Homework 2

Prepare a 10-15 min talk for Wednesday 30.10. 8:30 about :

1. Equation of angular motion: angle, angular velocity, angular acceleration
2. Relation between linear and rotational variables
3. Rotational intertia and rotational kinetic energy

Angle, Θ, angular velocity, ω

$\omega=d \Theta / d t$

This is a plot of the angle
angular
position

(2)

(3)

(4)

(5)

Vector quantity

Relation between linear and angular variables

(a)

The acceleration always has a radial (centripetal) component and may have a tangential component.

(b)

Rotational Inertia

$$
I=\Sigma m_{i} r_{i}^{2}=\int r^{2} d m
$$

Some Rotational Inertias

Some Corresponding Relations for Translational and Rotational Motion

Pure Translation (Fixed Direction)		Pure Rotation (Fixed Axis)	
Position	x	Angular position	θ
Velocity	$v=d x / d t$	Angular velocity	$\omega=d \theta d t$
Acceleration	$a=d v / d t$	Angular acceleration	$\alpha=d \omega / d t$
Mass	m	Rotational inertia	I
Newton's second law	$F_{\text {net }}=m a$	Newton's second law	$\tau_{\text {net }}=I \alpha$
Work	$W=\int F d x$	Work	$W=\int \tau d \theta$
Kinetic energy	$K=\frac{1}{2} m v^{2}$	Kinetic energy	$K=\frac{1}{2} I \omega^{2}$
Power (constant force)	$P=F v$	Power (constant torque)	$P=\tau \omega$
Work-kinetic energy theorem	$W=\Delta K$	Work-kinetic energy theorem	$W=\Delta K$
Linear Equation	Missing Variable	Angular Equation	
$v=v_{0}+a t$	$x-x_{0}$	$\theta-\theta_{0} \quad \omega=\omega_{0}+\alpha t$	
$x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$		$\theta-\theta_{0}=\omega_{0} t+\frac{1}{2} \alpha t^{2}$	
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$	t	$\omega^{2}=\omega_{0}^{2}+2 \alpha(\theta$	$-\theta_{0}$)
$x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t$	a	$\theta-\theta_{0}=\frac{1}{2}\left(\omega_{0}+\omega\right) t$	
$x-x_{0}=v t-\frac{1}{2} a t^{2}$	v_{0}	$\omega_{0} \quad \theta-\theta_{0}=\omega t-\frac{1}{2} \alpha t^{2}$	

