Homework 2

Prepare a 10 -15 min talk for Wednesday 30.10. 8:30 about :

- 1. Equation of angular motion: angle, angular velocity, angular acceleration
 - 2. Relation between linear and rotational variables
 - 3. Rotational intertia and rotational kinetic energy

Angle, Θ , angular velocity, ω

Relation between linear and angular variables

The acceleration always has a radial (centripetal) component and may have a tangential component.

Rotational Inertia

$$I = \sum m_i r_i^2 = \int r^2 dm$$

Some Rotational Inertias

Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Direction)		Pure Rotation (Fixed Axis)	
Position Velocity	x $v = dx/dt$	Angular position Angular velocity	θ $\omega = d\theta/dt$
Acceleration Mass	a = dv/dt m	Angular acceleration Rotational inertia	$\alpha = d\omega/dt$ I
Newton's second law Work Kinetic energy	$F_{\text{net}} = ma$ $W = \int F dx$ $K = \frac{1}{2}mv^2$	Newton's second law Work Kinetic energy	$ au_{\text{net}} = I\alpha$ $W = \int \tau d\theta$ $K = \frac{1}{2}I\omega^2$
Power (constant force) Work-kinetic energy theorem	P = Fv	Power (constant torque) Work-kinetic energy theorem	$P = \tau \omega$

Linear Equation	Missing Variable		Angular Equation
$v = v_0 + at$	$x-x_0$	$\theta = \theta_0$	$\omega = \omega_0 + \alpha t$
$x - x_0 = v_0 t + \frac{1}{2} a t^2$	v	ω	$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2$
$v^2 = v_0^2 + 2a(x - x_0)$	t	t	$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$
$x - x_0 = \frac{1}{2}(v_0 + v)t$	a	α	$\theta - \theta_0 = \frac{1}{2}(\omega_0 + \omega)t$
$x - x_0 = vt - \frac{1}{2}at^2$	v_0	ω_0	$\theta - \theta_0 = \omega t - \frac{1}{2} \alpha t^2$