Ergänzung 1 zum Zeitschriftenartikel "Die gestörte Mondbahn" (ASTRONOMIE + RAUMFAHRT im Unterricht Heft 2/2018)

Die ekliptikale Mondlänge in der Ephemeridenrechnung von Albrecht Schultz

Die Frage war gestellt worden, auf welche Weise die aus Zahlenkolonnen bestehenden Ephemeriden eines Wandelsternes zustande kommen, insbesondere wie die Störungen durch benachbarte Himmelskörper eingearbeitet werden. Dies wird hier in aller Kürze exemplarisch für die ekliptikale Länge λ des Mondes dargestellt.

Man setzt zunächst eine "mittlere Keplerbahn" an; sie hat die Exzentrizität e=0,0549 und ist um $5,145^{\circ}$ gegen die Ekliptik geneigt, die Umlaufzeit ist der anomalistische Monat. Die ekliptikale Länge dieses mittleren Mondes lässt sich über eine Reihenentwicklung darstellen (die ersten drei Zeilen in der Formel unten, wobei sich der letzte Term aus der Bahnneigung gegen die Ekliptik ergibt). Die Abweichungen von der mittleren Keplerbahn werden durch Addition weiterer periodischer Terme berücksichtigt; darin schlagen sich in erster Linie die wechselnden Einflüsse der Sonne nieder. Jede Störung führt so zu einem sinusförmigen Pendeln um die Position des mittleren Mondes. Von diesen Termen existieren Hunderte; man bricht dann ab, wenn eine gewünschte Genauigkeit erreicht ist. Diese Verfahren beruhen auf speziellen Mondtheorien und Rechentricks, die zu Ende des 19. Jahrhunderts entwickelt wurden (George William Hill, Ernst W. Brown).

Nach [2] stellt sich der zeitliche Verlauf der ekliptikalen Länge λ des gestörten Mondes verkürzt folgendermaßen dar:

$$\lambda(\tau) \approx 218,31665^{\circ} + 481267,88134^{\circ} \cdot \tau$$

$$+ 6,289^{\circ} \cdot \sin(l(\tau)) + 0,214^{\circ} \cdot \sin(2l(\tau)) + 0,01^{\circ} \cdot \sin(3l(\tau))$$

$$-0,114^{\circ} \cdot \sin(2F(\tau))$$

$$-1,274^{\circ} \cdot \sin(l(\tau) - 2 \cdot D(\tau))$$

$$+ 0,658^{\circ} \cdot \sin(2 \cdot D(\tau))$$

$$+ \cdots$$

- ← *Mittlere Länge* des Mondes (mittlerer Winkelabstand vom Frühlingspunkt)
- ← Große Ungleichheit ("Mittelpunktgleichung" bedingt durch die Bewegung auf der Ellipse)
- ← Differenz zwischen der Länge in der Bahn selbst und dem gesuchten λ (das ekliptikal ist)
- ← Evektion (1. Störung der großen Ungleichheit)
- ← *Variation* (2. Störung der großen Ungleichheit)
- ← weitere Störungsterme

Dabei ist

$$\tau = (JD - 2451545)/36525$$

die verstreichende Zeit, gemessen in der Anzahl der Jahrhunderte seit Beginn des Jahres 2000 (JD: Julianisches Datum);

$$l(\tau) \approx 134.96^{\circ} + 477198.87^{\circ} \cdot \tau$$

ist die "mittlere Anomalie", darunter versteht man den Winkelabstand vom Perigäum, den der Mond hätte, wenn er sich mit konstanter Winkelgeschwindigkeit um die Erde bewegte;

$$F(\tau) \approx 93,272^{\circ} + 483202,018^{\circ} \cdot \tau$$

ist der mittlere Winkelabstand des Mondes vom aufsteigenden Knoten;

$$D(\tau) \approx 297,850^{\circ} + 445267,112^{\circ} \cdot \tau$$

bezeichnet die mittlere Elongation des Mondes von der Sonne.

Die auffälligsten Schwankungen der Mondbewegung haben in der Vergangenheit besondere Namen bekommen (siehe die Bezeichnungen oben): Die *Große Ungleichheit* resultiert aus der Bewegung auf der mittleren Keplerellipse; sie war schon im Altertum bekannt, sehr lange bevor Johannes Kepler die Planetengesetze fand und Isaac Newton die Grundlage für ein Verständnis der Mondbewegung geschaffen hatte. Auch die *Evektion*, eine Störung der Großen Ungleichheit mit einer Periode von 31,8 Tagen, wurde im Altertum entdeckt (Hipparchos / Ptolemäus); sie folgt aus Geschwindigkeitsschwankungen, die sich einerseits aus Vergrößerung / Verkleinerung des Bahnradius in den Syzygien bzw. Halbmondphasen ergeben, andererseits aus der unterschiedlichen Wirksamkeit der Störbeschleunigung in Peri- und Apogäum der Mondbahn (die Amplitude der Störbeschleunigung ist proportional zum Bahnradius, siehe die Ergänzung 2). Viel später erst wurde auch die *Variation* bemerkt (Tycho Brahe um 1590); sie ergibt sich aus Beschleunigungen und anschließenden Verzögerungen jeweils zwischen Halbmond- und Voll- oder Neumondphase.

Die Bahn des Mondes um die Erde, eines der schwierigsten himmelsmechanischen Probleme, hatte schon immer die größten Gelehrten beschäftigt, angefangen mit Ptolemäus und seinen griechischen Vorgängern. In arabischen Quellen findet man Aufzeichnungen, Tycho Brahe lieferte Beiträge; Johannes Kepler, Isaac Newton, Leonhard Euler, Joseph-Louis Lagrange, Pierre Simon de Laplace stellten ihre Theorien auf [3]. Zur Beschreibung der Mondbewegung wurden Verfahren entwickelt, die sich auch auf anderen Gebieten als sehr nützlich erwiesen hatten. Die modernen Reihendarstellungen – nach obigem Muster – resultieren aus Berechnungen von größter Komplexität, sie zeichnen die Mondbewegung beliebig genau nach. Schon unter Beschränkung auf die wenigen Summanden des Schemas oben erhält man akzeptable Genauigkeit; das wird im Vergleich von λ -Werten aus der nachfolgenden Excel-Tabelle mit den entsprechenden Jahrbuchwerten in Tabelle 2 des Zeitschriften-Artikels deutlich. Umgekehrt ist der Aufwand, um mittels Tabellenkalkulation aus den Zahlenkolonnen wieder die komplizierten Bewegungsmuster des Mondes herauszuschälen, nicht sehr hoch; das sollte im Artikel "Die gestörte Mondbahn" demonstriert werden.

	Ekliptikale Länge des Mondes (beschränkte Genauigkeit, obige Formeln; Winkel im Gradmaß)											
	Juli-	Jahrhunderte	mittl.	Knoten-	Elongation	Mittlere	$\lambda = L_0 +$				λ	
Tage	anisches	seit 2000	Anomalie	Abstand	zur Sonne	Länge	Große Un-	plus In-	plus	plus	Summe	
	Datum	τ	Ι(τ)	F (τ)	$D(\tau)$	L_o	gleichheit	klination	Evektion	Variation		
1.1.08	2454466,5	0,07999	668,5369	676,1897	626,8023	193,1590	196,6321	196,5184	197,3694	197,2977	197,30	
2.1.08	2454467,5	0,08001	668,7649	676,4206	627,0150	206,3354	208,6091	208,5035	209,5239	209,1887	209,19	
3.1.08	2454468,5	0,08004	668,9929	676,6515	627,2278	219,5118	220,4878	220,4124	221,5627	221,0236	221,02	
4.1.08	2454469,5	0,08007	669,2209	676,8824	627,4406	232,6881	232,3248	232,2954	233,5307	232,8840	232,88	
5.1.08	2454470,5	0,08010	669,4490	677,1133	627,6533	245,8645	244,1774	244,2000	245,4725	244,8334	244,83	
6.1.08	2454471,5	0,08012	669,6770	677,3442	627,8661	259,0409	256,1024	256,1725	257,4325	256,9151	256,92	
7.1.08	2454472,5	0,08015	669,9050	677,5751	628,0789	272,2173	268,1554	268,2582	269,4569	269,1534	269,15	
8.1.08	2454473,5	0,08018	670,1330	677,8060	628,2916	285,3937	280,3893	280,5033	281,5939	281,5585	281,56	
9.1.08	2454474,5	0,08021	670,3611	678,0369	628,5044	298,5701	292,8528	292,9541	293,8943	294,1333	294,13	
10.1.08	2454475,5	0,08023	670,5891	678,2678	628,7172	311,7465	305,5885	305,6559	306,4091	306,8799	306,88	
11.1.08	2454476,5	0,08026	670,8171	678,4987	628,9299	324,9229	318,6303	318,6497	319,1867	319,8052	319,81	
12.1.08	2454477,5	0,08029	671,0452	678,7296	629,1427	338,0993	331,9997	331,9670	332,2668	332,9228	332,92	
13.1.08	2454478,5	0,08031	671,2732	678,9605	629,3555	351,2757	345,7018	345,6239	345,6749	346,2514	346,25	
14.1.08	2454479,5	0,08034	671,5012	679,1914	629,5682	4,4521	359,7217	359,6148	359,4150	359,8091	359,81	
15.1.08	2454480,5	0,08037	671,7292	679,4223	629,7810	17,6285	14,0217	13,9084	13,4656	13,6070	13,61	
16.1.08	2454481,5	0,08040	671,9573	679,6532	629,9938	30,8049	28,5422	28,4460	27,7775	27,6410	27,64	
17.1.08	2454482,5	0,08042	672,1853	679,8841	630,2066	43,9813	43,2039	43,1452	42,2768	41,8867	41,89	
18.1.08	2454483,5	0,08045	672,4133	680,1150	630,4193	57,1577	57,9147	57,9056	56,8712	56,2972	56,30	
19.1.08	2454484,5	0,08048	672,6413	680,3459	630,6321	70,3341	72,5777	72,6202	71,4600	70,8044	70,80	
20.1.08	2454485,5	0,08051	672,8694	680,5768	630,8449	83,5105	87,1006	87,1858	85,9449	85,3246	85,32	
21.1.08	2454486,5	0,08053	673,0974	680,8077	631,0576	96,6869	101,4041	101,5141	100,2407	99,7664	99,77	
22.1.08	2454487,5	0,08056	673,3254	681,0386	631,2704	109,8633	115,4279	115,5397	114,2834	114,0397	114,04	
23.1.08	2454488,5	0,08059	673,5535	681,2695	631,4832	123,0397	129,1344	129,2246	128,0342	128,0645	128,06	
24.1.08	2454489,5	0,08062	673,7815	681,5004	631,6959	136,2161	142,5083	142,5579	141,4797	141,7787	141,78	
25.1.08	2454490,5	0,08064	674,0095	681,7312	631,9087	149,3925	155,5544	155,5531	154,6290	155,1433	155,14	
:												

Literatur

- [1] Schultz, A: Astronomie mit Tabellenkalkulation, Neunter Teil: Die gestörte Mondbahn. In: ASTRONOMIE + RAUMFAHRT im Unterricht 55 (2018), Heft 2
- [2] Montenbruck, O.: Grundlagen der Ephemeridenrechnung. Verlag Sterne und Weltraum, Heidelberg 2001, S. 95 f
- [3] Peterson, I.: Was Newton nicht wußte Chaos im Sonnensystem. Insel Verlag, Frankfurt am Main und Leipzig 1997, Kap. 6

Ergänzung 2 zum Zeitschriftenartikel "Die gestörte Mondbahn" (ASTRONOMIE + RAUMFAHRT im Unterricht Heft 2/2018)

Die Konstruktion der Vektoren der Störbeschleunigung von Albrecht Schultz

In **Bild I** sind Sonne, Erde und Mond in irgendeiner Konstellation festgehalten; S, M, E sind die Schwerpunkte der Himmelskörper. Erde und Mond zusammen genommen sehen wir als unregelmäßig ausgedehnten Körper an, der in seinem Schwerpunkt $S_{E,M}$ die Beschleunigung $a_{E,M} = G \cdot m_S/r_S^2$ zur Sonne hin erfährt (G ist die Gravitationskonstante, m_S die Sonnenmasse, r_S der Abstand der Punkte $S_{E,M}$ und S). $S_{E,M}$ liegt noch innerhalb der Erde, drei Viertel des Erdradius vom Erdmittelpunkt entfernt. Das "Massenelement" M, der Mond in seinem Schwerpunkt gedacht, erfährt aber für sich genommen eine in Betrag und Richtung davon verschiedene Beschleunigung \vec{a}_M zur Sonne hin. Deswegen ist die Mondbewegung um die Erde gestört. \vec{a}_M hat den Betrag $G \cdot m_S / \overline{MS}^2$; über den Kosinussatz der Trigonometrie bekommen wir die Abhängigkeit vom Phasenwinkel ϑ mit hinein (**Bild I**: $\vartheta = 0^\circ$ bei Neumond, $\vartheta = 180^\circ$ bei Vollmond):

$$a_M(\vartheta) = G \cdot m_S / (r_S^2 + r_M^2 - 2r_S r_M \cdot \cos \vartheta).$$

Dabei ist r_M der Abstand der Punkte $S_{E,M}$ und M. Er wird hier als Konstante angesehen, dann kennen wir den Betrag $a_M(\vartheta)$ für jedes gegebene ϑ , d.h. an beliebigen Punkten der Mondbahn. Um die Störung der Mondbahn isoliert darzustellen, müssen wir die Beschleunigung am Punkt M relativ zum Punkt $S_{E,M}$ (die "Störbeschleunigung") notieren, und dafür steht die Vektordifferenz $\vec{a}_M(\vartheta) - \vec{a}_{E,M}$.

Letzteres soll näher erläutert und veranschaulicht werden: Was beschrieben wurde, findet noch in einem Bezugssystem statt, das fest mit der unbeweglich gedachten Sonne verbunden ist. In dieser Sicht von außen fällt die Erde zusammen mit dem Mond quasi frei auf die Sonne zu. (In ihrer Kreisbewegung "verfehlen" sie aber den Zentralkörper ständig.) Wir begeben uns jetzt in ein Koordinatensystem, dessen Ursprung im Schwerpunkt $S_{E,M}$ des Systems Erde-Mond liegt; die x-Achse weist zur Sonne (**Bild II**). Beobachter im Zentrum dieses Systems fühlen sich wie die Insassen eines Raumschiffes, das antriebslos auf einer Kreisbahn um die Sonne fliegt: sie sind schwerelos, fallen ebenso schnell wie die Wände des Raumschiffs und die Gegenstände darin. Aber genau betrachtet haben die Massenpunkte im Raumschiff doch verschiedene Beschleunigungen zur Sonne hin: die Beschleunigungen auf der "Sonnenseite" des Schiffes ("untere" Seite) sind entfernungsbedingt etwas größer, auf der abgewandten Seite ("oben") etwas kleiner als im Schwerpunkt, nach dem sich die Gesamtbewegung richtet, auch sind im Allgemeinen die Richtungen leicht verändert. Die oben und unten schwebenden Gegenstände werden deshalb langsam zur Ober- bzw. Unterseite getrieben, und lose Gegenstände an gegenüberliegenden Seitenwänden streben ein wenig zur Mitte hin. Massenpunkte P_i im Raumschiff haben also verschiedene Beschleunigungen \vec{a}_i zur Sonne hin; ein Insasse registriert nur die Beschleunigungen relativ zum Schwerpunkt, und das sind die Vektordifferenzen $\vec{a}_i - \vec{a}_{Schwerpunkt}$. Ebenso hat sich im frei fallenden System Erde-Mond der Schwerpunkt der Gravitation entzogen; aber am Punkt M gibt es eine Restbeschleunigung $\vec{a}_M - \vec{a}_{EM}$, die ein Zerren am "Massenelement" Mond bewirkt.

Die Analogie zu den Gezeiten auf der Erde ist offensichtlich. Es liegt der in [3] behandelte Fall vor, wenn wir Bild II um-interpretieren: Die Strecke $r_M = \overline{S_{E,M}M}$ wird als Radius der Erdkugel ansehen, M als verschiebbares Massenelement auf dieser Kugel, und S als Schwerpunkt des Mondes oder der Sonne. Der Mond (die Sonne) übt auf alle Kugelteile Gravitation aus. Die der Vektordifferenz $\vec{a}_M - \vec{a}_{E,M}$ entsprechenden Beschleunigungen sind für die Verschiebungen von Wassermassen verantwortlich, die an den Küsten zu Ebbe und Flut führen. Unsere Vektordifferenz ist also eine "Gezeitenbeschleunigung", hier nennen wir sie Störbeschleunigung. In der Himmelsmechanik taucht sie in mannigfachen Zusammenhängen auf; z.B. können die zahllosen winzigen Teilchen in den Ringsystemen von Saturn, Jupiter und Uranus aus entsprechenden Gründen nicht zu festen Monden verschmelzen.

Wir benötigen Ausdrücke für die x- und y-Komponente der Störbeschleunigung im Koordinatensystem von Bild II; sie sollen die Abhängigkeit vom Winkel ϑ beschreiben. Dafür können dieselben Formeln verwendet werden, die schon für die Gezeiten der Erde benutzt wurden [3]; die dortigen Bezeichnungen a^{Gez}_{x} , a^{Gez}_{y} werden hier durch $a^{St\"{o}r}_{x}$, $a^{St\"{o}r}_{y}$ ersetzt:

$$a^{St\ddot{o}r}_{x} = a_0 \cdot \cos \theta, \ a^{St\ddot{o}r}_{y} = -\frac{a_0}{2} \cdot \sin \theta \text{ mit } a_0 = \frac{2Gm_S}{r_S^3} \cdot r_M.$$
 (1)

(Die Mondmasse in den früheren Formeln ist jetzt durch die Sonnenmasse m_S ersetzt; ferner ist der vorige Abstand Erde-Mond jetzt der Abstand Erde-Sonne (r_S) , der vorige Erdradius ist jetzt der Abstand r_M .)

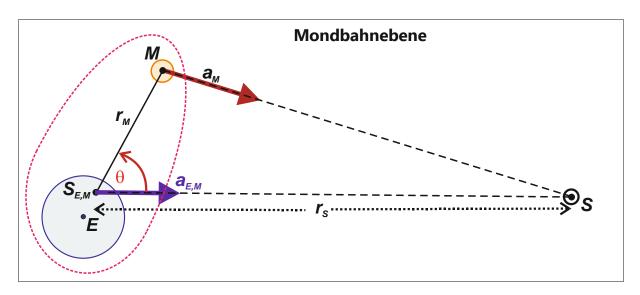


Bild I Die Sonne (S) und das Erde-Mondsystem (E, M) mit dem Schwerpunkt $S_{E,M}$ (schematisch). Der Mond erhält eine Beschleunigung, die sich in Betrag und Richtung von der des Schwerpunktes unterscheidet.

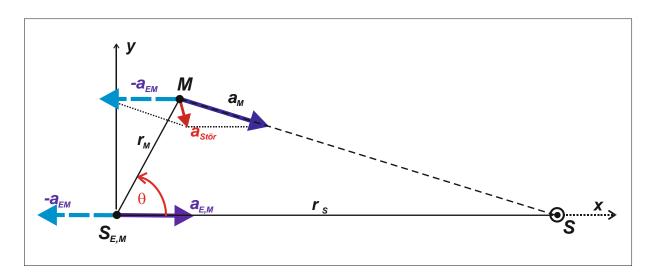


Bild II Die Störbeschleunigung auf den Mond ergibt sich als Vektordifferenz: $\vec{a}_{St\"{o}r} = \vec{a}_M - \vec{a}_{E,M}$.

Die von Excel berechneten Komponenten der Störbeschleunigung sind in der **Tabelle I** wiedergegeben, und in **Diagramm I** sind die Vektoren auf die kreisförmig gedachte Mondbahn aufgesetzt. Sie geben Betrag und Richtung der Störbeschleunigung in der jeweiligen Mondposition an, vorausgesetzt, dass die Knotenlinie als *x*-Achse zur Sonne weist; in diesem Fall besteht auch Rotationssymmetrie bezüglich der *x*-Achse, das skizzierte Vektorfeld trifft für alle möglichen Inklinationswinkel zu. Wenn die Knotenlinie anders liegt, gibt es i.a. neben der tangentialen und radialen Beschleunigungskomponente auch eine dritte, zur Bahnebene senkrechte – siehe auch Bild 3 in [1]. Für den der Sonne nächsten Punkt der Mondbahn gilt

$$a^{St\ddot{o}r}_{x} = a_0, \ a^{St\ddot{o}r}_{y} = 0,$$

auf der Gegenseite ist

$$a^{St\ddot{o}r}_{x} = -a_0, \ a^{St\ddot{o}r}_{y} = 0$$

 $(\theta = 0^{\circ} \text{ bzw. } 180^{\circ})$; die Vektorpfeile weisen also bei Neumond zur Sonne hin, bei Vollmond von ihr weg. Im rechten Winkel dazu (bei Halbmond, $\theta = 90^{\circ} \text{ bzw. } 270^{\circ})$ sind die Vektorpfeile jeweils zum Kreismittelpunkt gerichtet und nur halb so lang $(a^{St\"{o}r}_{x} = 0, a^{St\"{o}r}_{y} = \mp a_{0}/2)$.

Tabelle I Die Vektoren der Störbeschleunigung												
	m _M	=	7,35E+22	kg , $r_M =$	379729000	m, $G =$	6,67E-11	$m^3/(kg s^2)$				
	m _S	=	1,99E+30	kg , $r_S =$	1,496E+11	m , $a_0 =$	3,01E-05	m/s ²				
$\boldsymbol{\vartheta}$	x _M	Ум	a_x (m/s ²)	$a_y \text{ (m/s}^2\text{)}$	a _x *150000	a _y *150000	Pfeils	pitzen				
							(x + ax,	y + ay				
0	14,00	0,00	3,01E-05	0,00E+00	4,52	0,00	18,52	0,00				
0,157	13,83	2,19	2,97E-05	-2,35E-06	4,46	-0,35						
0,314	13,31	4,33	2,86E-05	-4,65E-06	4,30	-0,70	17,61	3,63				
0,471	12,47	6,36	2,68E-05	-6,83E-06	4,02	-1,03						
0,628	11,33	8,23	2,44E-05	-8,85E-06	3,65	-1,33	14,98	6,90				
0,785	9,90	9,90	2,13E-05	-1,06E-05	3,19	-1,60						
0,942	8,23	11,33	1,77E-05	-1,22E-05	2,65	-1,83	10,88	9,50				
1,100	6,36	12,47	1,37E-05	-1,34E-05	2,05	-2,01						
1,257	4,33	13,31	9,30E-06	-1,43E-05	1,40	-2,15	5,72	11,17				
1,414	2,19	13,83	4,71E-06	-1,49E-05	0,71	-2,23						
1												

Mit diesen Sonderfällen sind die Bahnpunkte gekennzeichnet, in denen lediglich die Radialkomponente der Störbeschleunigung existiert. Für Untersuchungen der gestörten Mondbahn ist es auch von Interesse, diejenigen Winkel ϑ zu ermitteln, für welche nur die Tangentialkomponente vorhanden ist. In solchen Bahnpunkten ist die Störbeschleunigung

$$\boldsymbol{a}^{St\"{o}r} = \begin{pmatrix} a_0 \cdot \cos \vartheta \\ -a_0/2 \cdot \sin \vartheta \end{pmatrix}$$

ein Tangentenvektor, und das Skalarprodukt mit dem Radiusvektor muss Null ergeben, das heißt:

Der Betrag des Tangentenvektors ist

$$\begin{split} \sqrt{(a_0\cdot\cos\vartheta)^2+(-a_0/2\cdot\sin\vartheta)^2} \\ = \frac{a_0}{2}\sqrt{4\cdot\cos^2\vartheta+\sin^2\vartheta} &= \frac{a_0}{2}\sqrt{3\cdot\cos^2\vartheta+1} = \frac{a_0}{2}\sqrt{\frac{3}{1+\tan^2\vartheta}+1} \;. \end{split}$$
 Mit $\tan^2\vartheta=2$ ergibt sich $\frac{a_0}{2}\sqrt{2}$.

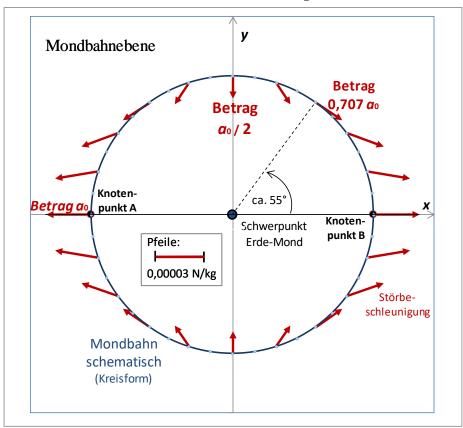


Diagramm I Störbeschleunigungen auf der kreisförmig gedachten Mondbahn für den Fall, dass sich die Knotenlinie auf der *x*-Achse befindet, ebenso die Sonne (weit rechts oder weit links). Die Vektorpfeile geben Betrag und Richtung in den jeweiligen Mondpositionen an, dabei denkt man sich den Ort der Sonne jeweils unverändert.

Wir vergleichen den maximalen Betrag a_0 der Störbeschleunigung mit der Beschleunigung, die die Erde auf den Mond ausübt; dazu bilden wir das Verhältnis $\frac{a_0}{G \cdot m_E/r_M^2}$ (G: Gravitationskonstante), es ergibt sich etwas mehr als 1 Prozent.

Literatur

- [1] Schultz, A: Astronomie mit Tabellenkalkulation, Neunter Teil: Die gestörte Mondbahn. In: ASTRONOMIE + RAUMFAHRT im Unterricht 55 (2018), Heft 2
- [2] Bergmann-Schaefer, Lehrbuch der Experimentalphysik Band I, 11. Auflage, de Gruyter, Berlin New York 1998, S. 165 ff
- [3] Schultz, A.: Astronomie mit Tabellenkalkulation. Achter Teil: Mondtag und Gezeiten. In: ASTRONOMIE + RAUMFAHRT im Unterricht 50 (2013), Heft 3-4

Ergänzung 3 zum Zeitschriftenartikel "Die gestörte Mondbahn" (ASTRONOMIE + RAUMFAHRT im Unterricht Heft 3-4/2018)

Die Bahnelemente Exzentrizität und Große Halbachse Rückgriff auf Reihenentwicklung

von Albrecht Schultz

In der Ergänzung 1 zum Zeitschriftenartikel wurde eine Reihenentwicklung für die ekliptikale Länge λ des gestörten Mondes vorgestellt. Das soll nun auch für die Exzentrizität e und für die große Halbachse a geschehen. Die beiden Bahnelemente wären feste Größen, wenn der Mond ungestört seine Bahn um die Erde ziehen könnte, aber die von der Sonne ausgehenden Gezeitenkräfte machen sie variabel. Die entsprechenden Mechanismen beschreibt F.R. Moulton in seiner Einführung in die Himmelsmechanik aus dem Jahr 1927 - siehe Literaturangabe [13] des Zeitschriftenartikels.

In der mathematischen Darstellung überlagern sich einem Mittelwert, der für eine vorerst ungestörte Kepler-Bahn steht, zahlreiche periodische Terme, und in diesen schlagen sich die wechselnden Einflüsse der Störkraft nieder. Mit den Argumenten

 $l(\tau)=134,96341^\circ+477198,86763^\circ\cdot\tau+0,008997^\circ\cdot\tau^2$ (mittlerer Winkelabstand des Mondes vom Perigäum),

 $D(\tau) \approx 297,85020^{\circ} + 445267,111522^{\circ} \cdot \tau$ (mittlerer Winkelabstand des Mondes von der Sonne) ergibt sich für die Exzentrizität

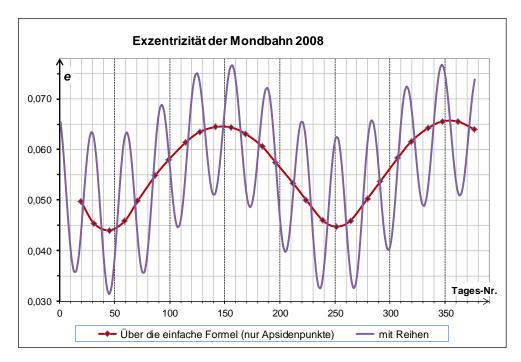
 $e = 0.055546 + 0.014216 \cdot \cos(2D-l) + 0.00851 \cdot \cos(2D-2l) - 0.001383 \cdot \cos l \pm \cdots,$ und für die große Halbachse

```
a = 383397.8 \text{ km} + 3400.4 \text{ km} \cdot \cos 2D - 635.6 \text{ km} \cdot \cos(2D - l) - 235.6 \text{ km} \cdot \cos l \pm \cdots
```

Dabei ist $\tau = (JD - 2451545)/36525$ (JD: Julianisches Datum) die seit Beginn des Jahres 2000 verstrichene Zeit in Jahrhunderten (https://de.wikipedia.org/wiki/Mondbahn und *Montenbruck, O.: Grundlagen der Ephemeridenrechnung*, Verlag Sterne und Weltraum, Heidelberg 2001, S. 95).

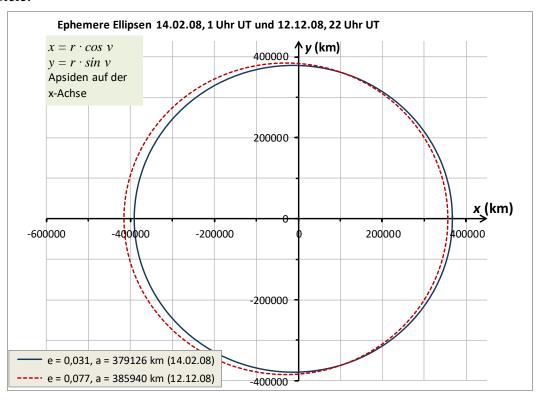
In Diagramm 3b des Zeitschriftenartikels stützt sich der Exzentrizitätsverlauf auf monatliche Mittelwerte für e. Diese sind in den Astronomischen Jahrbüchern nicht angegeben, sie wurden unter Verwendung aufeinanderfolgender Extremabstände ρ_{min} , ρ_{max} (Peri- und Apogäumsentfernungen) berechnet; methodenbedingt konnte ein feineres Schwingungsbild dort nicht hergestellt werden. Dem ist im untenstehenden Diagramm abgeholfen: das aus der Reihenentwicklung resultierende Schwingungsbild ist über das gröbere gelegt.

Der über die Jahrbuchdaten ermittelte Exzentrizitätsverlauf erweist sich als Glättung der reihenbasierten Kurve; hier lässt sich auch nachvollziehen, dass die erste Kurve die an der zweiten Kurve ablesbaren *Zuwächse* bzw. *Abnahmen* – jeweils innerhalb einzelner Perioden erzielt – nachzeichnet, ganz so wie im Zeitschriftentext dargelegt.



Die Datenpunkte der zweiten Kurve kennzeichnen die Exzentrizitäten der fiktiven ephemeren Ellipsen, von denen im Artikel des Heftes 3-4/2018 eingangs die Rede war. Diese Ellipsen lassen sich für beliebige Zeitpunkte darstellen: unter Anwendung der Reihenentwicklung wird ein bestimmtes e_0 zusammen mit dem gleichzeitigen a_0 berechnet, dann ergibt sich die zugehörige Ellipsenform über die graphische Auswertung der Polargleichung $r_0 = \frac{a_0 \cdot (1 - e_0^2)}{1 + e_0 \cdot \cos \nu}$ $(0 \le \nu < 2\pi)$.

Beispiele:



Die spezielle Lage im Raum ist dabei nicht berücksichtigt.

Errata:

Heft 2 / 2018

Seite 10, 3. Spalte:
$$n + \frac{\lambda_{Kn} - \lambda_n}{\lambda_{n+1} - \lambda_n}$$

ist der berichtigte Term für die Zeitpunkte der Knotendurchgänge.

Heft 3-4 / 2018

Seite 21, 1. Spalte, Zeile 27: ... ein
$$\rho_{max}$$
 und ein ρ_{min} ...

Seite 23, Unterschrift zu Diagramm 3a: Apsidenentfernungen 2008 (ρ_{min} und ρ_{max})

Seite 25, mittlere Spalte:

$$x \cdot 29,53059 \ d = y \cdot 27,55455 \ d$$
 oder
$$\frac{y}{x} = \frac{2953059}{2755455} = \frac{984353}{918485}$$
 (ursprünglich falsche Einsetzung!)