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Some Indexes of Refraction®

Medium Index Medium Index
Law of refraction —

Vacuum Exactly 1 Iypical crown glass 1.52

Adr (STP)® 1.00029 Sodium chloride 1.54

Water (20°C) 1.33 Polystyrene 1.55

Acetone 1.36 Carbon disulfide 1.63

. . Ethyl alcohol 1.36 Heavy flint glass 1.65
nzsin th = mysin (refraction). Sugar solution (30%) 1.38 Sapphire 1.77
Fused quartz 1.46 Heaviest flint glass 1.89

Sugar solution (80%) 1.49 Diamond 2.42




Law of refraction — revised

A, _ Incident wave

Refracted wave
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c=Af
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Since c is constant sIn ), = e (for triangle fice)
Ay W A
Az - Vs sin f, = F!.i‘ (for triangle ficg).
sinfly, Ay vy
Ejn f}z .-13 V2 I
E - .
n= M {index of refraction).
Wavelength , A, and velocity of
light, v_, are changing in medium :
SN Vn 5ing sin cln M7
but frequence, f, stays unchanged = —

sin clh, H,




. The difference in indexes
Phase difference

causes a phase shift
between the rays.

. A
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W The phase difference between two light waves can change if the waves travel through
different materials having different indexes of refraction.
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In Fig. 35-4, the two light waves that are represented by the
rays have wavelength 550.0 nm before entering media 1 and
2. They also have equal amplitudes and are in phase. Medium
1 is now just air, and medium 2 is a transparent plastic layer
of index of refraction 1.600 and thickness 2.600 gm.

(a) What is the phase difference of the emerging waves in
wavelengths, radians, and degrees? What is their effective
phase difference (in wavelengths)?

KEY IDEA

The phase difference of two light waves can change if they
travel through different media, with different indexes of re-
fraction. The reason is that their wavelengths are different in
the different media. We can calculate the change in phase
difference by counting the number of wavelengths that fits
into each medium and then subtracting those numbers.

Calculations: When the path lengths of the waves in the two
media are identical, Eq. 35-11 gives the result of the subtraction.
Here we have n; = 1.000 (for the air),n, = 1.600, L = 2.600 um,
and A = 550.0 nm. Thus, Eq. 35-11 yields

L
A
2,600 X 107°m
5500 X 107" m

= 2.84.

Ng - N1 = (H;_r - H-l)

(1.600 — 1.000)

(Answer)

]

|2~

Thus, the phase difference of the emerging waves is 2.84 wave-
lengths. Because 1.0 wavelength is equivalent to 27 rad and
360°, you can show that this phase difference is equivalent to

phase difference = 17.8 rad = 1020°. (Answer)

The effective phase difference is the decimal part of the
actual phase difference expressed in wavelengths. Thus, we have

effective phase difference = 0.84 wavelength.  (Answer)

You can show that this is equivalent to 5.3 rad and about
300°. Caution: We do not find the effective phase difference
by taking the decimal part of the actual phase difference as
expressed in radians or degrees. For example, we do not take
0.8 rad from the actual phase difference of 17.8 rad.

(b) If the waves reached the same point on a distant screen,
what type of interference would they produce?

Reasoning: We need to compare the effective phase differ-
ence of the waves with the phase differences that give the
extreme types of interference. Here the effective phase dif-
ference of 0.84 wavelength is between 0.5 wavelength (for
fully destructive interference, or the darkest possible result)
and 1.0 wavelength (for fully constructive interference, or
the brightest possible result), but closer to 1.0 wavelength.
Thus, the waves would produce intermediate interference
that is closer to fully constructive interference —they would
produce a relatively bright spot.



Huygen’s Principle

Incoming A
wavefront

Often a ,-""f-:_ _\\‘\.

| Wavefront at MNew position
plane wave i =10 of wavefront

at time = Ad

Christiaan Huygens a £
1629 - 1695

-

w4 All points on a wavefront serve as point sources of spherical secondary wavelets.
After a time ¢, the new position of the wavefront will be that of a surface tangent to
these secondary wavelets.



Diffraction

A wave passing through
a slit flares (diffracts).
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The smaller the slit the smaller is bending radius of the created spherical wave



Young’s double slit experiment
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Bright and dark
fringes

The waves emerging
from the two slits
overlap and form an
interference pattern.



Pat h I en gt h d |ffe rence : The phase difference between two waves can change if the waves travel paths of
different lengths.

The AL shifts
one wave from
the other, which
determines the
interference.

[ncident
Wave

Path length difference AL sin @ = AlL/d

For bright fringes

AL = d sin # = (integer)({A).

d sin # = mA, form=0.1.2,... {maxima— bright fringes).

For dark fringes

{a) B C ) |
AL = d sin # = (odd number)(3A).

sin @ = AL/

dsin i = (m + %}A form=0,1,2,... (minima—dark fringes).



Double-slit interference pattern

What is the distance on screen C in Fig. 35-10a between
adjacent maxima near the center of the interference pattern?
The wavelength A of the light is 546 nm, the slit separation d
is 0.12mm, and the slit—screen separation D is 55cm.
Assume that #in Fig. 35-10 is small enough to permit use of
the approximations sin # = tan # = 6, in which @ is expressed
in radian measure.

KEY IDEAS

(1) First, let us pick a maximum with a low value of m to
ensure that it is near the center of the pattern. Then, from
the geometry of Fig. 35-10a, the maximum'’s vertical distance
vm from the center of the pattern is related to its angle 6
from the central axis by

.}'rJ'i‘I

D

(2) From Eq. 35-14, this angle # for the mth maximum is
given by

tan @ =0 =

sing ~ g = A
-z

D 1

Incident
wave

(a) B
Calculations: If we equate our two expressions for angle #
and then solve for y,,, we find

_ mAD
Ym — d =

(35-17)

For the next maximum as we move away from the pattern’s
center, we have

(m + 1)AD
Ym+1 = d =

(35-18)

We find the distance between these adjacent maxima by
subtracting Eq.35-17 from Eq. 35-18:

AD
M:mﬂ—m:jr

_ (546 x 107 m)(55 X 1072 m)
012 x 107 m
=250 x 107 m = 2.5 mm.

(Answer)

As long as d and #in Fig. 35-10a are small, the separation of
the interference fringes is independent of m; that is, the
fringes are evenly spaced.



F  bi-I . t A monolithic Fresnel bimirror for hard X-rays and
resnei pi-layer experimen its application for coherence measurements

with x-rays
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Intensity of double slit interference

This is an intermediate

Being exactly in phase,

y
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Intensity

at screen _
— 41, (two coherent sources)

| 2 I {two incoherent
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Coherence : the two interfering wave must be able to interfere,
i.e. wave fronts must have same wave length and same shape.

Temporal coherence length A =A?/2AA
Spatial coherence length A =A/2Aa A =— =



Spatial and Temporal Coherence Wavefronts
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Michelson interferometer

Movable Object thickness L, index n
TUTOT A, Number of fringes induced by the object
""E‘ Arm 2 N = -1 — 2Ln
Y object B A
p - Mg, Number of fringes without object
SRS i
. Arm 1 2L
.-"I-il ;II.III? = .-:l :
Yy i
The interference To measure L
at the eye - 5r of
depends on the N, — N, = “; - (n — 1).
path length

difference and

the index of any
inserted material.




Temporal Coherence

-
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d very large

d larger

Temporal Coherence Time,

Separate two subsequent Maxima
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Prof. Elias N. Glytsis, School of ECE, NTUA



Spatial Coherence

screen with pinholes screen vath mierference pattem
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Spatial Coherence Area, A = md?

Prof Elias N. Glytsis, School of ECE, NTUA



Young's Experiment to Demonstrate Spatial Coherence

Persistence of fiinges as the source grows
from a point source to finite size.
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Calculation of coherence properties from the oversy,

Fraunhofer X-ray Diffraction at Circular Aperture %
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Interference at thin films

The interference depends

o on the reflections and the
Constructive interference of r; (phase path lengths. m g iy
shift 0.5) and r, (no phase shift)
odd number A
2L = 5 * Apz (in-phase waves). Amz = n__
1, A - . .
2L =(m+5) . form=10,1,2,... (maxima— bright film in air).
2
Destructive interference of r; (phase shift e Reflection phase shift

0.5) and r, (no phase shift)

2L = integer X A,

A
2L =m—,

Hy

form=0,1,2,...

n;=n;=1

(out-of-phase waves).

Off lower index 0 n,/n, interface
Off higher index 0.5 wavelength n,/n; interface
-
Before A Interface
After q‘i FiY at b
{minima— dark film in air).
-
Before ;EL\E
_t}
After A ata, c




examples

White light, with a uniform intensity across the visible
wavelength range of 400 to 690 nm, 15 perpendicularly inci-
dent on a water film, of index of refraction n, = 1.33 and
thickness [. = 320 nm, that is suspended in air. At what
wavelength A is the light reflected by the film brightest to ") ny 3
an observer?

In Fig. 35-19, a glass lens is coated on one side with a thin

film of magnesium fluoride (MgF;) to reduce reflection - :JI[I{I- n:ig:?ss n,ihfsu
from the lens surface. The index of refraction of MgF; is
1.38:; that of the glass is 1.50. What is the least coating thick-
ness that eliminates (via interference) the reflections at the
middle of the visible spectrum (A = 550 nm)? Assume that
the light 15 approximately perpendicular to the lens surface. -

<4
Both reflection phase shifts

=L are 0.5 wavelength. So, only
the path length difference
determines the interference.



Newton’s rings

Incident
light

R

=
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——
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/ ogglgnultlple even multiple
0
180° phase gfhi2
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https://en.wikipedia.org/wiki/Newton%27s_rings#/
media/File:Optical_flat_interference.svg

Radius of the Nt ring is given
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Refraction index for X-rays

N /
n= 1——r/12 1-0 —1 <1
27T Ap p
S = N—rlzzﬁ(fk+f'k)z10_4..10_5
27T - A



Reflection and Refraction for X-rays

Using grazing angle 6

* Snellius Law N, N R — 5
cos®;, N, E, E, E
cos®, N, ®, ®

® >
* Fresnel formulas 2
N, Eb
E, _sin(0,-8,) ©,-0, E, ?
E, sin(®,+6,) G) +0, T = E_
E, _ 2sin(©,)cos(0,) 26, ’
E, sSin(®,+0,) @1 +0,



Grazing incidence, varying ®

cos®,n, =CcosO,n,

Loy~ 1-Lor_
100~ (1 e})1-5)

2 =@, +26
- Q, = J25 ~0.15°...0.4° critical angle

@2:{i\/25—®f 0, <Oy
JO2E-25 ©,>0,




Fresnel equations: helpful approximations
126

20 20
t= ~ : 0,-0,1+=5)
@—i—\/@ —25 O, +0,(1+ 126 r:®1_ ®f_25z 2 0,
2 ® 2l O,+0; -2 ®1+®1(1+;252
t~ % .9 for_®, <26 .
2®1+(§ o r=1for_0,<< 25
1
20 T=t* r=——2_for_@, >>25 |R=r’~04
tx—2L=1for_©, >> 26 20,
1
0,00 0,05 qZ:4 T:/,;t; in(ai) 0.15 0,20 0,00 0,05 qz=4 ;)/;OS in(ai) @] 0,20
7




Experimental set-up
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Determination of density and mass

Organic film on silicon

1

:

12000 -
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Intensity
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Diffraction




Diffraction at a single slit

b=a/2sin0

This path length
difference shifts

Path length

difference one wave from the
other, which
determines

the interference.

D

Totally destructive
interference ) _
This pair of rays cancel

p, each other at P;. So
do all such pairings.

Central axis

iN Viewing

SCreen
i C

Incident
wave

Condition for cancellation (minimum)

i A
—_— : r? = —
3 s1n 5
Generell:

asin@=mA, m=123



Single slit interference - quantitative
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Single slit interference - quantitative
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Intensity of single slit diffraction

Phase difference of two interfering waves

1) = fm( sin ﬂ.‘)I‘

¥

o =%qﬁ=?ﬁin f.

Minima at @ = T, form=1.2.3.....

I .
ma =——sIn
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Intensities of the maxima in a single-slit interference pattern

Find the intensities of the first three secondary maxima (side
maxima) in the single-slit diffraction pattern of Fig. 36-1,
measured as a percentage of the intensity of the central
maximum.

KEY IDEAS

The secondary maxima lie approximately halfway between
the minima, whose angular locations are given by Eq. 36-7
(a = mm). The locations of the secondary maxima are then
given (approximately) by

form=1,2,3,...,

with « in radian measure. We can relate the intensity [ at
any point in the diffraction pattern to the intensity /,, of the
central maximum via Eq. 36-5.

a=(m +%)1r,

Calculations: Substituting the approximate values of a for
the secondary maxima into Eq. 36-5 to obtain the relative

intensities at those maxima, we get

. 5 : 1y, \2
1 :(sma) :(M) form=1,2,3.....

1 a (m + )

m

The first of the secondary maxima occurs for m = 1, and its
relative intensity is

Lo (sin['l + D7 )2 _ (s;infl.S'n-)2

I (1 +3)m L.5m
=4.50 X 107? = 4.5%. (Answer)
For m = 2 and m = 3 we find that
L _ . £
T 1.6% and 7 0.83%. (Answer)

m m

As you can see from these results, successive secondary
maxima decrease rapidly in intensity. Figure 36-1 was delib-
erately overexposed to reveal them.



Single-slit diffraction pattern with white light

A slit of width a is illuminated by white light.

(a) For what value of a will the first minimum for red light
of wavelength A = 650 nm appear at § = 15°?

KEY IDEA

Diffraction occurs separately for each wavelength in the
range of wavelengths passing through the slit, with the lo-
cations of the minima for each wavelength given by Eq.
36-3 (asin 8 = mA).

Calculation: When we set m =1 (for the first minimum)
and substitute the given values of # and A, Eq. 36-3 yields

mA _ (1)(650 nm)

~sing sinl5°

= 2511 nm = 2.5 pm.
For the incident light to flare out that much (= 15° to the first min-
ima) the slit has to be very fine indeed—in this case, a mere four

times the wavelength. For comparison, note that a fine human
hair may be about 100 xm in diameter.

(Answer)

(b) What is the wavelength A" of the light whose first side
diffraction maximum is at 15°, thus coinciding with the first
minimum for the red light?

KEY IDEA

The first side maximum for any wavelength is about halfway
between the first and second minima for that wavelength.

Calculations: Those first and second minima can be
located with Eq. 36-3 by setting m = 1 and m = 2, respec-
tively. Thus, the first side maximum can be located
approximately by setting m = 1.5. Then Eq. 36-3 becomes
asin = 1.5A".
Solving for A" and substituting known data yield
asin# (2511 nm)(sin 15°)
L5 L5
= 430 nm.

(Answer)

Light of this wavelength is violet (far blue, near the short-
wavelength limit of the human range of visible light). From
the two equations we used, can you see that the first side
maximum for light of wavelength 430 nm will always coin-
cide with the first minimum for light of wavelength
650 nm, no matter what the slit width is? However, the an-
gle # at which this overlap occurs does depend on slit
width. If the slit is relatively narrow, the angle will be rela-
tively large, and conversely.



Diffraction at circular aperture

sin f = 1.22 rl (first minimum —circular aperture).
L

compare
A . . .
- { first minimum —single slit),

sin 1 =
i

Resolvability of two neighbored apertures

Requested angular separation

L 1.22)

fp = sin~ .
d
|"'. “‘u‘ "/‘\ ’r"\ fh‘| A
Small angles 1\ 2" A | \
u’ \ (
' \ ' 1A .[
{Rayleigh's criterion). s Yy y y 4 /N )7
| v (6) (c)

A
fp = 1.22 —
R ]

(a)



Pointillistic paintings use the diffraction of your eye

Figure 36-13a is a representation of the colored dots on a
pointillistic painting. Assume that the average center-
to-center separation of the dots is D = 2.0 mm. Also assume
that the diameter of the pupil of your eye is d = 1.5 mm and
that the least angular separation between dots you can
resolve is set only by Rayleigh’s criterion. What is the least
viewing distance from which you cannot distinguish any
dots on the painting?

KEY IDEA

Consider any two adjacent dots that you can distinguish
when you are close to the painting. As you move away, you
continue to distinguish the dots until their angular separa-
tion @ (in your view) has decreased to the angle given by

_1 Observer
! L——:EF%: ¥)
4 D
0 f

[ L I
(&)

Fig. 36-12 (a) Representation of some dots on a pointillis-
tic painting, showing an average center-to-center separation
D.(b) The arrangement of separation D between two dots,
their angular separation #, and the viewing distance L.

Rayleigh’s criterion:

A
=122—.
Or 3
Calculations: Figure 36-13b shows, from the side, the angular
separation ¢ of the dots, their center-to-center separation D,
and your distance L from them. Because D/L is small, angle #
is also small and we can make the approximation

(36-15)

(36-16)

Setting 6 of Eq. 36-16 equal to #, of Eq. 36-15 and solv-
ing for L, we then have

Dd

L=Tox
Equation 36-17 tells us that L is larger for smaller A. Thus, as
you move away from the painting, adjacent red dots (long
wavelengths) become indistinguishable before adjacent
blue dots do. To find the least distance L at which no colored
dots are distinguishable, we substitute A = 400 nm (blue or
violet light) into Eq. 36-17:

_ (20 x 107 m)(1.5 X 10~ m)
(1.22)(400 % 10~° m)

At this or a greater distance, the color you perceive at
any given spot on the painting is a blended color that may
not actually exist there.

(36-17)

L

= 6.1 m. (Answer)

1 Luce consists
lots and their
e and thus
France. Photo



Rayleigh’s criterion for resolving two distant objects

A circular converging lens, with diameter d = 32 mm and
focal length f= 24 cm, forms images of distant point
objects in the focal plane of the lens. The wavelength is
A =550 nm.

(a) Considering diffraction by the lens, what angular sepa-
ration must two distant point objects have to satisfy
Rayleigh’s criterion?

KEY IDEA

Figure 36-14 shows two distant point objects P, and P,
the lens, and a viewing screen in the focal plane of the
lens. It also shows, on the right, plots of light intensity /
versus position on the screen for the central maxima of
the images formed by the lens. Note that the angular sepa-
ration 6, of the objects equals the angular separation ¢, of the
images. Thus, if the images are to satisfy Rayleigh’s criterion

for resolvability, the angular separations on both sides of the
lens must be given by Eq. 36-14 (assuming small angles).

Calculations: From Eq.36-14, we obtain

A
6, =6; = ty 4

(1.22)(550 x 107 m) o
= =21 x .
2 X 10°m 2.1 X 10~ rad. (Answer)
At this angular separation, each central maximum in the
two intensity curves of Fig. 36-14 is centered on the first

minimum of the other curve.

Focal-plane
SCTEEn

Fig. 36-14 Light from two distant point objects P,
and P, passes through a converging lens and forms im-
ages on a viewing screen in the focal plane of the lens.
Only one representative ray from each object is
shown. The images are not points but diffraction pat-
terns, with intensities approximately as plotted at the
right. The angular separation of the objects is 6, and
that of the images is ¢; the central maxima of the im-
ages have a separation Ax.

(b) What is the separation Ax of the centers of the images in the
focal plane? (That is, what is the separation of the central peaks
in the two intensity-versus-position curves?)

Calculations: From either triangle between the lens and
the screen in Fig. 36-14, we see that tan 6/2 = Ax/2f.
Rearranging this equation and making the approximation

tan 8 = 6, we find

Ax = f6,, (36-18)
where ¢;is in radian measure. Substituting known data then
yields

Ax = (0.24 m)(2.1 X 10~ rad) = 5.0 pm. (Answer)
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Double-slit experiment with diffraction of each slit included

In a double-slit experiment, the wavelength A of the light
source is 405 nm, the slit separation d is 19.44 um, and the
slit width a is 4.050 gm. Consider the interference of the
light from the two slits and also the diffraction of the light
through each slit.

(a) How many bright interference fringes are within the
central peak of the diffraction envelope?

KEY IDEAS

We first analyze the two basic mechanisms responsible for
the optical pattern produced in the experiment:

1. Single-slit diffraction: The limits of the central peak are
the first minima in the diffraction pattern due to either slit
individually. (See Fig. 36-15.) The angular locations of those
minima are given by Eq. 36-3 (@ sin # = mA). Here let us
rewrite this equation as a sin # = m A, with the subscript 1
referring to the one-slit diffraction. For the first minima in
the diffraction pattern, we substitute 1, = 1, obtaining

asin 6= A. (36-22)

2. Double-slit interference: The angular locations of the
bright fringes of the double-slit interference pattern are
given by Eq.35-14, which we can write as

form,=0,1,2,.... (36-23)

Here the subscript 2 refers to the double-slit interference.

d sin 6 = n,A,

Calculations: We can locate the first diffraction minimum
within the double-slit fringe pattern by dividing Eq. 36-23 by
Eq.36-22 and solving for m,. By doing so and then substitut-
ing the given data, we obtain
d 1944 pm
My=—=—"—""""—"=
a 4.050 wm
This tells us that the bright interference fringe for m, = 4 fits
into the central peak of the one-slit diffraction pattern, but
the fringe for m, = 5 does not fit. Within the central diffrac-
tion peak we have the central bright fringe (m, = 0), and
four bright fringes (up to m; = 4) on each side of it. Thus, a
total of nine bright fringes of the double-slit interference pat-
tern are within the central peak of the diffraction envelope.

e Diffraction envelope
=0
i g

|

Mg = 7/—Diffracr.icm envelope

Intensity /

0.2 0.3

The ms double-slit fringe
is almost eliminated by

q the diffraction minimum.

0 0.1 0.2 0.3
B (rad)
Flg. 36-17 One side of the intensity plot for a two-slit interfer-

ence experiment. The inset shows (vertically expanded) the plot
within the first and second side peaks of the diffraction envelope.

The bright fringes to one side of the central bright fringe are
shown in Fig. 36-17.

(b) How many bright fringes are within either of the first
side peaks of the diffraction envelope?

KEY IDEA

The outer limits of the first side diffraction peaks are the
second diffraction minima, each of which is at the angle @
given by a sin # = m;A withm; = 2:

asin 6= 2. (36-24)

Calculation: Dividing Eq.36-23 by Eq. 36-24, we find

_ 2 _ (91944 pm) _

= 9.6.
=y 4.050 um

This tells us that the second diffraction minimum occurs
just before the bright interference fringe for m, = 10 in
Eq. 36-23. Within either first side diffraction peak we have
the fringes from m, = 5 to m, = 9, for a total of five bright
fringes of the double-slit interference pattern (shown in
the inset of Fig. 36-17). However, if the m, =5 bright
fringe, which is almost eliminated by the first diffraction
minimum, is considered too dim to count, then only four
bright fringes are in the first side diffraction peak.



Diffraction gratings
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Grating spectrometer
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Dispersion and resolving power of a diffraction grating

A diffraction grating has 1.26 X 10* rulings uniformly spaced
over width w = 25.4 mm. Itis illuminated at normal incidence
by yellow light from a sodium vapor lamp. This light contains
two closely spaced emission lines (known as the sodium
doublet) of wavelengths 589.00 nm and 589.59 nm.

(a) At what angle does the first-order maximum occur (on
either side of the center of the diffraction pattern) for the
wavelength of 589.00 nm?

KEY IDEA

The maxima produced by the diffraction grating can be deter-
mined with Eq.36-25 (d sin 8§ = mA).
Calculations: The grating spacing d is
i=2 254 x 107 m
N 1.26 x 10*
= 2.016 X 10~*m = 2016 nm.

The first-order maximum corresponds to m = 1. Substituting
these values for d and m into Eq. 36-25 leads to
ot mA ) (1)(589.00 nm)
# = sin 1 sin 2016 om

=16.99° = 17.0° (Answer)

(b) Using the dispersion of the grating, calculate the angular
separation between the two lines in the first order.

KEY IDEAS

(1) The angular separation Af between the two lines in the
first order depends on their wavelength difference AA and
the dispersion D of the grating, according to Eq. 36-29
(D = A@/AA). (2) The dispersion D depends on the angle @
at which it is to be evaluated.

Calculations: We can assume that, in the first order, the
two sodium lines occur close enough to each other for us to

evaluate D at the angle # = 16.99° we found in part (a) for
one of those lines. Then Eq. 36-30 gives the dispersion as

m 1

b= dcosd (2016 nm)(cos 16.99°)
= 5.187 x 107* rad/nm.

From Eq.36-29 and with AA in nanometers, we then have

A6 = D A\ = (5.187 x 10~* rad/nm)(589.59 — 589.00)

= 3.06 X 10~*rad = 0.0175". (Answer)

You can show that this result depends on the grating spac-
ing d but not on the number of rulings there are in the
grating.

(c) What is the least number of rulings a grating can have and
still be able to resolve the sodium doublet in the first order?

KEY IDEAS

(1) The resolving power of a grating in any order m is
physically set by the number of rulings N in the grating
according to Eq. 36-32 (R = Nm). (2) The smallest wave-
length difference AA that can be resolved depends on the
average wavelength involved and on the resolving power
R of the grating, according to Eq.36-31 (R = A,,,/AA).

Calculation: For the sodium doublet to be barely resolved,
AA must be their wavelength separation of 0.59 nm, and A,,,
must be their average wavelength of 589.30 nm. Thus, we
find that the smallest number of rulings for a grating to
resolve the sodium doublet is

Y

m m AA

589.30
= 222 _ 999 rulings.

~ (1)(0.59 nm) (Answer)
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The mean aim of Max von Laue (1912)

X-rays are electromagnetic wave with wave length much smaller
than wave length of visible light. X-rays are diffracted a crystal
lattice
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Original experiment von Laue, Friedrich und

Knipping

Displayed at Deutsche Museum in Munich



First Laue Experiment

Photographic film
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1912: Begin of modern Crystallography

X-rays are electromagnetic waves of very short
wavelength (~1A = 101° m).

Crystals are periodic structures in 3D : interatomic
distances are of similar order of magnitude as
x-ray wave length

X-ray diffraction is a method to determine the
geometric structure of solids !



Explaination by interference at 3D lattice
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Explanation of Laue pattern

von Laue Equation

[} ]

Scattering from a line of atoms along “a

P, = acos u,

f Condition for IC::::n stru ptwl*e mﬁferferenge t
Total | constructive along COHIC:_ :}tll ) aces abou
Path difference interference |

P.-P,=a(cosa-cosa)=hi :
I



von Laue Equation

We have three von Laue equations

For a crystal with a(cosu-cosu,)=hi

cell parameters b{cosf(i-cos[3;)=kAi @®
> > c(cosy-cosvy,)=14A
a,b, c

Where cos «, , cos i, cos v, are the direction
cosines of the incident ray and cos « , cos 3, cOs v
are the direction cosines of the reflected ray in the

crystal axis.

S0, we must also satisfy

CoS’ 1y + COS° B, + cOS° v, =1 @
cos” o + CO5° B + cos” v =1

Using that the angle between the incident and
reflected rayis 20

&) COS 20 = COS 1t COS xy + COS 3 COS [3; + COS v COS v,



von Laue Equation

We square the von Laue Equations

hﬂil
_ el 2
— = CO8" & — 2COosa cosar, + €cOs” ¢
a
@2 k2
_ 2 ) :
71 = cos’ f=2cosficosff+ cos’
32/?.-2 7 2
N o 2¢08y cosy, +CO8” ¥,
2 2 2
TS < E I
a_2+ b_2+ z Ac=1- 2(-:055:5 COSer, + COSJ COS f, + COSy cos;fc,)+ 1
T Using eq. &
ka_ﬂ ot 7 A% =201~ cos24)
(2 2 Trig. ldentity
—+—5+ |4’ = 4sin® 4

b

b [



General Braqqg law

=+ T3+ 2] A = 2sinéd
a’ b° ¢ < L

Reciprocal Lattice

Reciprocal lattice is constructed using vectors

> > >

For a crystal with a b, ¢
cell parameters - to the be ol ; 2 iz
+-E+ a is normal to the bc plane an a
a,0,0 = | 2
- s b is normal to the ac plane and |p"|= =

>

C @E c is normal to the ab plane and 5 2z

b' C
a ) ) — — — —
recip. lattice vector (7 = ha + kb +ilc”

3 5 . 12 2 7 9 112
- = - h k Fi
[ha] +[kb] +[£c]} :2;@[—2+—2+ ]

a b

1‘32

A vector connecting 2 lattice
points in reciprocal space can
be written G-




General Bragg law

Bk Y 4
2z [a—2+ b_2+ C_EJ = Tsmﬁ?
7
. ~ 4T
are the reciprocal ‘G‘ = TSIHE’
vectors

of the reciprocal lattice

Jh2+k2+12 471 |
27T = Sl
a

ne

a=b=c

A=2 a sin @
Jh2 + k2 +12

A=2dsiné@




Alternative description of Laue-pattern by

W.H.Bragg und W.L.Bragg
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X-ray tube and tube spectrum

Mini-X Output X-Ray Spectrum: Ag Target i@ 40 kV

Ag K
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Measuring lattice parameters

A=2d, sinO,
7»=2(11I sind,
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X-ray diffraction of InAs Nanowires on GaAs[111]

intensity

In-plane diffraCtiPé\‘racted and
diffracted X-ray
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