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19. The Cooper problem

Here we explore some details of the Cooper problem: two electrons outside the Fermi ball tend
to form a bound state under arbitrary weak attraction. Recall that the wave function for the
two electrons in momentum space ϕ~k is the solution of the Schrödinger equation,

2ε~kϕ~k − V
∑
~k′

ϕ~k′ = Eϕ~k, (1)

where EF −~ωD ≤ ε~k′ ≤ EF +~ωD. Here ε~k is the electron dispersion relation, ωD is the Debye
frequency, EF is the Fermi energy, and V is the strength of the attraction. This ultimately leads
to the equation for the energy,

1 =
∑
~k

V

2ε~k − E
, (2)

where the summation is limited to EF ≤ ε~k ≤ EF +~ωD. Transforming this to integral, we have

1 = V

∫ EF+~ωD

EF

d ε
ρ(ε)

2ε− E
. (3)

where ρ(ε) is the electron density of state. The solution for the case ~ωD � EF where the
slow-varying function ρ(ε) can be treated as constant has been given explicitly in the lectures.

(a) Without invoking the above approximation, provided EF > 0, show that equation (3)
always has a bound state solution with binding energy ∆ = E − 2EF < 0 for arbitrary
weak V . To appreciate the importance of the presence of the Fermi surface: show that if
EF = 0 (i.e., two electrons in the vacuum), for sufficiently small V , the equation has no
bound state solution.

Hint: Study the monotonicity of the right hand side of equation (3) for E < 2EF .

Let us now estimate the size of the Cooper pair. Recall that the wave function in the momentum
space upto a normalisation factor is given by

ϕ~k ∝
1

2ε~k − E
, (4)

for ε~k ≥ EF . The wave function in real space can be found by Fourier transformation,

ϕ(~r) =
∑
~k

ϕ~ke
i~k~r, (5)

where ~r is the difference in the coordinates of the two electrons. The mean square radius of such
a state is

R2 =

∫
d~r|ϕ(~r)|2r2∫
d~r|ϕ(~r)|2

. (6)
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(b) Show that one can also write

R2 =

∫
d~k|∇~k

ϕ~k|
2∫

d~k|ϕ~k|2
. (7)

(c) Using the approximation as in the lecture (∆� ~ωD � EF ; slow-varying functions under
integrals are treated as constants, etc.) to evaluate the integral to show that

R ≈ 2√
3

~vF
∆

, (8)

where vF is the Fermi velocity (corresponding to the energy EF ).

Remark: With realistic parameters, one finds that R ≈ 1µm, which is way above the
atomic scale. One cannot simply consider Cooper pairs as single particles.
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