on sliding block S with a force
of magnitude T.

2. The cord pulls upward on hanging block H with a force
of the same magnitude 7. This upward force keeps block
H from falling freely.

3. Earth pulls down on block S with the gravitational force

F,s, which has a magnitude equal to Mg.

4. Earth pulls down on block H with the gravitational force

—

F,u, which has a magnitude equal to mg.
5. The table pushes up on block S with a normal force Fy.

Sliding
block §
M —\
e 6!1
\ Frictionless
surface
m | Hanging
block H

Flg. 5-12 A block § of mass M is connected to a block H of mass
m by a cord that wraps over a pulley.

Block H

Fig. 5-13 The forces

acting on the two
blocks of Fig. 5-12.

There is another thing you should note. We assume that
the cord does not stretch, so that if block H falls 1 mm in a
certain time, block S moves 1 mm to the right in that same
time. This means that the blocks move together and their
accelerations have the same magnitude a.

Q How do I classify this problem? Should it suggest a par-
ticular law of physics to me?
Yes. Forces, masses, and accelerations are involved, and
they should suggest Newton’s second law of motion, f,,cl =
mad.That is our starting Key Idea.

Q Ifl apply Newton's second law to this problem, to which
body should I apply it?

We focus on two bodies, the sliding block and the hanging
block. Although they are extended objects (they are not
points), we can still treat each block as a particle because
every part of it moves in exactly the same way. A second Key
Idea is to apply Newton’s second law separately to each block.

Q What about the pulley?

We cannot represent the pulley as a particle because
different parts of it move in different ways. When we discuss
rotation, we shall deal with pulleys in detail. Meanwhile, we
eliminate the pulley from consideration by assuming its
mass to be negligible compared with the masses of the two
blocks. Its only function is to change the cord’s orientation.

Q OK. Now how do I apply ﬁm = md to the sliding block?

Represent block § as a particle of mass M and draw alfl
the forces that act on it, as in Fig. 5-14a. This is the block’s
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free-body diagram. Next, draw a set of axes. It makes sense
to draw the x axis parallel to the table, in the direction in
which the block moves.

Q Thanks, but you still haven't told me how to apply
F ... = ma to the sliding block. All you've done is explain
how to draw a free-body diagram.

You are right, and here’s the third Key Idea: The
expression F net = Ma is a vector equation, so we can write
it as three component equations:

Fncl,x = Ma.r Fnct_.y - May Fnel_.; = Maz (5_16)

inwhich F, ,, F,.. . and F, . are the components of the net
force along the three axes. Now we apply each component
equation to its corresponding direction. Because block S
does not accelerate vertically, ., , = Ma, becomes

FN - ng =0 or F‘N = ng. (5—17)
Thus in the y direction, the magnitude of the normal force is
equal to the magnitude of the gravitational force.

No force acts in the z direction, which is perpendicular
to the page.

In the x direction, there is only one force component,
which is T. Thus, F,., , = Ma, becomes

T=Ma. (5-18)
This equation contains two unknowns, T and a; so we cannot
yet solve it. Recall, however, that we have not said anything
about the hanging block.
Q [agree. How do I apply ﬁnct = md to the hanging block?
We apply it just as we did for block S: Draw a free-body
diagram for block H, as in Fig. 5-14b. Then apply F,.,, = ma
in component form. This time, because the acceleration is

We can now substitute mg for F,;; and —a for a, (negative
because block H accelerates in the negative direction of the
y axis). We find

T —mg=—ma. (5-20)
Now note that Egs. 5-18 and 5-20 are simultaneous equa-
tions with the same two unknowns, T and a. Subfracting

these equations eliminates 7. Then solving for a yields

m

= Mim& (5-21)
Substituting this result into Eq. 5-18 yields
Mm
"= Mem® =)
Putting in the numbers gives, for these two quantities,
. m B 21kg .
=M tm® 33kg+ 21kg COM)
= 3.8 m/s? (Answer)
Mm (3.3kg)(2.1 kg)
d T= = 9.8 m/s’
an M+m& 33kg+21kg OOWS)
=13N. (Answer)

Q The problem is now solved, right?

That’s a fair question, but the problem is not really fin-
ished until we have examined the results to see whether they
make sense. (If you made these calculations on the job,
wouldn’t you want to see whether they made sense before
you turned them in?)

Look first at Eq. 5-21. Note that it is dimensionally
correct and that the acceleration a will always be less than g.
This is as it must be, because the hanging block is not in free
fall. The cord pulls upward on it.

Look now at Eq. 5-22, which we can rewrite in the form

_ M
M+ m

In this form, it is easier to see that this equation is also
dimensionally correct, because both T and mg have dimen-
sions of forces. Equation 5-23 also lets us see that the tension
in the cord is always less than mg, and thus is always less
than the gravitational force on the hanging block. That is
a comforting thought because, if T were greater than mg,
the hanging block would accelerate upward.

We can also check the results by studying special cases,
in which we can guess what the answers must be. A simple
example is to put g = 0, as if the experiment were carried
out in interstellar space. We know that in that case, the
blocks would not move from rest, there would be no forces
on the ends of the cord. and so there would be no tension in

T= mg. (5-23)
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Block up a ramp

Cord accelerates block up a ramp

In Fig. 5-15a, a cord pulls on a box of sea biscuits up along a
frictionless plane inclined at # = 30°. The box has mass m =
5.00 kg, and the force from the cord has magnitude 7" = 25.0
N. What is the box’s acceleration component a along the in-
clined plane?

KEY IDEA

The acceleration along the plane is set by the force compo-
nents along the plane (not by force components perpendicular
to the plane), as expressed by Newton’s second law (Eq. 5-1).

Calculation: For convenience, we draw a coordinate sys-
tem and a free-body diagram as shown in Fig. 5-15b. The
positive direction of the x axis is up the plane. Force T
from the cord is up the plane and has magnitude 7" = 25.0
N. The gravitational force F; is downward and has magni-
tude mg = (5.00 kg)(9.8 m/s?) = 49.0 N. More important, its

Filg. 5-15 (a) A boxis pulled up a plane by a cord.
(b) The three forces acting on the box: the cord’s
force T' the gravitational force F' and the normal
force Fy. (c)—(i) Finding the fc-rce components along
the plane and perpendicular to it.

The box accelerates.

component along the plane is down the plane and has mag-
nitude mg sin # as indicated in Fig. 5-15g. (To see why that
trig function is involved, we go through the steps of Figs.
5-15¢ to h to relate the given angle to the force compo-
nents.) To indicate the direction, we can write the
down-the-plane component as —mg sin §. The normal force
FN is perpendicular to the plane (Fig. 5-15/) and thus does
not determine acceleration along the plane.

From Fig. 5-15h, we write Newton’s second law (JFI,,El =
ma ) for motion along the x axis as

I'— mgsin # = ma. (5-24)
Substituting data and solving for a, we find
a = 0.100 m/s?, (Answer)

where the positive result indicates that the box accelerates
up the plane.

Cord

Cord's pull

Gravitational
force



There is no attempt
at sliding. Thus,

no friction and

no motion.

Force F attempts
sliding but is balanced
by the frictional force.
Mo motion.

Force F is now
stronger but is still
balanced by the
frictional force.

Mo motion.

Force F is now even
stronger but is still
balanced by the
frictional force.

Mo motion.

Finally, the applied force
has overwhelmed the

static frictional force.
Block slides and
accelerates.

To maintain the speed,
weaken force F to match
the weak frictional force.
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Weak kinetic
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Same weak kinetic
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Friction force

Static frictional force
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{no matching).
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Friction, applied force at an angle

In Fig. 6-4a, a block of mass m = 3.0 kg slides along a floor
while a force F of magnitude 12.0 N is applied to it at an up-
ward angle 6. The coefficient of kinetic friction between the
block and the floor is u; = 0.40. We can vary # from 0 to 90°
(the block remains on the floor). What € gives the maximum
value of the block’s acceleration magnitude a?

Calculating Fy: Because we need the magnitude f; of the
frictional force, we first must calculate the magnitude Fy of
the normal force. Figure 6-4b is a free-body diagram show-
ing the forces along the vertical y axis. The normal force is
upward, the gravitational force Ii: with magnitude mg is
downward, and (note) the vertical component F), of the ap-
plied force is upward. That component is shown in Fig. 6-4c,
where we can see that |, = F'sin §. We can write Newton’s

second law (F:,e, = ma) for those forces along the y axis as
Fy + Fsin § — mg = m(0), (6-7)

where we substituted zero for the acceleration along the y
axis (the block does not even move along that axis). Thus,

Fy = mg — Fsin 6. (6-8)

Calculating acceleration a: Figure 6-44 is a free-body di-
agram for motion along the x axis. The horizontal compo-
nent F, of the applied force is rightward; from Fig. 6-4c, we
see that F, = F cos #. The frictional force has magnitude f;
(= . Fy) and is leftward. Writing Newton’s second law for
motion along the x axis gives us

Fcos 8 — p.Fy = ma. (6-9)
Substituting for F,, from Eq. 6-8 and solving for a lead to

KEY IDEAS

Because the block is moving, a kinetic frictional force acts
on it. The magnitude is given by Eq. 6-2 (f; = uFy, where
F is the normal force). The direction is opposite the motion
(the friction opposes the sliding).

Finding a maximum: To find the value of ¢ that maximizes
a, we take the derivative of @ with respect to # and set the
result equal to zero:

da E F

d—8: _;51n8+ﬁk;0056:0. (6-11)
Rearranging and using the identity (sin #)/(cos #) = tan 4
give us

tan 6 = w,. (6-12)

Solving for # and substituting the given u, = 0.40, we find
that the acceleration will be maximum if

6 =tan"! (6-13)
=21.8° = 22° (Answer)

Comment: As we increase # from 0, the acceleration
tends to change in two opposing ways. First, more of the
applied force F is upward, relieving the normal force. The
decrease in the normal force causes a decrease in the fric-
tional force, which opposes the block’s motion. Thus, with
the increase in @, the block’s acceleration tends to increase.
However, second, the increase in @ also decreases the hori-
zontal component of F, and so the block’s acceleration

F F . tends to decrease. These opposing tendencies produce a
I=—ii 6 — Pbk(g - 9)~ (6-10)  maximum acceleration at § = 22°.
Fo_____ Ty
This applied force ¥ 7 , These vertical forces
accelerates block |—x = comes _.  balance.
and helps support it. F,
(a) (b)
T = These two horizontal
Fig. 6-4 (a) A force is applied to a moving The applied force . F b forces determine the

- = .
block. (b) The vertical forces. (¢) The components has these components. F = F acceleration.



Drag Force and

termina| speed Some Terminal Speeds in Air
Object Terminal Speed (m/s) 95% Distance” (m)
Shot (from shot put) 145 2500
Sky diver (typical) 60 430
Baseball 42 210
Tennis ball 31 115
Basketball 20 47
Ping-Pong ball 9 10
As the cat's SpEEd Raindrop (radius = 1.5 mm) 7 6
Parachutist (typical) 5 3

increases, the upward
d rag force increases “This is the distance through which the body must fall from rest to reach 95% of its terminal speed.

until it balances the Source: Adapted from Peter J. Brancazio, Sport Science, 1984, Simon & Schuster, New York.
gravitational force. 1 5
— D = lcpav?,
. D 2
Falling —
body D
T N | D—F = ma
_-1:._.}_.,. A N
| i;' -Z/‘} — —
F F, ! 2 _
7 8 8 LCpAVI — F, =0,

(a) (b) () S
CpA



What is energy ?

Energy is a scalar quantity associated with the state (or condition) of one or more objects

Energy can be transformed from one type to another and from one object to another object
It yields the Universal principle of energy conservation
Kinetic energy
Kinetic energy K is energy associated with the state of motion of an object.

1 : :
K = =mv? (kinetic energy).

ljoule =1J = 1kg-m?s’



Kinetic energy, train crash

In 1896 in Waco, Texas, William Crush parked two locomo-
tives at opposite ends of a 6.4-km-long track, fired them up,
tied their throttles open, and then allowed them to crash
head-on at full speed (Fig. 7-1) in front of 30,000 spectators.
Hundreds of people were hurt by flying debris; several were
killed. Assuming each locomotive weighed 1.2 X 10° N and
its acceleration was a constant 0.26 m/s?, what was the total
kinetic energy of the two locomotives just before the
collision? - 3

KEY IDEAS

(1) We need to find the kinetic energy of each locomotive
with Eq. 7-1, but that means we need each locomotive’s
speed just before the collision and its mass. (2) Because we
can assume each locomotive had constant acceleration, we
can use the equations in Table 2-1 to find its speed v just be-
fore the collision.

Calculations: We choose Eq. 2-16 because we know values
for all the variables except v:

vZ = v3 + 2a(x — x,).
With vy = 0 and x — x;, = 3.2 X 10° m (half the initial sepa-
ration), this yields
v =0 + 2(0.26 m/s?)(3.2 X 10° m),
or v =408 m/s

(about 150 km/h).

The aftermath of an 1896 crash of two locomotives.
(Courtesy Library of Congress)

Flg. 7-1

We can find the mass of each locomotive by dividing its
given weight by g:
12X 10°N
T o8 mis
Now, using Eq. 7-1, we find the total kinetic energy of
the two locomotives just before the collision as
K =2@EFmv?) = (1.22 X 10° kg)(40.8 m/s)?
= 20X 10 (Answer)
This collision was like an exploding bomb.

= 1.22 X 10°kg.



Work and kinetic energy

Work Wis energy transferred to or from an object by means of a force acting on
the object. Energy transferred to the object is positive work, and energy transferred
from the object is negative work.

“Work,” then, is transferred energy; “doing work”™

How to find ,work"”

4 . 3 3 . . 1 2 _j . R
2" Newton'slaw  F_= ma,. Equ. of motion  v= = v; + 2a,d. Substituting a, smve —smvg = Fd.
W = F.d.
W=F-d (work done by a constant force), 1J=1kg-m¥s?=1N-m

Use F component along the axis of displacement

W = Fdcos¢  (work done by a constant force).



Work — kinetic

Energy theorem Small initial This force does positive work
Kinetic energy on the bead, increasing speed
F and kinetic energy.
W=F d cos ©®
K, [0 .
This component —>
does no work. B
— F
| a/
This component R
7

does work. Larger final
I

kinetic energy <

—_—

A force does positive work when it has a vector component in the same direction Dlsplacement d

as the displacement, and it does negative work when it has a vector component in the
opposite direction. It does zero work when it has no such vector component.



Work to kinetic energy theorem

ﬂK — Kf — Kf — W,
which says that

(’change in the kinetic) B (’net work done Dn')
energy of a particle /| the particle

]

We can also write
Kf =K, + W,
which says that

(“ kinetic energy after ) B ( kinetic energy ) N ( the net )
the net work is done/ |\ before the net work ‘work done /

% r % r



Work done by a constant force in unit-vector notation

During a storm, a crate of crepe is sliding across a slick,
oily parking lot through a displacement d = (— 30m)1
‘WhllE a steady wind pushes against the crate with a force

= (ZDN}l + (— 6DN)] The situation and coordinate

axes are shown in Fig. 7-5.

(a) How much work does this force do on the crate during
the displacement?

KEY IDEA

Because we can treat the crate as a particle and because the
wind force is constant (“steady”) in both magnitude and direc-
tion during the displacement, we can use either Eq. 7-7 (W =
Fd cos ¢) or Eq. 7-8 (W = F-d ) to calculate the work. Since

we know F and d in unit-vector notation, we choose Eq. 7-8.

Calculations: We write
W=F-d = [(20N)i + (—6.0 N)j]- [(—3.0 m)i].

~ oA A .
"

Of the possible unit-vector dot products, only 1-1, j-J, and
k -k are nonzero (see Appendix E). Here we obtain
W= (20N)(—3.0m)i-i + (—6.0 N)(—3.0m)j -1

=(—6.0J)1)+0=-601. (Answer)

The parallel force component does
negative work, slowing the crate.
y

Fig. 7-56 Force F H%ﬁ \n
4 F

slows a crate during —
displacement d. d

‘Thus, the force does a negative 6.0 J of work on the crate, trans-
ferring 6.0 J of energy from the kinetic energy of the crate.

(b) If the crate has a kinetic energy of 10 J at the beginning
of displacement d, what is its kinetic energy at the end of d?

KEY IDEA

Because the force does negative work on the crate, it re-
duces the crate’s kinetic energy.

Calculation: Using the work—kinetic energy theorem in
the form of Eq. 7-11, we have

K;=K,+W=10J + (=6.0J) =4.01.

Less kinetic energy means that the crate has been slowed.

(Answer)



Only force components
parallel to the displacement
do work.

(a)

Work done by two constant forces, industrial spies

Figure 7-4a shows two industrial spies sliding an initially
stationary 225 kg floor safe a displacement d of magnitude
8.50 m, straight toward their truck. The push F, of spy 001 is
12.0 N, directed at an angle of 30.0° downward from the hor-
izontal; the pull F2 of spy 002 is 10.0 N, directed at 40.0°
above the horizontal. The magnitudes and directions of
these forces do not change as the safe moves, and the floor
and safe make frictionless contact.

(a) What is the net work done on the safe by forces F, and
F, during the displacement d?

KEY IDEAS

(1) The net work W done on the safe by the two forces is the
sum of the works they do individually. (2) Because we can
treat the safe as a particle and the forces are constant in
both magnitude and direction, we can use either Eq. 7-7
(W= Fd cos ¢) or Eq. 7-8 (W = F- d) to calculate those
works. Since we know the magnitudes and directions of the
forces, we choose Eq.7-7.

Calculations: From Eq. 7-7 and the free-body diagram for
the safe in Fig. 7-4b, the work done by F, is
W, = Fid cos ¢, = (12.0 N)(8.50 m)(cos 30.0°)
= 88.33 ],
and the work done by F. 518
W, = Fydcos ¢, =
= 65.11J.
Thus, the net work Wis

W=W,+W,=8833J+65.11]
= 1534J =153 J.

(10.0 N)(8.50 m)(cos 40.0°)

(Answer)

During the 8.50 m displacement, therefore, the spies trans-
fer 153 J of energy to the kinetic energy of the safe.

(b) During the displacement, what is the work W, done on
the safe by the gravitational force Fg and what is the work
Wy done on the safe by the normal force FN from the
floor?

KEY IDEA

Because these forces are constant in both magnitude and di-
rection, we can find the work they do with Eq.7-7.

Calculations: Thus, with mg as the magnitude of the gravi-
tational force, we write

W, = mgdcos 90° = mgd(0) =0
and Wy = Fyd cos 90° = Fd(0) =

We should have known this result. Because these forces are
perpendicular to the displacement of the safe, they do zero
work on the safe and do not transfer any energy to or from it.

(Answer)
(Answer)

(c) The safe is initially stationary. What is its speed v at the
end of the 8.50 m displacement?

KEY IDEA

The speed of the safe changes because its kinetic energy is
changed when energy is transferred to it by Fland F,.

Calculations: We relate the speed to the work done by
combining Eqs. 7-10 and 7-1:

W=Kf_ “ B

=1 1
K; = 3mvy — smvi.

The initial speed v; is zero, and we now know that the work
done is 153.4 J. Solving for v, and then substituting known
data, we find that

- sz_ \/2(153.41)
TTNTm TV 225kg

= 1.17 m/s.

(Answer)



Fal

Work by gravitational force

H Raising object
?T Ky
TT W, = mgd cos 180° = mgd(—1) = —mgd.
: The force does negative
work, decreasing speed Falling object

and kinetic energy.

s T IK,- W, = mgd cos 0° = mgd(+1) = +mgd.

ﬂK:Kf_Ki:WH+W€’

W,+W,=0
W,=-W,

W, = —mgdcos ¢



Elevator cap
descent

(a) During the fall through a distance d = 12 m, what is the
work W, done on the cab by the gravitational force F ?

Calculation: From Fig. 7-8b, we see that the angle between
the directions of F, and the cab’s displacement d is 0°.
Then, from Eq. 7-12, we find

W, = mgd cos 0° = (500 kg)(9.8 m/s2)(12 m)(1)
= 5.88 x 10*] = 59 kI. (Answer)

(b) During the 12 m fall, what is the work W; done on the
cab by the upward pull T of the elevator cable?

Calculations: We get
T— F,= ma. (7-18)

Solving for T, substituting mg for F,, and then substituting
the result in Eq.7-7, we obtain

W, = Td cos ¢ = m(a + g)d cos ¢. (7-19)

Next, substituting —g/5 for the (downward) acceleration a
and then 180° for the angle ¢ between the directions of
forces T and mg.we find

4
W, = m(—% + g)dcﬂs¢:=gmgdms¢:

o

=35 (500 kg)(9.8 m/s?)(12 m) cos 180°

= —4.70 x 10*J = —4T k. (Answer)

An elevator cab of mass m = 500 kg is descending with speed
v; = 4.0 m/s when its supporting cable begins to slip, allowing
it to fall with constant acceleration @ = g/5 (Fig. 7-8a).

(c) What is the net work W done on the cab during the fall?

Calculation: The net work is the sum of the works done by
the forces acting on the cab:

W=W,+ W, =588x10" — 470 x 10*]J
= 1.18 x 10*J = 12 kl. (Answer)

(d) What is the cab’s kinetic energy at the end of the 12 m
fall?

Calculation: From Eq. 7-1, we can write the kinetic energy
at the start of the fall as K; = —mv2 We can then write Eq.
7-11 as
K=K+ W= —mv-+ W
= 2(500 kg)(4.0 m/s)* + 1.18 x 10*]

= 1.58 x 10*J = 16 kl. (Answer)

Elevator
cable

Cab

=

D>—=

~|

il

(b)

Does
negative
work

Does
positive
work



Work done at a spring

F,= —kd (Hooke’s law),

W, = ff—dex.

.T,Jr _r_'-
H;’zf —kxdxz—kf X dx

= (—5k)[X = (—5k)(xF — xP).

Work W, is positive if the block ends up closer to the relaxed position (x = () than
it was initially. It is negative if the block ends up farther away from x = 0. It is zero if
the block ends up at the same distance fromx = 0.

Block
attached
to spring

x positive E
F, negative 1

X negative
I, positive

d




Work done by spring to change Kinetic energy

In Fig. 7-10, a cumin canister of mass m = 0.40 kg slides
across a horizontal frictionless counter with speed v = 0.50
m/s. It then runs into and compresses a spring of spring con-
stant k = 750 N/m. When the canister is momentarily
stopped by the spring, by what distance d is the spring
compressed?

KEY IDEAS

1. The work W, done on the canister by the spring force is
related to the requested distance d by Eq. 7-26 (W, =
—3 kx?), with d replacing x.

2. The work W, is also related to the kinetic energy of the
canister by Eq.7-10 (K, — K; = W).

3. The canister’s kinetic energy has an initial value of K =

imvl and a value of zero when the canister is momentar-

ily at rest.

Calculations: Putting the first two of these ideas together,
we write the work—kinetic energy theorem for the canister

ds
K,— K, = —1kd>.

-

The spring force does

negative work, decreasing
speed and kinetic energy. 7"1
k
[—d —
Swop First touch

Fig. 7-10 A canister of mass m moves at velocity v toward a
spring that has spring constant k.

Substituting according to the third key idea gives us this
expression
0 —smv? = —3kd®.

Simplifying, solving for d, and substituting known data then

give us
m 040 kp
d=v. | = (050 mis), —23&
v\ & = 00 ms) o m

=12x 107?m = 1.2 cm. (Answer)



We can approximate
Work is equal to the that area with the area
area under the curve. of these strips.

Work by a variable force

Fix) Fix)

| |
I I
AW, = F; Ax | i
1 | |
1 | |
0 = x * Xy *
(a)
W = lim E Fi{x)Ax
x—0 For the best, take the
We can do better with limit of strip widths
more, narrower strips. going to zero.
xf Fix) Flx)
W = f Fix)dx i i
xi i W i
| | | |
I I I I
0% _'i }‘_ ':"_.." X 0% -"f X
Case:
12 -
| o _ (area between force curve area , = 3(0.0080 m){(12 N) = 0.048 N-m = 0.048 J.
! EL L | and x axis, from x; tox, /°
| | |
i ‘ . I__i i
Zol | J | | | N2 T 1 | -
<° ;L | “E I I i"‘~ i W = (sum of the areas of regions A through K)
| |
Y A = 0,048 + 0.024 + 0.012 + 0.036 + 0.009 + 0.001
| |
. - - + 0,016 + 0.048 + 0,016 + 0,004 + 0.024

0 1o 20 30 =0.238 1. (Answer)

X (mm)



Work, two-dimensional integration

Force F = (3x2 N)i + (4 N)j, with x in meters, acts on a
particle, changing only the kinetic energy of the particle.
How much work is done on the particle as it moves from co-
ordinates (2 m, 3 m) to (3 m, 0 m)? Does the speed of the
particle increase, decrease, or remain the same?

KEY IDEA

The force is a variable force because its x component de-
pends on the value of x. Thus, we cannot use Egs. 7-7 and 7-8
to find the work done. Instead, we must use Eq. 7-36 to inte-
grate the force.

Calculation: We set up two integrals, one along each axis:

3 0 3 0
W = 311d1+f4dy=3fxzir+4-]-d}r
2 3 2 3

= 3 + 4[yl8 = [ — 2] + 4[0 - 3]

=701 (Answer)

The positive result means that energy is transferred to the
particle by force F.Thus, the kinetic energy of the particle
increases and, because K = mv?, its speed must also
increase. If the work had come out negative, the kinetic
energy and speed would have decreased.



Power

The time rate at which work is done by a force is said to be the power

W p_dW
PBTE = E (average power). = ? (instantaneous power).
lwatt =1 W = 1J/s = 0.738 ft-Ibis 1 kilowatt-hour = 1 kW-h = (10° W)(3600's)
1 horsepower = 1 hp = 550 ft - Ib/s = 746 W. =3.60 x 10°J = 3.60 M.

_dW _ Fcos¢dx (ﬁ)
P=—y =4 Fese )

P = Fvcos ¢.

P=F-v (instantaneous power ).

Fig. 7-12 The power due to the truck’s
applied force on the trailing load is the
rate at which that force does work on the

load. (REGLAIN FRED ERIC/Gamma-
Presse, Inc.)



Power, force, and velocity

Figure 7-14 shows constant forces F,and F, acting on a box
as the box slides rightward across a frictionless floor. Force F l
is horizontal, with magnitude 2.0 N; force F,is angled upward
by 60° to the floor and has magnitude 4.0 N. The speed v of
the box at a certain instant is 3.0 m/s. What is the power due
to each force acting on the box at that instant, and what is the
net power? Is the net power changing at that instant?

KEY IDEA

We want an instantaneous power, not an average power
over a time period. Also, we know the box’s velocity (rather

than the work done on it).

Calculation: We use Eq. 7-47 for each force. For force Fh
at angle ¢», = 180° to velocity v, we have

P, = Fy cos ¢, = (2.0 N)(3.0 m/s) cos 180°
= —6.0 W. (Answer)

This negative result tells us that force F,is transferring en-
ergy from the box at the rate of 6.0 J/s.
For force F 2,4t angle ¢, = 60° to velocity v, we have

P, = Fy cos ¢, = (4.0 N)(3.0 m/s) cos 60°

= 6.0 W. (Answer)

Megative power. Positive power.

(This force I1s — (This force I1s
removing energy.) supplying energy.)
60° v
—

Fncuunless—\ ey 2

Fig. 7-14 Two forces Fj and f_-"; act on a box that slides rightward
across a frictionless floor. The velocity of the box is V.

This positive result tells us that force F,is transferring en-
ergy to the box at the rate of 6.0 I/s.
The net power is the sum of the individual powers:

Pn:t:P]+FI

= —6.0W +6.0W =0, (Answer)
which tells us that the net rate of transfer of energy to
or from the box is zero. Thus, the kinetic energy (K = %mv:}
of the box is not changing, and so the speed of the box will
remain at 3.0 m/s. With neither the forces F, and F, nor the
velocity v changing, we see from Eq. 7-48 that P, and P, are
constant and thussois P, .



. Negative Positive
Potential energy work donc | | work done
gravitational | ¢ gravitational
foree foree Kinetic energy is
transfered by
gravitation force
to gravitational

potenial energy

Potential energy, U, is energy that can be
associated with the arrangement (configration) of
a system of objects that exert each other O

AU =-W
Change of (gravitational) potential energy AU, is
defined as negative work, W, done by the object
— against gravitational force
: " Kinetic energy transfered into
{a) elastic potential energy

Elastic potential energy transfered
into kinetic energy

0
(&)



Conservative force

The net work done by a conservative force on a particle moving around any closed
path is zero.

The work done by a conservative force on a particle moving between two points does
not depend on the path taken by the particle.

The gravitational force is conservative.
Any choice of path between the points
gives the same amount of work.

(a) (5

The force is conservative.
Any choice of path between
the points gives the same
amount of work.

And a round trip gives
a total work of zero.



Equivalent paths for calculating work, slippery cheese

Figure 8-5a shows a 2.0 kg block of slippery cheese that slides
along a frictionless track from point @ to point b. The cheese
travels through a total distance of 2.0 m along the track, and a
net vertical distance of 0.80 m. How much work is done on the
cheese by the gravitational force during the slide?

KEY IDEAS

(1) We cannot calculate the work by using Eq. 7-12 (W, =
mgd cos ¢). The reason is that the angle ¢ between the direc-

The gravitational force is conservative.
Any choice of path between the points
gives the same amount of work.

Y.

Fig. 8-5 (a) A block of cheese slides along a frictionless track from
point a to point b. (b) Finding the work done on the cheese by the
gravitational force is easier along the dashed path than along the ac-
tual path taken by the cheese; the result is the same for both paths.

(8

tions of the gravitational force F‘; and the displacement d
varies along the track in an unknown way. (Even if we did
know the shape of the track and could calculate ¢ along it, the
calculation could be very difficult.) (2) Because F, is a conser-
vative force, we can find the work by choosing some other
path between @ and b—one that makes the calculation easy.

Calculations: Let us choose the dashed path in Fig. 8-5b; it
consists of two straight segments. Along the horizontal seg-
ment, the angle ¢ is a constant 90°. Even though we do not
know the displacement along that horizontal segment, Eq. 7-12
tells us that the work W, done there is

W, = mgd cos A" = (.

Along the vertical segment, the displacement d is 0.80 m
and, with F’; and d both downward, the angle & is a constant
0°. Thus, Eq. 7-12 gives us, for the work W, done along the
vertical part of the dashed path,

W, = mgd cos (°
= (2.0 kg)(9.8 m/s?)(0.80 m)(1) = 15.7 L.

The total work done on the cheese by F‘; as the cheese

moves from point « to point b along the dashed path is then
W=W,+ W, =0+157J=16J (Answer)

This is also the work done as the cheese slides along the
track from a to b.



Determination potential energy values

W= ’..F{x} dx. AU = — ’--F{x} dx.
Gravitational potential energy
..'F'_.' '_.,-.r Vr
AU = — ' (—mg) dy = mg ' dy = mg[}il i U—U;=mg(y — yi)
Jw; g Vi
AU = J'Hg{_}'_r — y) = mg Ay. U(y) = mgy (gravitational potential energy).
U=mgh
Elastic potential energy ¥, "5y %
AU = —l (—kx) dx = k l xdx = _L—k[_xf] : U—0=3kx* -0,

_ 1,7 17 32
AU = skx; — skx;. Ux) = Ly (elastic potential energy).

_



Gravitational potential energy

A 2.0 kg sloth hangs 5.0 m above the ground (Fig. 8-6).

(a) What is the gravitational potential energy U of the
sloth—Earth system if we take the reference point y = 0 to be
(1) at the ground, (2) at a balcony floor that is 3.0 m above
the ground, (3) at the limb, and (4) 1.0 m above the limb?
Take the gravitational potential energy to be zero at y = (.

KEY IDEA

Once we have chosen the reference point for y = (), we can
calculate the gravitational potential energy U of the system
relative to that reference point with Eq. 8-9.

Calculations: For choice (1) the slothis at y = 5.0 m.and
U= mgy = (2.0 kg)(9.8 m/s?)(5.0 m)
=08 1. (Answer)

For the other choices, the values of U are
(2) U=mgy =mg(2.0m) =391,
(3) U=mgy=mg(0)=01],
(4) U=mgy =mg(—1.0m)

=—-196J=-201 (Answer)




Conservative mechanical enery

All kinetic energy

11§

Due to energy conservation :

I All kinetic energy

U K
()

UK \
(B)

K,+U, =K, +U j_l_ Tk
1 1~ ™2 2 J VK »
[ﬁ] [
.-"Jr ""-.
.-’rx 1“\
)" Vg ~| &
¥= 'D F: U
I : The total energy : I
= All potential All potential
U mgh energy d_Df:as not change energy
(it is conserved).
I K r K
(g) e}
K=1/2 mv? \ /
{?;hd -Hf/ V=¥ ;-’j
v
UK T :9;__ & g r—
() ¥V I (d)
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Potential energy landscape
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Periodic potential for electrons in a solid
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No Friction Involved

Friction Involved

Work Done on a System by an External Force

Work is energy transferred to or from a system by means of an external force acting
on that system.

W=AK + AU,

W=AE_.

(work done on system, no friction involved),

F - _fﬁ: = M. 'Ir"l = P% + 2ad. The applied force supplies energy.
The frictional force transfers some

of it to thermal energy.

Fd = smv? — sovi + fid Sy
- - el F
Tk
Fd = AK + f.d. —
(a)
AE, = f.d (increase in thermal energy by sliding).

W= Fd = AE,_ + AE,,.

A (< .
%
? { AE,,. = AK+AU

Your lifting force
transfers energy to
kinetic energy and
potential energy.

Ball-Earth
———— -c'__/_ system

- -

-
.

1

So, the work done by the applied
force goes into kinetic energy
and also thermal energy.

Block—floor
e T T TS~ System



Work, friction, change in thermal energy, cabbage heads

A food shipper pushes a wood crate of cabbage heads (total
mass m = 14 kg) across a concrete floor with a constant
horizontal force F of magnitude 40 N. In a straight-line dis-
placement of magnitude d = 0.50 m, the speed of the crate
decreases from v; = 0.60 m/stov = 0.20 m/s.

(a) How much work is done by force F,and on what system
does it do the work?

KEY IDEA

Because the applied force F is constant, we can calculate
the work it does by using Eq. 7-7 (W = Fd cos ¢).

Calculation: Substituting given data, including the fact that
force F and displacement d are in the same direction, we
find

W= Fdcosd¢ =
=201

(40 N)(0.50 m) cos 0°

(Answer)

Reasoning: We can determine the system on which the
work is done to see which energies change. Because the
crate’s speed changes, there is certainly a change AK in
the crate’s kinetic energy. Is there friction between the floor
and the crate, and thus a change in thermal energy? Note
that F and the crate’s velocity have the same direction.

Thus, if there is no friction, then F should be accelerating
the crate to a greater speed. However, the crate is slowing, so
there must be friction and a change AE,; in thermal energy
of the crate and the floor. Therefore, the system on which
the work is done is the crate—floor system, because both en-
ergy changes occur in that system.

(b) What is the increase AE,, in the thermal energy of the
crate and floor?

KEY IDEA

We can relate AE,; to the work W done by F with the energy
statement of Eq.8-33 for a system that involves friction:

W= AE,___+ AE,. (8-34)

Calculations: We know the value of W from (a). The
change AE, .. in the crate’s mechanical energy is just the
change in its kinetic energy because no potential energy
changes occur, so we have

AE .. = AK =
Substituting this into Eq.8-34 and solving for AE;, we find
AE, = W — Gmv? — 1mv) = W — 2m(v? — vd)
=207 — 3(14 kg)[(0.20 m/s)? — (0.60 m/s)’]
=2221=1221I. (Answer)

1 2
lmv — MV,



Energy, friction, spring, and tamales

In Fig. 8-17, a 2.0 kg package of tamales slides along a floor
with speed v; = 4.0 m/s. It then runs into and compresses a
spring, until the package momentarily stops. Its path to the
initially relaxed spring is frictionless, but as it compresses
the spring, a kinetic frictional force from the floor, of mag-
nitude 15 N, acts on the package. If k = 10 000 N/m, by what
distance d is the spring compressed when the package stops?

KEY IDEAS

We need to examine all the forces and then to determine
whether we have an isolated system or a system on which an
external force is doing work.

Forces: The normal force on the package from the floor
does no work on the package because the direction of this
force is always perpendicular to the direction of the package’s
displacement. For the same reason, the gravitational force on
the package does no work. As the spring is compressed,
however, a spring force does work on the package, transfer-
ring energy to elastic potential energy of the spring. The
spring force also pushes against a rigid wall. Because there is
friction between the package and the floor, the sliding of
the package across the floor increases their thermal energies.

System: The package—spring—floor—wall system in-
cludes all these forces and energy transfers in one isolated
system. Therefore. because the system is isolated, its total
energy cannot change. We can then apply the law of conser-
vation of energy in the form of Eq. 8-37 to the system:

Enec2 = Emecy — AEp. (8-42)
Calculations: In Eq. 8-42, let subscript 1 correspond to
the initial state of the sliding package and subscript 2 corre-
spond to the state in which the package is momentarily
stopped and the spring is compressed by distance d. For
both states the mechanical energy of the system is the sum

G—

Stop d First touch

During the rubbing, kinetic energy
is transferred to potential energy
and thermal energy.

Flg. 8-17 A package slides across a frictionless floor with
velocity v, toward a spring of spring constant k. When the
package reaches the spring, a frictional force from the floor
acts on the package.

of the package’s kinetic energy (K = %mvl) and the spring’s
potential energy (U = tkx?). Forstate 1, U = 0 (because the
spring is not compressed), and the package’s speed is vy.
Thus, we have

Epecs = K, + Up = 1mvi + 0.

mec, 1

For state 2, K = 0 (because the package is stopped), and the
compression distance is d. Therefore, we have

Eneco = Ky + U, = 0 + 3kd?.
Finally. by Eq. 8-31, we can substitute f,d for the change
AEy; in the thermal energy of the package and the floor. We
can now rewrite Eq. 8-42 as
skd? = zmvi — fid.
Rearranging and substituting known data give us
5000d* + 15d — 16 = 0.

Solving this quadratic equation yields

d=0.055m=55cm. (Answer)
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Linear momentum - Impulse

p=mv

-y
" The time rate of change of the momentum of a particle is equal to the net force

acting on the particle and is in the direction of that force.

Fnei=

e Fo_dp _ d
dt

The Linear Momentum of a System of Particles

_ = — — — - —*
=P +D+D+ -+, P=Mv_,

= mV, + myv, + myv; + - +m,v,.

n

dP dv
o M Ciom o
dt dt

I
=
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Conservation of linear momentum

P = constant (closed, isolated system).

r

F-I! -

(closed, isolated system).

n
¥ If no net external force acts on a system of particles, the total linear momentum P of
the system cannot change.

total linear momentum’, _ /total linear momentum
at some initial time ¢, at some later time f, )

! If the component of the net external force on a closed system is zero along an axis, then
the component of the linear momentum of the system along that axis cannot change.



One-dimensional explosion, relative velocity, space hauler

One-dimensional explosion: Figure 9-12a shows a space hauler
and cargo module, of total mass M, traveling along an x axis in
deep space. They have an initial velocity v; of magnitude 2100
km/h relative to the Sun. With a small explosion, the hauler
gjects the cargo module, of mass 0.20M (Fig. 9-125). The hauler
then travels 500 km/h faster than the module along the x axis;
that is, the relative speed v, between the hauler and the mod-
ule is 500 km/h. What then is the velocity v, of the hauler rela-
tive to the Sun?

KEY IDEA

Because the hauler—module system is closed and isolated,
its total linear momentum is conserved; that is,

= (9-44)

The explosive separation
can change the momentum
of the parts but not the
momentum of the system.

|55 _— —

- W Vs W Ves
---'. —— - = --'. ——— :
= -\—Hauler —

Cargo module Lzl 1L

(a) (&)

Fig. 9-12 (a) A space hauler, with a cargo module, moving at
initial velocity V.. (b) The hauler has ejected the cargo module.
Now the velocities relative to the Sun are v for the module and
Vs for the hauler.

where the subscripts i and f refer to values before and after
the ejection, respectively.

Calculations: Because the motion is along a single axis, we
can write momenta and velocities in terms of their x compo-
nents, using a sign to indicate direction. Before the ejection,
we have

P;= Mv, (9-45)
Let vy, be the velocity of the ejected module relative to the
Sun. The total linear momentum of the system after the ejec-
tion is then

Py = (0.20M)vys + (0.80M)v,s, (9-46)

where the first term on the right is the linear momentum of the
module and the second term is that of the hauler.

We do not know the velocity vy, of the module relative
to the Sun, but we can relate it to the known velocities with

velocity of velocity of velocity of
hauler relative | = | hauler relative | + | module relative |.
to Sun to module to Sun

In symbols, this gives us

Vs = Vi T Vs

(9-47)

or Vas = Vs — Vel

Substituting this expression for vy into Eq. 9-46, and then
substituting Eqs. 9-45 and 9-46 into Eq. 9-44, we find

Mv; = 020M(vys — veer) + 0.80Mvyg,

which gives us

Vs — V; == D.gnvm]..

or vizs = 2100 km/h + (0.20)(500 km/h)

= 2200 km/h. (Answer)



Inelastic collision

Here is the generic setup
for an inelastic collision.

Body 1 Body 2
V)i Vi
Pu+ Pu = Py + Pay {conservation of linear momentum). Before Q_b L.‘_D
After —_— —
Ch |
'v' N
ﬂ]l ﬂ]-l_;-

In a completely inelastic
collision, the bodies
stick together.
Vi myv,. = (m, + m, )V
Before — Vo =0 R Fi ': 1 .-_}
- ’ m
] M3 V = l Vije
Projectle Target m, + m- i
V
After —>




Conservation of momentum, ballistic pendulum

The ballistic pendulum was used to measure the speeds of
bullets before electronic timing devices were developed. The
version shown in Fig. 9-17 consists of a large block of wood of
mass M = 5.4 kg, hanging from two long cords. A bullet of
mass m = 9.5 g is fired into the block, coming quickly to rest.
The block + bullet then swing upward, their center of mass
rising a vertical distance & = 6.3 cm before the pendulum
comes momentarily to rest at the end of its arc. What is the
speed of the bullet just prior to the collision?

KEY IDEAS

We can see that the bullet’s speed v must determine the rise
height h. However, we cannot use the conservation of mechani-
cal energy to relate these two quantities because surely energy
is transferred from mechanical energy to other forms (such as
thermal energy and energy to break apart the wood) as the bul-
let penetrates the block. Nevertheless, we can split this compli-
cated motion into two steps that we can separately analyze: (1)
the bullet—block collision and (2) the bullet—block rise, during
which mechanical energy is conserved.

Reasoning step 1: Because the collision within the bul-
let—block system is so brief, we can make two important
assumptions: (1) During the collision, the gravitational
force on the block and the force on the block from the
cords are still balanced. Thus, during the collision, the net
external impulse on the bullet-block system is zero.
Therefore, the system is isolated and its total linear momen-
fum is conserved:

( total momentum )

( total momentum
before the collision

after the collision

). (9-57)

(2) The collision is one-dimensional in the sense that the di-
rection of the bullet and block just after the collision is in the
bullet’s original direction of motion.

Because the collision is one-dimensional, the block is
initially at rest, and the bullet sticks in the block, we use Eq.
9-53 to express the conservation of linear momentum.
Replacing the symbols there with the corresponding sym-
bols here, we have

_m
m+ M
Reasoning step 2: As the bullet and block now swing up
together, the mechanical energy of the bullet— block—Earth
system is conserved:

(9-58)

(mechanical energy) B (mechanica] energy
at bottom at top

)_ (9-59)

(This mechanical energy is not changed by the force of the
cords on the block, because that force is always directed per-
pendicular to the block’s direction of travel.) Let’s take the
block’s initial level as our reference level of zero gravita-
tional potential energy. Then conservation of mechanical en-
ergy means that the system’s kinetic energy at the start of the
swing must equal its gravitational potential energy at the
highest point of the swing. Because the speed of the bul-
let and block at the start of the swing is the speed V
immediately after the collision, we may write this con-
servation as

3(m + M)V2 = (m + M)gh. (9-60)

Combining steps: Substituting for V from Eq. 9-58 leads
to

p= MM oh
m

B ( 0.0095 kg + 5.4 kg
- 0.0095 kg
= 630 m/s.

(9-61)

) V/(2)(9.8 m/s?)(0.063 m)

(Answer)

The ballistic pendulum is a kind of “transformer,” exchang-
ing the high speed of a light object (the bullet) for the low —
and thus more easily measurable—speed of a massive ob-
ject (the block).

There are two events here.
The bullet collides with the
block. Then the bullet-block
system swings upward by
height h.

- T

Fig. 9-17 A ballistic pendulum, used to measure the speeds of
bullets.



Elastic collision

AL vy = My Lf + mzl-"l-_r (linear momentum).

1

3 {kinetic energy).

1 1
My, = Vi + gV

My — M
= v
[ A———
2my
',.' = 1__&
C Aa—
my — Hi2 2
Vig=———Vu t Vay
my + n; nyy + m;
2my 1, — 1My
Vyy=—"—_ vyt — v
i my + m, my + m;

Here is the generic setup
for an elastic collision with

a stationary target.
Before Vy;
m— V=0
Q o x
iy Ry
Projectile  Target
¥, V.
After ::!;'r :E"r
) . x
.rrz| L

Here is the generic setup
for an elastic collision with
a moving target.

Vi Vg
o _—
] 1 .H'!-E

Fig. 9-19 Two bodies headed for a one-
dimensional elastic collision.

Initially :
One particle at rest

Initially :
both particles move



Stationary Target

I

. Equal masses 1fm; = m,. Eqgs.9-67 and 9-68 reduce to

1-’|__ir= G ElI]d 1-’2_ir= '|-"”.,

which we might call a pool player’s result. It predicts that after a head-on colli-
sion of bodies with equal masses, body 1 (initially moving) stops dead in its
tracks and body 2 (initially at rest) takes off with the initial speed of body 1. In
head-on collisions, bodies of equal mass simply exchange velocities. This is
true even if body 2 is not initially at rest.

. A massive farget In Fig. 9-18, a massive target means that m, = m,. For

example, we might fire a golf ball at a stationary cannonball. Equations 9-67
and 9-68 then reduce to .

2
l"rl_i" = _'|-"|_r' ﬂﬂd 'I-'rzjr = ( ;::1] )1-’“. {9-69}
2

This tells us that body 1 (the golf ball) simply bounces back along its incom-
ing path, its speed essentially unchanged. Initially stationary body 2 (the
cannonball) moves forward at a low speed, because the quantity in paren-
theses in Eq. 9-69 is much less than unity. All this is what we should expect.

. A massive projectile 'This is the opposite case; thatis,m, = m,. This time, we fire

a cannonball at a stationary golf ball. Equations 9-67 and 9-68 reduce to
1-’|__ir = Wy; and 1-’2_ir = 21-’”. [9-?{}}

Equation 9-70 tells us that body 1 (the cannonball) simply keeps on going,
scarcely slowed by the collision. Body 2 (the golf ball) charges ahead at twice
the speed of the cannonball.

You may wonder: Why twice the speed? Recall the collision described by
Eq. 9-69, in which the velocity of the incident light body (the golf ball)
changed from +v to —v, a velocity change of 2v. The same change in velocity
(but now from zero to 2v) occurs in this example also.



Two metal spheres, suspended by vertical cords, initially just
touch, as shown in Fig. 9-20. Sphere 1, with mass
my = 30 g, is pulled to the left to height /#, = 8.0 cm, and
then released from rest. After swinging down, it undergoes
an elastic collision with sphere 2, whose mass m, = 75 g.
What is the velocity v, of sphere 1 just after the collision?

KEY IDEA

We can split this complicated motion into two steps that we
can analyze separately: (1) the descent of sphere 1 (in which
mechanical energy is conserved) and (2) the two-sphere col-
lision (in which momentum is also conserved).

Step 1. As sphere 1 swings down, the mechanical energy of
the sphere—Earth system is conserved. (The mechanical en-
ergy is not changed by the force of the cord on sphere 1 be-
cause that force is always directed perpendicular to the
sphere’s direction of travel.)

Calculation: Let’s take the lowest level as our reference
level of zero gravitational potential energy. Then the kinetic
energy of sphere 1 at the lowest level must equal the gravi-
tational potential energy of the system when sphere 1 is at
height /i,. Thus,

%’”l"fr‘ = mgh,,
which we solve for the speed vy; of sphere 1 just before the
collision:
vii = V2gh, = V(2)(9.8 m/s?)(0.080 m)
= 1.252 m/s.

Step 2: Here we can make two assumptions in addition to
the assumption that the collision is elastic. First, we can as-
sume that the collision is one-dimensional because the motions
of the spheres are approximately horizontal from just before
the collision to just after it. Second, because the collision is so

brief, we can assume that the two-sphere system is closed and
isolated. This means that the total linear momentum of the sys-
tem is conserved.

Calculation: Thus, we can use Eq. 9-67 to find the velocity of
sphere 1 just after the collision:

el s

— . Vi

iy + 5]

0.030 kg — 0.075 kg
- 1.252 m/
0.030ke + 0.075 kg s)

= —0.537 m/s = —0.54 m/s.

The minus sign tells us that sphere 1 moves to the left just
after the collision.

VU'—

(Answer)

Ball 1 swings down and
collides with ball 2, which
then swings upward. If the
collision is elastic, no
mechanical energy is lost.

SRS SR R b e S ot g

Fig. 9-20 Two metal spheres suspended by cords just touch
when they are at rest. Sphere 1, with mass m, is pulled to the left to
height h, and then released.



Collision in 2D A glancing collision
that conserves
both momentum and
Conservation of momentum kinetic energy.

ﬁn‘ + ﬁ'_r - ﬁl}r"‘ Pﬁ;ﬁ

. — . m V.
X-axis MV = MV €08 #) + Myvyp COs B, 1 Y

Y-axis 0= _fnll-"].lr Ei" f?| + m:'le"_l_r Ei" f?z.
Conservation of energy

f':]lu + EEI' = K]Jr+ .F;.r:._r.

I 1 1 .
jmlb'%f = jmliii.- + imlb'%,r (kinetic energy).




