Theory of Quantum Matter

Lecturer: Prof. Otfried Gühne (Mon 14:00, Fri 10:00, Room D120) Exercises: Chau Nguyen (Fri 14:00, Room B030)

Sheet 5

Hand in: Mon 19.11.2018 (questions marked as * are optional) Discussion date: Fri 23.11.2018

7. Tight-binding approximation for electrons in the Kronig– Penny potential

- (a) (10pts) Show that for the δ -Dirac potential, $V(x) = -S\delta(x)$ with S > 0, there is a single bound state. Find the corresponding energy E and wave function $\phi(x)$.
- (c) (20pts) Now we consider a periodic lattice of δ -Dirac potentials with spatial period d, $V(x) = -\sum_{n=-\infty}^{+\infty} S\delta(x-nd)$. In the tight-binding approximation, we use the wavefunctions $\phi(x-nd)$ as basis. Compute that wavefunction overlaps $s_{mn} = \langle \phi(x-md), \phi(x-nd) \rangle$ and the matrix elements $H_{mn} = \langle \phi(x-md), H\phi(x-nd) \rangle$.
- (d) (5pts) Compute and sketch the energy band in the tight-binding approximation. For simplicity, we consider only upto nearest neighbour hoopings $(H_{mn} = 0 \text{ if } |m n| \ge 2)$ and ignore the wavefunction overlaps $(s_{mn} = 0 \text{ if } m \ne n)$.

8. Tight-binding approximation for some lattices

Consider the tight-binding approximation for a certain lattice. Let H be the Hamiltonian of an electron in the lattice and $\phi(\vec{r})$ be the local atomic wavefunction. To aid the computation, we assume: $\left\langle \phi(\vec{r}-\vec{R}), H\phi(\vec{r}-\vec{R}) \right\rangle = 0$ (this is obtained by redefining an additive constant in the Hamiltonian), $\left\langle \phi(\vec{r}-\vec{R}'), H\phi(\vec{r}-\vec{R}) \right\rangle = -t$ if \vec{R}' and \vec{R} are nearest neighbours in the lattices (nearest neighbour hooping approximation) and $\left\langle \phi(\vec{r}-\vec{R}'), \phi(\vec{r}-\vec{R}) \right\rangle = \delta_{\vec{R},\vec{R}'}$ (orthogonality approximation). In the tight-binding approximation:

- (a) (*) Compute the energy band for the square lattice in the plane.
- (b) (5pts) Compute the energy band for the triangular lattice in the plane defined by two basic vectors \vec{a} and \vec{b} of the same length and angle of $\pi/6$.