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ABSTRACT

This thesis is devoted to two main questions. Firstly, the problem of entanglement
detection and quantification is addressed. Secondly, the influence of disorder of
internal parameters (e.g. coupling constants) on the ground state properties of many-
body quantum systems is investigated.

As a tool to investigate the first question I consider the covariance matrix of a
quantum state. Using covariance matrices, one can in many cases efficiently answer
whether a given state (pure or mixed) is entangled or separable in the first place.
The answer is formulated in form of a easily computable separability criterion, which
is called covariance matrix criterion (CMC).The criterion provides a strong condi-
tion on a covariance matrix of separable quantum states and detects many bound
entangled states in case of bipartite and multipartite setting. Further it is shown
that several other criteria detecting bound entangled states are corollaries of the
CMC. Apart from it, it is proved that physical observables used for the construction
of a covariance matrix of the state, which is detected by the CMC, can be used to
show a violation of a criterion based on local uncertainty relations (LURs). The
converse is also true: If LURs criterion is violated for some observables, then the
CMC cannot be fulfilled. Then I discuss extensions of the CMC to the multipartite
case and show that such extensions are able to detect multipartite entangled states.

Furthermore, it turns out that one can use covariance matrices to estimate the
amount of entanglement in a quantum state. To this end I define a quantity E(ρ),
which quantifies the violation of the CMC, and study its general properties from
the point of view of entanglement monotones. In addition this quantity is compared
with the concurrence. It is shown that E(ρ) coincides with the concurrence on two
qubit pure states and provides a lower bound on it for mixed states of bipartite
d-level systems with d ≤ 4.

Then I address the question of influence of disorder on quantum many-body
systems. The description of these systems is carried out in terms of Hamiltonians.
The Hamiltonians considered in this thesis contain only nearest neighbor interac-
tion terms and are defined on a rectangular two dimensional lattice. The main goal
is to investigate the influence of the stochastic nature of Hamiltonian’s terms on
the ground state of the whole Hamiltonian. To this end I introduce a method for
achieving ground states of these Hamiltonians. The idea of the method is based on
the local real space renormalizations and can be efficiently performed on the clas-
sical computer. The part of the lattice and hence of the Hamiltonian, which is to
be renormalized is chosen according to the strength of disorder, which is reminis-
cent of the strong disorder renormalization technique originally developed for one
dimensional systems.





ZUSAMMENFASSUNG

Diese Dissertation beschäftigt sich hauptsächlich mit zwei Fragen. Erstens wird
von dem Problem der Verschränkungsdetektion und Verschränkungsquantifizierung
die Rede sein. Zweitens wird der Einfluss der Unordnung in internen System-
parametern, wie z.B. in Kopplungskonstanten, auf Grundzustandseigenschaften von
Mehrteilchenquantensystemen untersucht.

Die Untersuchung der ersten Frage wird mittels Kovarianzmatrizen erfolgen. Die
Frage ob ein Quantenzustand verschränkt oder separabel ist lässt sich mit Hilfe
von Kovarianzmatrizen in vielen Fällen beantworten. Die Antwort auf diese Frage
ist in Form eines leicht verifizierbaren Verschränkungskriteriums formuliert, das
Kovarianzmatrizenkriterium genannt wird (CMC). Das CMC stellt eine starke Be-
dingung an separable Zustände und detektiert viele gebunden verschränkte Zustände
im bipartiten und im multipartiten Fall. Ferner wird gezeigt, dass einige andere Kri-
terien, die gebundene Verschränkung detektieren, Korollare des CMC sind. Außer-
dem wird bewiesen, dass die physikalischen Observablen, die zur Konstruktion der
Kovarianzmatrix eines mit dem CMC detektierbaren Zustandes benutzt werden,
auch für die Verletzung einer lokalen Unschärferelation (LUR) verwendet werden
können. Die Umkehrung dieser Aussage wird ebenfalls bestätigt: Wenn das LUR
Kriterium verletzt ist, wird das CMC ebenso verletzt. Weiterhin werden die Er-
weiterungen des CMC auf multipartite Systeme betrachtet. Es wird gezeigt, dass
man mit solchen Erweiterungen multipartite Verschränkung detektieren kann.

Darüber hinaus werden Kovarianzmatrizen zur Verschränkungquantifizierung in
einem Quantenzustand verwendet. Zu diesem Zweck definiere ich eine Größe E(ρ),
die die Verletzung des CMC quantifiziert, und untersuche ihre allgemeinen Eigen-
schaften aus der Perspektive der Verschränkungsmonotone. Zudem wird diese Größe
mit der Concurrence verglichen. Es wird gezeigt, dass E(ρ) mit der Concurrence für
reine Zweiqubitzustände übereinstimmt und eine untere Schranke für die Concur-
rence für gemischte Zustände von bipartiten d-Niveau Systemen mit d ≤ 4 darstellt.

Im Weiteren wende ich mich der oben erwähnten Frage der Unordnung in
quantenmechanischen Vielteilchensystemen zu. Beschreibung dieser Systeme erfolgt
mittels eines Hamiltonoperators. In dieser Doktorarbeit werden Hamiltonians be-
trachtet, die nur Nächst-Nachbar-Wechselwirkung enthalten und auf einem recht-
eckigen Gitter in zwei räumlichen Dimensionen definiert sind. Das Hauptaugen-
merk ist auf die Untersuchung des Einflusses der stochastischen Natur der einzelnen
Hamiltonianterme auf den Grundzustand des ganzen Hamiltonians ausgerichtet. Zu
diesem Zweck wird eine Renormierungsmethode definiert und angewandt. Die Idee
der Methode basiert auf lokalen Renormierungen im Ortsraum und kann auf einem
klassischen Rechner effizient durchgeführt werden. Der Teil des Hamiltonians, der
zu renormieren ist, wird nach Regeln gewählt, die einen an das Verfahren des Strong
Disorder Renormalization Technique erinnern, das ursprünglich für eindimensionale
Systeme entwickelt wurde.
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Introduction

Entanglement is one of the most mysterious phenomena of nature discovered in the
last century. Albert Einstein, Boris Podolsky and Nathan Rosen were the first who
mentioned this peculiar property of quantum mechanical correlations of composite
systems [1]. The term entanglement was chosen by Erwin Schrödinger to describe
these correlations [2]. As a rather counter-intuitive property of quantum mechanics,
entanglement was considered by Einstein, Podolsky and Rosen as a proof for the
incompleteness of quantum mechanics.

For several decades entanglement did not receive much attention. It was known
to be a bizarre phenomenon, but mainly due to the lacking of experimental imple-
mentation had not been intensively investigated. This situation started to change
in the beginning of 80’s. At that time an idea to use principles of quantum me-
chanics for tasks in classical information theory were discussed by several authors
[3, 4, 5, 6, 7]. Later on it was proved that quantum mechanics allows to perform
tasks inconceivable within the framework of classical mechanics. The newborn the-
ory received the name Quantum Information Theory. This new promising theory
opened new branches in computer science [4, 8, 9] and in communication theory
[5, 6, 7], which found already certain commercial implementation [10]. Substan-
tiated by several experiments [11, 12, 13, 14] quantum information theory rapidly
became one of the most prospered fields of modern physics. Entanglement plays a
crucial role there.

As it has been realized in the above theoretical works and confirmed by several
experimental groups, entanglement serves as a resource to perform quantum infor-
mation tasks. In some cases entanglement turned out to be not only useful but
also a necessary property of a quantum state in order to be useful for realization of
quantum informational tasks. The most simple example is quantum teleportation
of an unknown quantum state [7], which is impossible to perform without having
an entangled state. Although examples of quantum algorithms exist [4, 8, 9] that
theoretically outperform their classical analogues, their relation to entanglement is
not so clear. In Ref. [15] it was shown that quantum computer, which operates with
quasipure quantum states (pure states contaminated by white noise), is not able
to outperform the classical factorization algorithm when the state stays separable
throughout the computation. For pure states it was shown that in order to be able
to outperform classical computation, quantum computing should be carried out on
the states with sufficiently large amount of entanglement [16]. For quantum compu-
tation with pure states entanglement is proved to be a necessary resource, meaning
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that if the amount of entanglement in a system, measured as a maximal Schmidt
rank over all possible bipartitions, of n qubits scales at most logarithmically with the
system size, then the classical simulation of n qubit computation can be done with
only poly(n) classical resources [16]. The general case of quantum computation with
mixed states is more subtle and only partial answers are known. Certain compu-
tational schemes, e.g. deterministic quantum computation with one qubit (DQC1)
[17] involving highly mixed state that does not contain much entanglement, are able
to perform certain tasks (for DQC1 it is a computation of the normalized trace of
a unitary matrix) with fixed accuracy exponentially faster than any known classical
algorithm. Concerning this it was recently shown that the amount of correlations
in a mixed state of a quantum computer implementing DQC1 is exponentially large
[18]. These correlations do not need to be of quantum nature and the state contains
only small amount of entanglement. It is important to note that there is no proof
that no classical algorithm simulating DQC1 exists and the question of the classi-
cal simulatability of DQC1 is still open. Summarizing this paragraph one can say
that entanglement is proved to be necessary for quantum teleportation and quantum
computing with pure states.

During the last decade there has been a lot of effort to understand properties of
entanglement. Yet there are still a number of entanglement’s facets, which are not
completely investigated. Which states are entangled, what type of entanglement is
present in a particular entangled state, how can it be characterized and detected?
These are only few of many [19] questions in quantum information theory that have
no general answer.

In this thesis I address mainly two tasks. Firstly, I will attempt to answer the
question: How to decide whether a given physical state entangled or not? The results
will be formulated in a form of entanglement criteria that can be used to detect
entanglement. Obviously in order to decide whether a given state is separable or
entangled one needs some information about the state. Some of entanglement criteria
need the full information about the state, i.e. use the density matrix for decision.
Other criteria use only partial information about the state. The criteria formulated
in this thesis belong to latter class entanglement criteria and are formulated in terms
of second moments (covariances) of certain observables. Then, I will elaborate on
the connection between entanglement detection and entanglement quantification.
In particular, I will show that the entanglement criteria, which will be formulated
in the main part of this thesis, can be used to estimate (in some cases even to
calculate exactly) the amount of entanglement in a given quantum state. Secondly,
I will consider Hamiltonians of disordered quantum spin models. Investigations of
systems that are also a subject of intensive studies in condensed matter physics
are motivated by the following question: What properties of a quantum mechanical
system are responsible for the existence of entanglement in it? As it was shown
by several authors, the ground states of many-body Hamiltonians must be highly
entangled. It is therefore natural to consider disordered quantum system and analyze
to which extent the disorder can affect the quantumness of initially highly entangled
ground state of a many-body Hamiltonian. I will introduce a method that allows to
investigate disordered quantum spin systems on two dimensional rectangular lattices
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by renormalizing their Hamiltonian. The renormalization is carried out locally in
the real space and therefore addresses the question of locality of correlations in
these systems. On the one hand these investigations confirm the conjecture that
the locality of correlations depends on the strength of disorder, which was proven
rigorously for one dimensional systems and was indicated numerically for some two
dimensional models. On the other hand I consider a new and more general framework
for analyzing quantum Hamiltonians with arbitrary nearest neighbor interactions on
rectangular lattices.

This thesis is organized as follows. Chapter 1 is thought to be a warm-up for
upcoming sections and contains a short overview about topics related to the main
subjects of the thesis. In the second Chapter of this thesis I introduce covariance
matrices as a framework, which is used as a main tool in Chapters 3, 4, 5 and 6,
where I investigate the questions of entanglement detection and quantification. In
particular, Chapter 3 is devoted to the bipartite entanglement criterion, which is
formulated in terms of the covariance matrix of a given quantum state. In Chapter
4 several ways of evaluation of this criterion are discussed. The generalization of the
criterion on more than two parties is the subject of Chapter 5. In Chapter 6 the
question of entanglement quantification with covariance matrices in bipartite case is
investigated. The seventh chapter is devoted to the investigation of the influence of
disorder on many body quantum systems.
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Chapter 1

Preliminaries

In this chapter I will briefly discuss notions of entanglement and its role in solid
state systems.

1.1 Entanglement: general notions, bipartite case

1.1.1 Bipartite pure states

Let us begin our discussion with the bipartite pure case. Assume we have a task to
describe two physical systems A and B simultaneously. In quantum mechanics one
associates to each system a Hilbert space and to each physical state a normalized
vector in this particular space. The composite system AB is then associated with
a Hilbert space, which is the tensor product of the individual Hilbert spaces H =
HA ⊗ HB with dA = dimHA < ∞ and dB = dimHB < ∞ their dimensions. The
states of the composite system are then again normalized vectors that can be written
in the form

|ψAB〉 =
n∑

i=1

m∑

j=1

cij |ψAi 〉 ⊗ |ψBj 〉, (1.1)

where n = dimHA and m = dimHB respectively. In this case one speaks of bipartite
pure states.

All states of the composite system can be now naturally divided into two groups:
entangled and separable.

Definition 1.1. A given pure state |ψAB〉 is called separable iff it can be written
as a tensor product of the form

|ψAB〉 = |ψA〉 ⊗ |ψB〉. (1.2)

It is called entangled otherwise.
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To pick an example, let us consider a system, that consists of only two spin-
1
2 particles. Denote by |0〉 and |1〉 the spin up and spin down polarizations of the
particle, then the state |00〉 is an example of a separable pure state, whereas a singlet
|ψ−〉 = 1√

2
(|01〉 − |10〉) is an example of an entangled state.

Physically one can perceive the product states as completely uncorrelated states.
Two experimentalists can prepare their states locally in their labs independently of
each other. The resulting state of the composite system will be always a product
state. There is however no chance to prepare a state |ψ−〉 in such a way [1, 11].

The question how to distinguish between separable and entangled states is rather
easy to answer. Indeed, the state |ψAB〉 is a product state if and only if the rank of
the matrix of the coefficients C = {cij} in (1.1) is equal to one. It turns out that
for the description of entangled states it is useful to represent the state |ψAB〉 in a
particular form

|ψAB〉 =
r∑

i=1

λi|ψAi 〉 ⊗ |ψBi 〉. (1.3)

Such a representation always exists and is called Schmidt decomposition. The coef-
ficients λi > 0 are the singular values of the matrix C [20, 21] and the number r is
called Schmidt rank. Therefore, in terms of the Schmidt decomposition we come to
the following conclusion:

Remark 1.2. A given pure state |ψAB〉 of a composite system associated with the
Hilbert space HA⊗HB is entangled iff its Schmidt rank r is strictly larger than one.

1.1.2 Bipartite mixed states

Now imagine that we are not provided with the information which state describes
the composite system AB in a faithful way. However, we do know that the system
is in one of the states |ψABα 〉, where α can take values from 1 to some P . In this
case we say that the system is in a mixed state and describe it in terms of linear1.
positive semidefinite operators with unit trace

ρAB =

P∑

α=1

pα|ψABα 〉〈ψABα |, (1.4)

with probabilities pα > 0 and
∑P

α=1 pα = 1. Mixed states can be classified as follows:

Definition 1.3. (Mixed states) A given mixed state ρAB is a product state iff it
can be written as

ρAB = ρA ⊗ ρB. (1.5)

The state is called separable iff it belongs to the convex hull of product states

ρ =
∑

α

pαρ
A
α ⊗ ρBα . (1.6)

It is called entangled otherwise.

1The set of Hermitian linear operators is denoted by B(H)
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Separable states contain a certain amount of correlations. However, for preparing
these states no non-local apparatus is necessary. Indeed if we would like to prepare
such a state we would need again two experimentalists in two distinct labs, a couple
of dice and a telegraphic channel between the labs. For every outcome α of a die
throw that occurs with a certain probability pα the experimentalists agree to prepare
a state ρAα ⊗ ρBα locally. By this procedure they produce a state of the type (1.6) in
Definition 1.3. This state will be separable and the preparation procedure, which
led to that state, does not need quantum mechanical correlations, which can be in
principle established between two distinct labs.

The described process can be cast in a mathematical strict framework. The
general statement in quantum information theory reads entanglement can not be
produced by local operations and classical communication (LOCC). The outstanding
importance of this statement will start to become clear in the next chapter, where
we discuss entanglement measures.

For the time being we note that to decide whether the given bipartite mixed state
is entangled or not is a computationally hard task. This problem is known under
the name separability problem. The difficulty of this problem can be illustrated by
the following example. Imagine we are given a bipartite state ρ and would like to
know whether know, whether it is entangled or separable. Then naively one could
solve the problem by minimizing distance between the state and the convex set of
the separable states

D(ρ) = min
π∈S

||ρ− σ||, (1.7)

where ||.|| is some operator norm. In order to calculate this distance one has to
minimize over all separable states, which is in general very hard. We will come back
to the separability problem later and demonstrate that in some special cases this
problem yet can be solved exactly.

1.1.3 Bipartite states in infinite dimensional Hilbert spaces

The general notion of a pure or mixed state as well as the definition of separability
does not depend on the dimensionality of the underlying Hilbert spaces. However the
forthcoming analysis of the properties of the quantum states and their description
relies heavily on the fact, whether the underlying Hilbert space is finite dimensional
or not.

In this part we discuss several specific issues of quantum states in infinite dimen-
sional Hilbert spaces. To motivate this discussion we point out that many experi-
ments in quantum information are carried out in the quantum optical setting. The
observables in this setting are quadratures of the field modes that satisfy canonical
commutation relations and have no finite-dimensional realizations

[Xα, Pβ ] = iδαβ1, [Xα,Xβ ] = [Pα, Pβ ] = 0, (1.8)

where α, β = 1, . . . , n is the number of field modes in a wave packet, generally these
are canonical coordinates. Very often it is useful to describe the system in the phase
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space. To this end one can rewrite the commutation relations in a more compact
form

[Rα, Rβ ] = iσαβ1, σ =

(
O 1
−1 O

)

. (1.9)

σ is called the symplectic matrix and Rα ∈ {X1, . . . ,Xn, P1, . . . , Pn} is one of the
2n canonical observables.

Using these notions one defines the so-called Weyl operators

W
(−→
ξ
)

= exp
(

i
−→
ξ σ

−→
R
)

, (1.10)

where we used the shorthand notation
−→
ξ σ

−→
R =

∑

α,β ξασαβRβ and denoted by
−→
ξ

vectors in the phase space. Weyl operators act as translation operators on the phase
space. Often in quantum optics these operators are written in terms of creation and
annihilation operators of particular optical modes and called displacement operators.

To reveal the important role of Weyl operators in quantum mechanics we note,
under the assumption that there are no further degrees of freedom in the system,

thatW (
−→
ξ ) contains all possible products of operators of the type Rm1

1 Rm2
2 · · ·Rm2n

2n .
Therefore taking the expectation values of these operators in some state ρ will pro-
vide complete information about the state. Formally, one says that the state ρ is
determined by its characteristic function and writes

C
(−→
ξ
)

= Tr
(

ρW
(−→
ξ
))

. (1.11)

The characteristic function (1.11) can be interpreted as a quantum Fourier trans-
formation of the density operator ρ [22].

In quantum optics one frequently uses the notion of Wigner function [23, 24].
This function is defined as inverse classical Fourier transform of the characteristic
function [25]

W (−→η ) = F−1
c

(

C
(−→
ξ
))

(1.12)

To gain ground a bit we calculate the Wigner function of one mode. In this case−→
R = (q,p) and the Weyl operator takes the form

W (q0, p0) = ei(q0p−p0q) = e−ip0qeiq0pe
1
2
[−p0q,q0p] = e−ip0qeiq0pe−

i
2
p0q0 , (1.13)

where we used the Baker-Campbell-Hausdorff formula and the fact that [q,p] = i1.
In order to express the characteristic function in notation common in quantum optics
literature it is convenient to rewrite the Weyl operator in the following form

W (q0, p0) = ei
q0
2
pe−i

q0
2
pe−ip0qei

q0
2
pei

q0
2
pe−

i
2
p0q0 . (1.14)

For further simplification it is worth to use following relations

eAF (B)e−A = F
(
eABe−A

)
, with F some analytic function

eABe−A = B + [A,B], if [A, [A,B]] = 0 (1.15)

e−iup|ψ(q, p)〉 = |ψ(q + u, p)〉, q|ψ(q, p)〉 = q|ψ(q, p)〉, in q-representation.
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Putting together (1.14) and (1.15) we arrive at

C(q0, p0) = Tr
(

ρei
q0
2
pe−ip0q+

i
2
p0q0ei

q0
2
pe−

i
2
p0q0
)

= Tr
(

ei
q0
2
pρei

q0
2
pe−ip0q

)

=

∫

dq〈q|ei
q0
2
pρei

q0
2
pe−ip0q|q〉

=

∫

dq〈q + q0
2
|ρ|q − q0

2
〉e−ip0q. (1.16)

Finally we calculate the Wigner function

W (q′, p′) =
1

4π2

∫∫

dqdpC(q, p)ei(q
′p+p′q)

=
1

4π2

∫∫∫

dqdq0dp〈q0 +
q

2
|ρ|q0 −

q

2
〉eip(q′−q0)eip′q (1.17)

=
1

2π

∫

dq〈q′ + q

2
|ρ|q′ − q

2
〉eip′q, (1.18)

where we used
∫
dpeip(q

′−q0) = 2πδ(q0− q′). This is the common form of the Wigner
function. Rather often the Wigner function is just defined in this way without any
further explanation and discussion of its origins. Integrating W (q′, p′) over q′ (p′)
gives the probability distribution of momentum (coordinate):

∫

q′
W (q′, p′) =〈p′|ρ|p′〉

∫

p′
W (q′, p′) =〈q′|ρ|q′〉. (1.19)

The Wigner function is a quasi-probability distribution, since it can be negative.
There are important examples of states, however, for which the Wigner function
is positive, these are mixtures of coherent states or squeezed vacuum states. The
positivity of the Wigner function was believed to be connected to the existence of
a local realistic model. Bell conjectured that a positive Wigner function can not
violate certain inequalities that cannot be violated by a local realistic models. Later
these type of locality tests became his name and now are called Bell inequalities.
Recently, however, one was able to provide an example of a positive Wigner function
that does violate a Bell inequality [26].

In this framework it is easy to define a special class of states, which play an
important role in quantum optics and quantum information theory.

Definition 1.4. A state ρ is called Gaussian if its characteristic function has a
Gaussian form

G
(−→
ξ
)

= Tr
(

ρW
(−→
ξ
))

= exp

(

i
−→
E · −→ξ − 1

2

−→
ξ Tγ

−→
ξ

)

, (1.20)
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where
−→
E = (〈R1〉, . . . , 〈R2n〉) (1.21)

denotes the vector of mean values of observables Rα and

γαβ =
1

2
〈{Rα, Rβ}〉 − 〈Rα〉〈Rβ〉 (1.22)

is the matrix of second moments or the covariance matrix.

The covariance matrix γ exists for every state. However, for Gaussian states, all
higher moments disappear and the covariance matrix fully characterize the proper-
ties of the state.

The covariance matrix is a real, symmetric and positive semidefinite. Note that
the covariance matrix and the symplectic matrix σ are related via

γ +
i

2
σ ≥ 0. (1.23)

It is important to point out that the latter relation is a matrix form of the quantum
mechanical uncertainty relations. Interestingly the opposite is also true, i.e. if a
matrix fulfills (1.23) then it is a covariance matrix of a valid state.

An important example of Gaussian states are coherent states, which were intro-
duced by Schrödinger in order to achieve an equality in Heisenberg’s uncertainty
relation. Nowadays coherent states are used in various branches of physics. For
example squeezed states of the light field can be used to generate continuous vari-
able cluster states, which are universal resource for one-way quantum computation
[27, 28, 29, 30, 31].

Gaussian states can be generalized to any number of parties. The composite
phase space will be given by a orthogonal sum of its components and Weyl operators
can be identified with tensor products [32]

W
(−→
ξ A ⊕−→

ξ B

)

∼ W
(−→
ξ A

)

⊗W
(−→
ξ B

)

. (1.24)

Entanglement properties of Gaussian states are rather well understood. There is a
necessary and sufficient criterion for these states to be separable [32, 33].

1.2 Multipartite entanglement

In the case of more than two systems the notion of entanglement becomes more
complicated. There are different classes of entangled states depending on the fact
how many parties are entangled with each other. We begin with the case of three
qubits.
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1.2.1 Three qubits

As usual we start our discussion with pure states.

Definition 1.5. A pure three qubit state is called fully separable iff it can be
written in the form

|ψABCfs 〉 = |ψA〉 ⊗ |ψB〉 ⊗ |ψC〉. (1.25)

Another possible situation, which arises, when we go beyond the bipartite setting,
is that two of three parties share some entanglement and no entanglement with the
third party.

Definition 1.6. A pure three qubit state is called bi-separable with respect to the
bipartition AB|C iff it can be written in the form

|ψAB|C
bs 〉 = |ψAB〉 ⊗ |ψC〉, (1.26)

where |ψAB〉 is an entangled state in HA ⊗HB.

The last class of entanglement in the case of pure tripartite states is the class of
genuine tripartite entangled states.

Definition 1.7. A pure three qubit state is called genuinely tripartite entangled

iff it is neither fully separable nor bi-separable with respect to any bipartition.

From Definitions 1.6 and 1.7 one can immediately conclude that the states from
the one class can not be transformed into the states from the other class by using
LOCC operations.

It turns out that a reasonable classification of tripartite (and actually multipar-
tite) entangled states is done in terms of stochastic LOCC operations (SLOCC),
i.e. LOCC operations without demanding that the result is achieved with unit
probability [41]. Such operations are termed SLOCC or Local Filtering Operations.
Formally, the equivalence is defined in the following way:

Definition 1.8. Two states |ψ〉 and |φ〉 are equivalent |ψ〉 ∼ |φ〉 iff there exist
invertible local operations OA, OB and OC such that

|ψ〉 = OA ⊗OB ⊗OC |φ〉. (1.27)

The definition of such an equivalence relation is reasonable, since one can prove
that the equivalent states can be used to implement the same tasks of quantum
information theory. Note however that the success probability of performing a task
may differ in this case. As it was proved in Ref. [41], there are two different
equivalence classes of genuinely three qubit entangled states called GHZ- and W-
class. In this sense the GHZ-state

|GHZ3〉 =
1√
2
(|000〉 + |111〉) (1.28)
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cannot be transformed by SLOCC operations into a W-state

|W3〉 =
1√
3
(|001〉 + |010〉 + |100〉) . (1.29)

The parametrization of pure three qubit states has been done in [42] by proving that
every pure three qubit state can be transformed into

|ψ〉 = λ0|000〉 + λ1e
iθ|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉 (1.30)

by local unitary operations. The coefficients in (1.30) fulfill λi ≥ 0,
∑

i λ
2
i = 1

and θ ∈ [0, π]. Therefore there are six parameters, which characterize non-local
properties of the three qubit states. It is noteworthy that for the W-class of states
θ = λ4 = 0 holds. Thus the states from the W-class form a set of measure zero in
the set of all pure states.

Physically, the GHZ-states are generalization of maximally entangled Bell states
for two qubits. However, the GHZ-states are extremely sensitive to the loss of qubits:
if one qubit is gone, no entanglement is left at all. The W-states in contrast are
more robust in this sense. Indeed, the reduced state ρAB = Tr (|W3〉〈W3|)C is still
entangled.

1.2.2 Multipartite pure states

The number of different entanglement classes grows with the number of parties and
the classification of the pure multipartite states becomes a rather difficult task.
One straightforward way to achieve the task is to generalize the method for three
parties and define classes according to SLOCC operations. One way of doing it was
presented in [43, 44]. There, each class was assigned to its normal form. States,
which belong to different classes cannot be transformed into each other by SLOCC.
The main problem in such a classification is the fact that already for four qubits
one derives nine different families of states. Each family is parametrized by certain
complex numbers, which leads us to the conclusion that there are actually infinitely
many SLOCC equivalence classes for four qubits. Another approach to classify pure
states under SLOCC operations based on analysis of the tensor of the coefficients
of a pure state in an arbitrary product basis Ci1,i2,...,iN [45, 46]. There the authors
provide a recursive (in the number of parties) method of classification of entangled
states. For two parties the answer is given by the Schmidt decomposition, i.e. if
the matrix Ci1,i2 has only one non-zero singular value, then the state is a product
state. For three parties three different decompositions must be considered. For
every bipartition C can be seen as a d2 × d2 matrix. Then the characterization
of entanglement classes can be done by considering singular values of the matrix
C and its right singular vectors. Furthermore one can prove that knowing the
characterization for N parties one also knows the characterization for N +1 parties,
which is proven by induction in [45].

Besides the question of which states can be converted into each other by SLOCC
operations and therefore share the same entanglement properties and can be in
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principle used to carry out the same quantum informational tasks, an important
question of interconvertability of the pure states under local unitary (LU) operations
was open until recently [47]. Two states, which can be converted into each other
by LU-operations are completely equivalent from the point of view of quantum
information theory. Obviously such states belong to the same equivalence class
under SLOCC and possess the same type of entanglement. Moreover they do possess
precisely the same amount of entanglement. Indeed one can provide a criterion
of interconvertability of the pure states by LU operations. The idea consists of
introducing the LU standard form, which can be easily computed. The necessary
and sufficient condition of two pure states to be LU equivalent is coincidence of their
standard forms [47].

1.2.3 Multipartite mixed states

The classification for mixed state is done in the same manner as for pure states.
One can associate with a class of pure states a class of mixed states that will be just
a convex sum of the former. For example for three qubits one can use the following
classification:

Definition 1.9. A mixed three qubit state is called fully separable, iff

ρfs =
∑

i

pi|ψfsi 〉〈ψfsi | (1.31)

bi-separable, iff

ρbs =
∑

i

pi|ψbsi 〉〈ψbsi |, (1.32)

where |ψbsi 〉 is separable with respect to some bipartition.
The state belongs to the W-class, iff

ρW =
∑

i

pi|ψWi 〉〈ψWi |, (1.33)

and to the GHZ-class, iff

ρGHZ =
∑

i

pi|ψGHZi 〉〈ψGHZi |. (1.34)

Two facts should be mentioned about the GHZ- and W-class of mixed states.
First of all one can show that the set of W states lies in the set of GHZ states, the
GHZ states in this sense form a bigger set. Secondly, in contrast to the case of pure
states, the W mixed states are not a set of measure zero anymore [48]. Interestingly,
for mixed states there are examples of states that are biseparable with respect to
any bipartition and yet entangled [49]. Furthermore, such states appear naturally
as thermal states in quantum spin chains [50, 51] and will be one of the objects of
study in this thesis.
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1.3 Entanglement detection

1.3.1 Separability criteria and bound entanglement

Although the separability problem mentioned in Section 1.1.2 is generally very hard
to solve some partial answers are already known. Usually these answers are formu-
lated in the form of criteria that impose some conditions on separable or entangled
states.

Historically one of the first separability criteria is called partially positive trans-
pose criterion or PPT criterion, was introduced for finite-dimensional systems in
[52].

Before we formulate the criterion we shall dwell on the term partial transpose. A
mixed state can be represented by a density matrix that we can expand in a chosen
basis

ρAB =

n∑

i,j=1

m∑

k,l=1

ρij,kl|i〉〈j| ⊗ |k〉〈l|. (1.35)

The partial transposition of a matrix is a transposition with respect to one of the
subsystems. Hence there are two possibilities for to give a partial transposition: (i)
with respect to subsystem A: ρTAAB =

∑n
i,j=1

∑m
k,l=1 ρji,kl|i〉〈j| ⊗ |k〉〈l| and (ii) with

respect to subsystem B: ρTBAB =
∑n

i,j=1

∑m
k,l=1 ρij,lk|i〉〈j| ⊗ |k〉〈l|.

Note that although the partial transposition depends on the basis choice, the
spectrum of the matrix before and after the partial transposition does not.

Definition 1.10. We say that the matrix ρAB has a positive partial transpose (or
it is a PPT matrix) iff

ρTAAB ≥ 0 ⇔ ρTBAB ≥ 0. (1.36)

If the matrix is not PPT we call it a negative partial transpose (NPT) matrix.

Now we are ready to formulate the PPT criterion.

Theorem 1.11. If a given bipartite state ρAB is separable, then it has a positive
partial transpose.

Proof: The claim follows immediately from the definition 1.3 of separable mixed
states.

ρTB =
∑

α

pαρ
A
α ⊗

(
ρBα
)T
, (1.37)

since for all α ρBα is a density matrix its transpose is also positive.
�

The last theorem provides us with a very strong criterion. For a given density
matrix one can easily calculate the partial transpose and decide whether the result
is still positive semidefinite or not. The PPT criterion provides a complete solution
for the separability problem for the case of small dimensions of the Hilbert spaces:
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Theorem 1.12. For n = 2 and m = 2, 3 a given bipartite state ρAB is separable,
iff it has a positive partial transpose.

Proof: The proof of the claim is given in [59].
�

The first counterexample of a state in a 2 × 4 system that has a positive par-
tial transpose yet cannot be decomposed as in the definition 1.3 was given in Ref.
[60]. These type of states is called bound entangled states as the opposite to free
entanglement contained in states with negative partial transpose (NPT states).

Bound entangled states contain a relatively small amount of entanglement. At
this point one faces the following dilemma: on the one hand, to perform many quan-
tum informational tasks one needs maximally entangled states, e.g. for quantum
teleportation or for quantum dense coding. On the other hand, maximally entan-
gled states are hardly achievable experimentally because of the presence of noise.
In principle the noise can be so strong that the prepared quantum state would be
bound entangled. The question whether one can use noisy or bound entangled states
for quantum information processing is therefore of a great importance.

The answer on this question is following. First of all it is possible to distill some
of the noisy entangled states. Under distillation we understand a LOCC protocol,
which is able to produce some singlets out of many copies of the noisy entangled
states [53, 54]. Secondly, although such distillation is not possible for bound en-
tangled states [55], bound entangled states can be used to establish a secret key in
quantum cryptography [56] or to increase the fidelity of the state teleportation [57].
The last phenomenon is known as activation of the bound entanglement. Further-
more, it has been shown that bound entangled states can maximally violate Bell
inequalities [58].

Continuing the discussion of the separability criteria we point out that the sep-
arability problem can be formulated in terms of positive maps. Note that a linear
map is called positive if it maps positive operators into a set of positive operators,
i.e. if O ≥ 0, then Λ(O) ≥ 0 (a linear map Λ is called completely positive if and
only if Λ ⊗ 1n is positive for all n). In this framework the following statement is
true [59]:

Theorem 1.13. A given bipartite state ρAB is separable, iff (1 ⊗ ΛB)ρ is positive
for any positive map ΛB : B(HB) → B(HB).

Note that the choice of the subspace, to which the map Λ is applied, in the
theorem 1.13 is arbitrary. Indeed, the result also holds if one takes maps ΛA ⊗ ΛB
or ΛA ⊗ 1, where ΛA is positive.

The connection of the separability problem to the positive maps turns out to be
very fruitful. Several other criteria formulated later, such as the reduction criterion
[61] or the majorization criterion [62] can be brought in connection with positive
maps and do not detect PPT entangled states. One has however to mention that the
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connection of the majorization criterion to the positive maps has been only a conjec-
ture for several years. In fact the majorization criterion is implied by the reduction
criterion, which was proved in [63]. We state here the majorization criterion, since
it provides the answer to the question of distillability and bound entanglement:

Theorem 1.14. If ρAB is separable then the eigenvalues of either reduced states ρA
and ρB are majorized by the eigenvalues of ρAB

λ(ρAB) ≺ λ(ρA), λ(ρAB) ≺ λ(ρB), (1.38)

where the eigenvalues are arranged in descending order and λ(ρAB) ≺ λ(ρA) means
that for every m < rank(ρAB)

m∑

k=1

λ↓k(ρAB) ≤
m∑

k=1

λ↓k(ρA) (1.39)

holds.

Proof: The proof of the theorem can be found in [62]. �

The majorization criterion has an intuitive physical interpretation that separable
states are more disordered globally than locally. This intuition follows from the fact
that the majorization can be quantified in terms of the von Neumann entropy [62].

The following statement characterizes the distillability property of quantum
states and connects it with the positivity of partial transpose.

Theorem 1.15. If a bipartite state is PPT or bound entangled, then the state is
undistillable. If a state violates the majorization criterion, then the state is distill-
able.

Proof: The first part of the proof can be found in [55], for the proof of the second
part we refer the reader to [63]. �

Apart from the criteria that can be connected to the positive maps there are
criteria where such connection seemingly does not exist.

The most prominent criterion of this type is the computable cross-norm or re-
alignment criterion [64, 65, 66] (CCNR). The simplest way to formulate this criterion
is to consider the Schmidt decomposition for density matrices

ρAB =

min{n,m}2−1
∑

k=1

σkG
A
k ⊗GBk , (1.40)

where the operators G
A/B
k form an orthonormal basis in B(HA/B) with respect to

the scalar product Tr
(
A†B

)
. Then the following statement is true [67]

Theorem 1.16. If a given state ρAB is separable, then
∑min{n,m}2−1

k=1 σk ≤ 1. If
∑min{n,m}2−1

k=1 σk > 1 then the state ρAB must be entangled.



1.3 Entanglement detection 17

This criterion can be seen as the complement to the PPT criterion in the following
sense: it detects states, which the PPT criterion fails to detect, i.e. it detects bound
entangled states. One can interpret the detection of bound entangled states as a
measure of performance of separability criteria that go beyond the usual PPT or
positive maps scenario.

Up to now we have been discussing entanglement criteria that need a state as
an input to answer (albeit in most cases partially) the separability question. How-
ever the full knowledge of the state is a rare event in the real world. For example
we can give an existent state to an experimentalist and ask him/her to determine
whether the state is entangled or not but we do not say how the state looks like,
so the experimentalist is left without any knowledge about the state. Even if the
experimentalist prepares some state for him/herself with a good precision the inter-
action with the environment is unavoidable and will cause decoherence and hence a
certain deviation from the initial state. These kind of situation leads us to a nat-
ural question: What kind of information about the state will suffice to answer the
separability question? We have already learned that entanglement is a resource of
purely quantum mechanical correlations. Correlations can be measured and to do
this we need to pick up certain observables. As it can be guessed from the EPR
paradox the observables that one should choose to detect the quantum mechanical
correlations should not commute. The EPR type of correlations was then predicted
theoretically for quantum optical systems [68]. It turned out that it is possible to
formulate a separability criterion in terms of non-commuting observables (also called
EPR-operators) for continuous variable systems [69, 70]. This criterion established a
connection between uncertainty relations and entanglement for infinite-dimensional
systems. For finite-dimensional systems this connection was established in [71, 72]
and resulted in the so-called entanglement criterion based on local uncertainty rela-
tions (LUR-criterion).

Proposition 1.17. Let ρ be a separable state and let Ai, Bi, i = 1, . . . , n be observ-
ables on HA, HB respectively, such that

∑n
i=1 δ

2 (Ai)ρA ≥ CA and
∑n

i=1 δ
2 (Bi)ρB ≥

CB. Then
n∑

i=1

δ2 (Ai ⊗ 1+ 1⊗Bi)ρ ≥ CA + CB (1.41)

holds.

Although the LURs provide very strong criterion, it is not a priori clear which
local observables should be chosen in order to detect a given entangled state. This
is one of the disadvantages of the LURs, which one can overcome.

1.3.2 Separability criteria for Gaussian states

To close the part dedicated to entanglement criteria we discuss the case of infinite-
dimensional Hilbert spaces. The scope of our discussion here will be the special class
of states, namely Gaussian states, which were defined in Section 1.1.3. Separability
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properties of the Gaussian states were discussed first in [69, 70] in the simplest case
of two modes.

One way to characterize entanglement in continuous variable systems is to gen-
eralize the PPT criterion (Theorem 1.11) to the case of infinite dimensional Hilbert
spaces. Note that transposition operation corresponds to the sign flip of the mo-
menta of the system:

ρ→ ρT ⇔ Tr
(

ρW
(−→
ξ
))

→ Tr
(

ρTW
(−→
ξ
))

Tr
(

ρTW
(−→
ξ
))

= Tr
(

ρei
−→
ξ σT

−→
R
)

, (1.42)

where we used the the definition of the Weyl operators Eq. (1.10). The transposition
of the symplectic matrix σ is equivalent to the sign flip of the canonical commutation
relations (1.8) or to the sign change of all Pα, which is again is the same as the sign

change of pα in
−→
ξ .

Therefore, the operation of partial transposition for a system consisting of two
modes can be written as the following map on the phase space:

Λ :
−→
ξ = (x1, p1, x2, p2) 7→ −→

ξ ′ = (x1, p1, x2,−p2). (1.43)

Therefore the PPT criterion for separability for a two mode state ρ can be formulated
as

Theorem 1.18. If a given two mode state ρ is separable, then its characteristic

function C
(−→
ξ
)

necessarily goes over into a characteristic function of a valid state

under the transformation Λ = diag{1, 1, 1,−1}

C
(

Λ
−→
ξ
)

→ C
(−→
ξ
)

(1.44)

Physically, it means that local time reversal Λ is a symmetry on the subspace of
all separable states [70].

The covariance matrix, defined in Eqs. (1.20,1.22) transforms according to

γ′ = ΛγΛ. (1.45)

For all separable states the symmetry (1.44) implies that the corresponding covari-
ance matrix γ′ after the partial transpose operation is still a covariance matrix of a
physical state. Then the uncertainty condition (1.23) holds

γ′ +
i

2
σ ≥ 0 (1.46)

or equivalently

γ +
i

2
σ′ ≥ 0, with σ′ = ΛσΛ =







0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0






. (1.47)

Hence the necessary condition for separability for continuous variable states can be
formulated in terms of covariance matrices:
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Corollary 1.19. Let be ρ a two mode state with covariance matrix

γ(ρ) =

(
A C
CT B

)

. (1.48)

If ρ is separable then

detAdetB −
(
1

4
− |detC|

)2

− Tr
(
AσCσBσCTσ

)
≥ 1

4
(detA+ detB) (1.49)

must hold.

Proof: The first step of the proof is to put the conditions (1.23) and (1.47)
together and to realize that Eqs. (1.49), (1.23) and (1.47) are equivalent if the
covariance matrix γ(ρ) has a special form, namely

γ(ρ) =







a 0 c1 0
0 a 0 c2
c1 0 b 0
0 c2 0 b






. (1.50)

Secondly, any covariance matrix can be transformed in this form by the local trans-
formations Sp(2,R)⊗ Sp(2,R) that do not affect separability of a given state. The
technical details of the proof can be found in [70]. �

The condition in Eq. (1.47) is in fact the PPT criterion for continuous variable
states in terms of covariance matrices. Being closely related to the uncertainty
principle this condition must be seen as an additional condition on the uncertainties
for all separable states.

This fact can be directly seen on a simple example of two mode squeezed states.
Consider operators of EPR type [69]

Sx(a) = |a|X1 +
1

a
X2, (1.51)

Sp(a) = |a|P1 +
1

a
P2. (1.52)

Operators Sx and Sp commute if a = 1 and can therefore be measured simultaneously
in this case. The state where the uncertainty of the measurement of these two
operators is zero is a maximally entangled state. Conversely, for all separable states
there exists a lower bound for uncertainty:

Theorem 1.20. ([69]) For any two mode separable state ρ

δ2 (Sx(a))ρ + δ2 (Sp(a))ρ ≥ a2 +
1

a2
. (1.53)

Proof: First of all let us note that the Heisenberg uncertainty relation can be
written as

δ2 (X) δ2 (P ) ≥ 1

4
|[X,P ]|2 ⇒ δ2 (X) + δ2 (P ) ≥ |[X,P ]| = 1. (1.54)



20 Preliminaries

This follows from the fact that ab ≥ |c|2/4 implies a+ b ≥ |c|. Then for all separable
states we have

δ2 (Sx(a))ρ + δ2 (Sp(a))ρ ≥
∑

i

pi

(

a2δ2 (X1)ρAi
+

1

a2
δ2 (X2)ρBi

+ a2δ2 (P1)ρAi
+

1

a2
δ2 (P2)ρBi

)

≥ (1.55)

a2 +
1

a2
,

where the last inequality is implied by Eq. (1.54). �

In the case of two mode Gaussian states Eqs. (1.49) and (1.53) provide a neces-
sary and sufficient entanglement criterion for separability [70, 69]. These relations
must be seen as generalizations of the PPT condition to the case of infinite dimen-
sional Hilbert spaces.

The uncertainty relation (1.23) and Gaussianity of a state augmented with the
additional uncertainty relation (1.47) provides full characterization of a covariance
matrix of a two mode Gaussian state, which results in a necessary and sufficient
criterion. However, if a bipartite Gaussian state consists of more than two modes,
examples of bound entangled states are known [32]. Nonetheless a necessary and
sufficient criterion for separability for Gaussian states can be formulated [32].

Theorem 1.21. A given bipartite n×m mode Gaussian state is entangled iff there
exist two CMs γA and γB such that

γ ≥ γA ⊕ γB (1.56)

is satisfied, where γ is the CM of the state, defined on the whole phase space, and
γA and γB are CMs on the Alice’s and Bob’s phase space respectively.

Proof: The easy proof of the first part of the Theorem can be found in [37].
Later on in Chapter 2 we will provide an alternative proof of the first part, which
holds for all systems, and is independent of the dimension of the underlying Hilbert
space.

The prove of the second part uses the definition of quantum Fourier transforma-
tion and its properties and can be found in [32, 22]. �

This important result provides a complete characterization of separable states
in continuous variables setting. However, the proof of the theorem is an existence
proof and is by no means constructive. Therefore the condition (1.56) is hard to
implement in practice. Surprisingly, it can be shown that the uncertainty relation
(1.23) can be used to find an explicit decomposition of ρ as a convex combination of
product states, if ρ is separable [33]. The method consists of constructing a sequence
of matrices

{γN}∞N=0, where γN =

(
AN CN
CTN BN

)

. (1.57)
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The matrix γ0 is the CM of a given Gaussian state ρ. The sequence is defined
recursively

AN+1 ≡ BN+1 ≡ AN −Re (XN ) ,

CN+1 ≡ −Im (XN ) , (1.58)

XN ≡ CN (BN − iσ)−1CTN .

Using this recursion one can determine whether a given state is separable or not.
To this end one can prove the following theorem [33]:

Theorem 1.22.

A. If for some N ≥ 1 one finds AN � iσ then γ0(ρ) corresponds to a non-separable
state.
B. If for some N ≥ 1 one finds

AN − ||CN ||op1 ≥ iσ, (1.59)

where ||CN ||op denotes the maximal singular value of the CN , then the state ρ must
be separable.

Proof: The detailed proof of this theorem as well as construction of the corre-
sponding matrices is originally discussed in [33]. �

This theorem is constructive and basically consists of testing the uncertainty
relation (1.23) for the sequence of CMs.

The algorithm of deciding whether a bipartite Gaussian state is separable or not
and finding a decomposition (1.56) for its covariance matrix, if it is separable, is
very practical. It converges surprisingly fast and even for entangled states that lie
near the core of separable states the algorithm needs less than 30 iterations. Note,
however, that the separability criterion presented in Theorem 1.21 can be written as
a semi-definite program (SDP) [34, 35, 36], which effectively finds the decomposition
γA ⊕ γB for separable states. Semi-definite programs turn out to be very useful to
detect entanglement in the case of non-Gaussian states, where a violation of the
condition (1.56) becomes only a sufficient condition for entanglement.

Nevertheless, Theorem 1.21 presents a strong and computable separability cri-
terion for Gaussian states. In contrast, for finite-dimensional systems, the theory is
hardly developed [37, 38, 39, 40].

In Chapter 3 of this thesis we formulate a separability criterion for finite-
dimensional systems in terms of covariance matrices. As we will show later this
criterion presents also a strong and computable criterion for separability, which is
necessary and sufficient for two qubits.

1.3.3 Entanglement witnesses

The idea of measuring certain observables in order to detect entanglement resulted
in a very powerful experimental method. Directly measurable observables, which
can be used for entanglement detection are called entanglement witnesses.
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Definition 1.23. An observable W is called an entanglement witness if

Tr (Wρs) ≥ 0, for all separable states ρs

Tr (Wρe) < 0, for at least one entangled state ρe.

Therefore if one measures the observable W in some state ρ and the result is a
negative number, then one knows with certainty that the state is entangled.

For every entangled state there exists a witness, which detects it. This condition
is called completeness of witnesses and was proved in [59]. This existence theorem
does not provide, however, any information about how to construct the witness. In
order to shed some light on witnesses’ construction it is useful to discuss witnesses
from the geometrical point of view. Indeed, witnesses have a clear geometrical
meaning. Since the mean value of an observable is linear in the state, the equation
Tr (Wρ) = 0 defines a hyperplane in the space of all states and divides it into two
parts: the states that are detected by the witness (all states fulfilling Tr (Wρ) < 0)
and the states that are not detected (Tr (Wρ) ≥ 0). All separable states belongs to
the second subspace. From Figure 1.1 one can see that some witnesses detect more
entangled states than the others. For example the witness W1 detects more states
that the witness W2. One calls the witness W1 a finer witness than W2. Beginning
with some witness one can always look for a finer witness. In other words one can
always try to optimize a given witness. The optimal witness is a witness, which
cannot be optimized further. A necessary condition for a witness to be optimal is
to tangent the set of separable states. In the Figure 1.1 the witness W1 satisfies this
condition.

Therefore one might deduce that the construction of witnesses might be con-
nected to separability criteria. In fact, there is such connection. To give an exam-
ple, consider all states that violate the CCNR criterion (Theorem 1.16). Let us now
choose observables, which occur in the Schmidt decomposition (1.40), and construct
a witness

WCCNR = 1−
min{n,m}2−1

∑

k=1

GAk ⊗GBk . (1.60)

Clearly, Tr (WCCNRρ
e
CCNR) < 0, where ρeCCNR is such that ρeCCNR is detected by

the CCNR criterion and hence
∑

k λk(ρ
e
CCNR) < 1. Since any state can be written

in the Schmidt form ρ =
∑

kl µklG
A
k ⊗GBl , for all separable states Tr (WCCNRρ) =

1−∑k µkk > 1−∑k λk(ρ) > 0 holds. In the first estimation we used the fact that
the trace of a matrix is always upper bounded by the sum of the matrix’s singular
values. The second inequality is the CCNR criterion. Note that the constructed
witness can detect bound entangled states.

In the way demonstrated one can construct a whole variety of witnesses. To
detect a particular pure state |ψ〉 one can construct a projector-based witness of the
form W = a1− |ψ〉〈ψ|. However, from the experimental point of view, one prefers
to expand the projector into a form of observables, which can be directly measured
in an experiment. This strategy was first used to detect a two qubit entangled state



1.3 Entanglement detection 23

W1

W2

Figure 1.1. Geometrical interpretation of entanglement witnesses. Ev-
ery witness defines a hyperplane (lines on the plot above) in the space
of states, which divides the whole space into two halves. One half cor-
responds to the entangled states, the another half consists of the states
that are not detected by the witness. The convex set of separable states
lies in the second half. The witness W1 detects more states than the
witness W2. W1 is finer than W2.

[73]

W− =
1

2
1− |Ψ−〉〈Ψ−| = 1

4
(1+ σx ⊗ σx + σy ⊗ σy + σz ⊗ σz) . (1.61)

Due to their experimental accessibility entanglement witnesses became a stan-
dard tool in entanglement detection in experiments. For instance, entanglement in
linear cluster states and GHZ states with different numbers of photons was observed
in this way (see Chapter 6 in [67] and also references therein). One of the open ques-
tions here is the optimality of witnessing entanglement in the experimental sense. It
turns out that from the experimental point of view it is not always the best strategy
to measure the optimal witness [74].

1.3.4 Bell inequalities

In the remainder of the section we discuss Bell inequalities that are the oldest tool to
detect entanglement. John Bell [75], who aimed to describe the Einstein-Podolsky-
Rosen paradox quantitatively, introduced an inequality that bounds classical corre-
lations. If measurements on a quantum state violate a Bell inequality, then the state
must be entangled.
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Let us consider the following gedankenexperiment. Imagine that two experi-
mentalists (Alice and Bob) are located in spatially distinct labs. Both of them are
capable of performing only two measurements, which are described by observables
A1, A2 and B1, B2 for Alice and Bob respectively. Then if the state is only classically
correlated

〈A1B1〉+ 〈A2B1〉+ 〈A1B2〉 − 〈A2B2〉 ≤ 2 (1.62)

holds [76, 77]. Such an inequality is called Bell inequality. Because it is used rather
often this particular inequality has however its own name CHSH inequality, due to
Clauser, Horne, Shimony and Holt, who first introduced this inequality [76].

In order to see how these measurements can be realized in practice we pick a
particular example. Assume we possess a source that emits pairs of spin-12 particles.
After leaving the source, the particles fly apart along the z axis. These measurements
Ai, Bj (i, j = 1, 2) correspond to the measurements of particles in the x-y plane

along vectors −→a i and
−→
b j . These vectors can be characterized by azimuthal angles

φa1 = 0, φa2 = π/2 for Alice and φb1 = π/4, φb2 = 3π/4 for Bob. The outcome of
each measurement is assumed to be dichotomic + or −. The mean value 〈AiBj〉 (or
correlation coefficient) in the inequality (1.62) can be written in terms of probabilities
[6, 67]

〈AiBj〉 = P++

(−→a i,
−→
b j

)

+P−−
(−→a i,

−→
b j

)

−P+−
(−→a i,

−→
b j

)

−P−+

(−→a i,
−→
b j

)

. (1.63)

The CHSH inequality can also be written in terms of probabilities CH inequality -
and reads [78]

P++

(−→a 1,
−→
b 1

)

− P−−
(−→a 2,

−→
b 2

)

+ P+−
(−→a 1,

−→
b 1

)

+ P−+

(−→a 2,
−→
b 1

)

≥ 0 (1.64)

Now we provide an example of quantum state that violates Inequality (1.62). As-
sume the source produces spin-12 particles in a singlet state |Ψ−〉 = (|01〉−|10〉)/

√
2.

Alice and Bob use the following set of observables in order to perform their mea-
surements

A1 = −σx, A2 = −σy, B1 =
σx + σy√

2
, B2 =

σx − σy√
2

. (1.65)

The direct calculation gives 〈A1B1〉+ 〈A2B1〉+ 〈A1B2〉 − 〈A2B2〉 = 2
√
2. Interest-

ingly, one can show that no quantum state can give a bigger violation of the CHSH
inequality than 2

√
2. This bound is known as Cirel’son bound [79].

Originally Bell inequalities were introduced to test the fundamental question of
inconsistency of quantum mechanics with local hidden variable (LHV) models or in
other words the non-local nature of quantum mechanics. An LHV model suggests
the existence of a hidden parameter λ in a theory, such that for example the result
of coincidence measurement in a Bell experiment, mentioned above, can be written
in a factorized form

Pab

(−→a i,
−→
b j

)

=

∫

dλρ(λ)PAa (−→a i, λ)PBb
(−→
b i, λ

)

. (1.66)
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Here the source is supposed to produce states that are described by a hidden variable

λ with probability ρ(λ) and PAa (−→a i, λ) and PBb
(−→
b i, λ

)

are probabilities of certain

measurement outcomes a and b in Alice’s and Bob’s lab respectively. Note that Alice
and Bob share the same hidden variable λ. In the considered example we assumed
that the measurement outcomes were dichotomic, i.e. can take only two values ±1,
but generally a and b can be any real number from the interval [−1, 1]. The fact
that the probability of measurement outcome in the integral is factorized is implied
by the locality assumption, i.e. for a fixed λ Alice’s probabilities does not depend
on Bob’s choice of observables.

Using the normalization of probabilities and considering all possible measurement
results for the Bell experiment described above, one arrives at the conclusion that
for any LHV model the CHSH inequality must hold.

Experimental justification of incompatibility of local realistic theories with quan-
tum mechanics is not, however, decisive yet, because of the existense of locality loop-
hole and detection loophole. The locality loophole was closed in an experimant with
photons [11] and the detection loophole in an ion trap experiment [80]. However,
there is no loophole-free experiment yet. Closing these loopholes and hence refuting
LHV theories is an important problem of fundamental character.

1.4 Entanglement measures

In this section we briefly discuss basic notions of entanglement measures. Quantifica-
tion of entanglement is an important task in quantum information theory. However,
there is no unique measure of entanglement. Inspired by different tasks there are
also various different entanglement measures. Nevertheless, an entanglement mea-
sure has to fulfill certain conditions.

1.4.1 Requirements for entanglement measures

As a tool for entanglement quantification an entanglement measure (also called
entanglement monotone) has to quantify the amount of entanglement in a given state
ρ. The conditions, which an entanglement measure E(ρ) has to satisfy, were first
introduced in Ref. [81]. Here we list these properties without any deep discussion
and suggest Refs. [83, 82, 67] for further reading.

1. If the state ρ is separable, then E(ρ) = 0.

2. The function E(ρ) should not change under local unitary transformations

E(ρ) = E(UA ⊗ UBρU
†
A ⊗ U †

B) (1.67)

3. Since entanglement cannot be produced by LOCC, an entanglement measure
cannot increase under LOCC operations

E(ΛLOCC (ρ)) ≤ E(ρ), (1.68)
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where ΛLOCC is a positive map implemented by LOCC.

4. E(ρ) should be convex

E

(
∑

i

piρi

)

≤
∑

i

piE(ρi). (1.69)

Note that this property is often demanded and fulfilled by most entanglement
measures, although not all measures fulfill this property.

5. Sometimes one also demands an entanglement measure to be an additive func-
tion

E(ρ1 ⊗ ρ2) = E(ρ1) +E(ρ2). (1.70)

However this property is also violated by some measures or is very hard to
prove.

We comment a little bit more on the property (1.68), since we are going to use
it in this work. Sometimes this condition is replaced by a different requirement that
E(ρ) should not increase under LOCC on average. That means that if a LOCC
transformation maps the initial state ρ to states ρi with certain probabilities pi, the
function E(ρ) should satisfy

∑

i

piE(ρi) ≤ E(ρ). (1.71)

Note that this condition is stronger than (1.68), but the most reasonable entangle-
ment measures fulfill also this last condition.

1.4.2 Some examples of entanglement measures

Before starting with some examples we briefly discuss a possible strategy of con-
structing an entanglement measure. We will be using this strategy later on. Firstly,
one defines the measure E(|ψ〉) for pure states. In the second step, which is called
convex roof construction, one extends the measure on the set of mixed states

E(ρ) = inf
pi,|ψi〉

∑

i

piE(|ψi〉), (1.72)

where the infimum is taken over all possible decompositions of the state ρ.

This construction has two essential advantages. First of all, the property of
convexity is automatically fulfilled for mixed states. Secondly, in many cases it is
easier to check all requirements, which an entanglement measure has to satisfy, on
the pure states and then extend them on the case of the mixed states. Furthermore,
it is noteworthy that even if the constructed measure turns out not to fulfill the
requirements listed in section 1.4.1, one can use it to lower bound some already
known entanglement measure. Finally, we point out that the optimization (1.72) is
a very hard computational task and only for special cases results are known.

In order to point out the important relation between entanglement measures and
entanglement criteria we start with the negativity of entanglement [84].
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Definition 1.24. The negativity of entanglement is defined as

N(ρ) =
||ρTA ||1 − 1

2
. (1.73)

As one can see from the definition, this measure is defined as the violation of
the PPT criterion and hence does not detect any bound entangled states. The main
advantage of this measure is that it is really easy to compute. However, it is not an
additive function. To make this function additive one can introduce the logarithmic
negativity EN (ρ) = log2 ||ρTA ||1, but in this case one looses the convexity.

Another very important measure for quantification of bipartite quantum corre-
lations is the concurrence [85, 86, 87].

Definition 1.25.

ConcurrenceofapurequantumstateisdefinedasC(|ψ〉) =
√

2(1 − tr (ρ2)). (1.74)

It is useful to express the concurrence in terms of the Schmidt coefficients of a
state [87, 88]

C(|ψ〉) = 2

√
∑

i<j

λiλj. (1.75)

For the mixed states it is defined via convex roof construction (1.72) and can be
analytically computed for the case of two qubits [86].

As it has already been mentioned there exist a lot of entanglement measures
such as the von Neumann-Rényi entropy, which is quite often used to quantify
entanglement in ground states of quantum spin models (note that this is not an en-
tanglement measure for mixed states). Concurrence of two qubits can be connected
to Entanglement of formation and entanglement of distillation is a lower bound for
the negativity. Apart from these measures there are measures that were motivated
by certain physical implementations, for example localizable entanglement. The ge-
ometric measure of entanglement is an example of measures, which are induced by
particular distance in the Hilbert space. The mutual information can be seen as
an entropic generalization of an entanglement measure induced by a distance in the
space of mixed states, i.e. in B(H) with a Hilbert-Schmidt norm. Since the discus-
sion of entanglement measures is not in the main focus of this thesis we refer the
interested reader to excellent reviews on the theory of entanglement [82, 67].

1.4.3 Semidefinite programs in entanglement theory

As one could guess from previous sections many problems in quantum information
theory involve optimization over the convex set of separable states. The decision
whether a given multipartite state is entangled, minimization of expectation values
of entanglement witnesses or evaluation of entanglement measures are examples of
such problems [34].
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A semidefinite program (SDP) represents a particular type of convex optimiza-
tion problem and corresponds to the optimization of a linear function subjected to
linear constraints. A typical form of SDP is

minimize cT−→x ,

subject to F (−→x ) ≥ 0, F (−→x ) = F0 +

n∑

i=1

xiFi (1.76)

Here c is a given vector specifying the problem, Fi are some Hermitian matrices
and −→x = (x1, x2, . . . , xn) is a vector of variables, over which the minimization is
performed. In a particular case, namely when c = 0, the problem reduces to the
so-called feasibility problem, which is to decide, whether the linear constraints in
(1.76) can be satisfied for some value of −→x .

A very important property of a SDP is its duality structure. The dual problem
is given via Lagrange approach

inf
x∈Rn

sup
Z≥0

{
cT−→x − Tr (F (−→x )Z)

}
≥ sup

Z≥0
inf
x∈Rn

{

−Tr (F0Z) +
∑

i

(ci − Tr (FiZ))xi

}

.

(1.77)
The supremum on the right hand side of the (1.77) is bounded from below if and
only if the infimum stays finite for all −→x ∈ Rn. The last is the case only if

ci = Tr (FiZ) , ∀i. (1.78)

Hence for every SDP there exists a corresponding dual problem of the form:

maximize − Tr (F0Z) ,

subject to Z ≥ 0, Tr (FiZ) = ci, (1.79)

where Z is a Hermitian matrix and is variable over which the maximization is per-
formed. The dual problem itself belongs to the class of semidefinite programs. Any
solution of the dual problem gives a lower bound on the solution of the primal prob-
lem and vica versa. This property is referred to as weak duality, meaning that for
any feasible x and Z, which fulfill the constraints in (1.76) and (1.79),

cT−→x +Tr (F0Z) = Tr (F (−→x )Z) ≥ 0 (1.80)

holds. If one of the constraints (or both of them) in (1.76) and (1.79) are fulfilled
strictly, then one speaks about strong duality, which means that there exist x? and
Z? such that

cT
−→
x? +Tr (F0Z

?) = 0. (1.81)

In Fig.1.2 we schematically present how the dual problem can be used in op-
timization problems. Imagine our goal is to minimize a function f (−→x ) (e.g.
f (−→x ) = cT−→x in Problem (1.76)). A numerical optimization will give us an an-
swer, which is in general bigger than the real minimum of the function f : nummin
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Figure 1.2. Primal (black line) and dual (red line) problems. Using the
duality property of the SDP one can numerically achieve bounds on the
minimum of a given function f . Generally, Ineq. (1.82) holds, which
gives an interval that the min f belongs to.

(f) > min (f). Now we can use the duality property and maximize a function g(Z)
(g(Z) = −Tr (F0Z) in Problem (1.79)). Again the numerically achieved maximum
will be smaller than real maximum of g. However using the dual structure we can
give an interval, which the real minimum of the function f (−→x ) belongs to:

nummin (f) > min(f) ≥ max(g) > nummax (g). (1.82)

In the case of the strong duality, where theoretical values of min(f) and max(g) are
equal the duality can be used as a test of the quality of the numerical minimization.

An important example of SDPs are feasibility problems. For these problem the
vector c in (1.76) is equal to zero, so the primal problem consists in only checking
the feasibility conditions. For the dual problem it means that Tr (F0Z) ≥ 0 has to
hold for all feasible Z. Therefore if there is a feasible Z such that Tr (F0Z) < 0 than
the primal problem has no solutions [89].

Semidefinite programs can be used to construct tests for the separability problem.
These tests are constructed to approximate the convex set of separable states as
exactly as possible. There are two basic strategies to carry out this approximation.
The first one (see e. g. [89]) is to approximate the set of separable states from
outside, i. e. at each step the inseparability of a given state is tested. The second
strategy concerns with approximating the set of separable states from inside [90],
i. e. at each step one has to answer the question whether the state is separable
or it cannot be decided. Following this strategy one detects separability instead of
inseparability.
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Using either of the strategies one can construct a complete hierarchy of sepa-
rability tests. This hierarchy converges and gives with certainty the answer to the
separability problem. Although the time efficiency of each step scales only poly-
nomially with the dimension of the Hilbert space, the size of the matrix F (−→x ) in
the semidefinite program (1.76) grows exponentially with the number of steps in
the hierarchy. This is in agreement with the fact that the separability problem,
considered as a weak membership problem, is NP -hard [91, 92]. That means the
decision whether a given d× d state is separable or not with accuracy ε requires an
exponential in d number of steps.

1.5 Entanglement in condensed matter systems

In this section we will briefly discuss some modern directions that became popular
in recent decades and were facilitated by the progress in the quantum information
theory.

1.5.1 Entanglement in critical phenomena

Entanglement as a purely quantum mechanical feature is interesting from the fun-
damental point of view for solid state physics as well and plays a crucial role in
critical phenomena. Under criticallity one usually understands the phenomenon of
phase transition and says the system, described by its Hamiltonian, is critical if it
has several phases and undergoes a phase transition for certain values of external
parameters, e.g. temperature, pressure or magnetic field, or internal parameters,
e.g. the strength of the spin-spin coupling. All phase transitions can be cast into
two categories: first order phase transitions or discontinuous phase transitions and
second order phase transitions or continuous phase transitions. The discontinuous
transitions involve a latent heat, i.e. when the system undergoes a phase transition
of this type a fixed amount of energy is either absorbed or released. The second order
phase transitions are characterized by the power law decay of correlations. No latent
heat is involved there. A very important sub-class of continuous phase transitions
are quantum phase transitions. These transitions occur at zero temperature and
correspond to an abrupt change of the ground state of the many-body system, when
some of the system’s parameter are varied [93]. Because a quantum phase transition
occurs at T = 0 the correlations in the system are of purely quantum character. The
phenomenon of quantum phase transitions cannot be explained in the framework of
classical statistical mechanics and must be considered from a conceptually different
point of view [94]. As it has been realized in [95, 96, 97] for the quantum phase
transitions the amount of entanglement grows considerably at the critical point. We
illustrate this behavior on two examples.

Example 1: Concurrence. Concurrence is suited at best as measure for
entanglement between two particles in a spin model. All spin models we consider in
the examples have one spatial dimension. First of all let us consider a model with
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Ising type interaction in an external transverse magnetic field. It consists of spin-12
particles that can be described by the following Hamiltonian

HI = −
N∑

i=1

(λσxi σ
x
i+1 + σzi ) (1.83)

with periodic boundary conditions.

The model defined by the Hamiltonian in Eq. (1.83) is exactly solvable and
the ground state of the model is known. As one can conclude already from the
Hamiltonian the ground state |ψ0(λ)〉 depends heavily on the parameter λ. Two
limiting cases are pretty obvious though: for λ → ∞ the state will tend to be a
product state of the form

|ψ0(∞)〉 = |+〉⊗N , (1.84)

whereas for λ = 0 the ground state will be

|ψ0(0)〉 = |0〉⊗N . (1.85)

The existence of the phase is adjudicated by two different ground states. The critical
point for the Ising chain lies at λc = 1. The amount of entanglement, which is shared
between two sites of the chain can be analyzed by the concurrence [95, 97]. The
behavior of the concurrence of nearest neighbors is depicted on FIG. 1.3(a) [95].

Depending on the size of the system the minimum of the first derivative of the
nearest neighbor concurrence with respect to the critical parameter λ becomes more
and more clear. In the thermodynamic limit the concurrence itself is presented in
the right inset of FIG. 1.3(a). The concurrence has an infinite slope at λ = 1 and
the minimum of ∂λC(1) tends to minus infinity

∂λC(1) =
8

2π2
ln |λ− λc|+ const. (1.86)

The last equation describes the behavior of nearest neighbor entanglement in the
critical region. The next to nearest neighbor concurrence is also different from zero
[95, 97] and is presented in FIG. 1.3(b).

Besides the fact that the value of the next to nearest neighbor concurrence is
two orders of magnitude smaller that the value of C(1) there is a peculiar fact that
has to be mentioned here. Namely, the maximum of C(2) is precisely at the critical
point for arbitrary system size and its value drops with the system size. Since
∂λC(2)|λc = 0 the singular behavior of C(2) is described by its second derivative

∂2λC(2) = 0.108 ln |λ− λc|+ const. (1.87)

The next next nearest neighbor concurrence is zero for all values of the critical
parameter λ.

Yet another spin system that undergoes quantum phase transition but possesses
richer properties is the so-called XY -model. Its anisotropic version is described by
the following Hamiltonian

HXY = −λ
2

N∑

i=1

{
(1 + γ)σxi σ

x
i+1 + (1− γ)σyi σ

y
i+1

}
+

N∑

i=1

σzi . (1.88)
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(a) (b)

Figure 1.3. (a) First derivative of the nearest neighbors concurrence
with respect to the critical parameter λ is presented. Different curves
correspond to different sizes of the ring N = 11, 42, 101, 251, 401,∞.
When the system’s size is increased the minimum gets more sharp. In
the left inset one can see that the position of the minimum also changes
with the system size (finite size effects) but tends as N−1.87 to the real
value λc = 1, where a logarithmic divergence for an infinite system is
present. The right inset shows the behavior of the concurrence itself in
the thermodynamic limit. The maximum occurs below the critical value
λc = 1 and is not related to the critical properties of the Ising model.
This picture was taken from [95]. (b) The next to nearest neighbor
concurrence C(2) in the critical region of the Ising chain as function
of the critical parameter λ is presented. Different curves correspond to
different system sizes. Generally the value of C(2) is by two order of
magnitudes smaller than the value of C(1). Surprisingly, the position
of the maximum of C(2) does not depend on the size of the system and
is precisely at the critical point λc = 1. The maximum increases if the
system’s size increases. This picture was taken from [95].

Before we present known results we should comment on the Hamiltonian (1.88).
Firstly, as one can easily verify, the Ising model, discussed above is a special case of
the XY -model: HXY (γ = 1) = HI . Secondly, for anisotropy parameter γ ∈ (0, 1]
the models HXY belong to the Ising universality class and in the thermodynamic
limit they undergo a quantum phase transition at λc = 1.

The exact solubility simplifies the calculation of the concurrence, which is de-
termined by the two-site density matrix. In FIG. 1.4(a) and FIG. 1.4(b) we present
the results from [97] concerning the concurrence in the XY -chain. It is worth to
note the transition from Ising (γ = 1) to the XX model, where after the phase
transition the concurrence C(1) saturates and stays at some finite value. In the
case of the next nearest neighbor concurrence one observes the same behavior as in
the Ising model: at the criticallity λ = 1 the concurrence C(2) has its maximum.
Interestingly the value of the maximum varies slightly depending on γ. On the half
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(a) (b)

Figure 1.4. (a) The nearest neighbor concurrence in the ground state of
the XY chain. The phase transition that occurs at λ = 1 affects the
nearest neighbor concurrence for all values of the anisotropy parameter
γ. In the XX model γ = 0 the concurrence C(1) saturates at some finite
value. (b) The next to nearest neighbor concurrence in the ground state
of the XY chain. Along the critical line λ = 1 the next nearest neighbor
concurrence C(2) has its maximum, as in the case of the Ising model,
almost everywhere. The exception is the region of low anisotropy where
γ tends to zero and the model becomes more and more XX-like. This
picture was taken from [97].

way from the Ising to XX model it takes its biggest value. For the XX model the
concurrence C(2) drops rather fast when one goes deeper into the region where the
XX coupling dominates the external magnetic field. As for the Ising model all long
distance concurrences C(N) vanish for N > 2.

One might think that vanishing of C(N) for either Ising and XY -models is
a signal of relatively small amount of entanglement in their ground states. This
assumption is, however, not correct. By considering concurrence one takes into
account only two particle entanglement. The more complete picture is provided if
one calculates the von Neumann entropy, which is the subject of our second example.

Example 2: von Neumann entropy. In the thermodynamical limit the
von Neumann entropy in the critical region can be expressed by a simple formula
[100, 101]:

SIvN (L) =
1

6
logL+O

(
1

L

)

+ const (1.89)

for L → ∞, where L denotes the size of the block of the system. This logarithmic
divergence of the von Neumann entropy indicates the presence of highly entangled
states and complements the observations made for the concurrence.

For the XY -model the von Neumann entropy was calculated as well [100, 101,
102, 103]. An analytical expression for the von Neumann entropy in thermodynami-
cal limit for L→ ∞ was provided in [102]. Qualitatively it is important to note, that
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the von Neumann entropy of the ground state of the one dimensional XY model
diverges logarithmically at criticallity, which is reminiscent of the behavior in the
Ising model (1.89)

SXYvN (L) = c log(L) + const. (1.90)

Surprisingly the scaling of the von Neumann entropy obeys in many cases quite
general rules. For many models it grows as the boundary of the considered block.
This type of scaling is called area law and holds for a big variety of the systems
possessing critical behavior (see [105] and references therein).

There are several approaches that can be used to estimate entanglement in a
given condensed matter system. In the examples presented above, one uses the
ground state of a particular Hamiltonian explicitly in order to calculate the amount
of entanglement in the system. A nice review on the entanglement investigations by
direct calculation of the ground states of many-body systems can be found in [106].

Example 3: Witnesses. A different type of approach consists of using the
Hamiltonian itself as an observable that can be used to examine what quantum
states can be detected with it. This kind of estimation involves a witness operator
that is constructed as

WH = H − inf
ρ∈S

{Tr (ρH)}, (1.91)

where S is the set of all separable states.

The estimation of the energy can be done for a big variety of spin models. The
figure of merit of such estimation is twofold. Firstly, the estimation turns out to
be very useful for the detection of entanglement in thermal states. Secondly, it
sheds some light also on the type of entanglement that is present in various spin
models. Namely, estimating the energy one can analyze what type of multipartite
entanglement is consistent with the energy threshold, i.e. which type of multipartite
entanglement must be present in order that the state has a particular energy [98,
99, 67].

1.5.2 Entanglement in real-space renormalization techniques

In this section we discuss an advantageous role of entanglement in renormalization
group techniques. Applied to quantum field theory and statistical mechanics renor-
malization group techniques are very well developed, see for example [107, 108] and
references therein. The idea of renormalization is rather simple to explain. It con-
sists in discarding degrees of freedom in a system, which are considered to be not
important for the physical behavior. The decision which degrees of freedom to keep
and which to discard is the main issue in the definition of a particular renormaliza-
tion scheme.

The fact that entanglement plays an important role in many-body systems led
to the question whether one can use it to improve already known renormalization
schemes. The first suggestion in this direction made in [96] was concerned with
improving the already known renormalization group algorithm that was known to
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fail in the case of critical systems. This renormalization method is called density-
matrix renormalization group (DMRG). Using the entanglement. described by the
von Neumann entropy, as a benchmark for optimization in the DMRG approach
one was able to improve its accuracy [96, 110] and to correct the wrong exponential
decay of the correlation function at the phase transition.

The DMRG is a well established method to calculate properties of one dimen-
sional quantum systems numerically. It gives a rather good description of many-body
systems in 1D: approximations to ground or thermal states or even dynamics of a
given system can be achieved using the DMRG. However, as it was noted in [96], us-
ing the knowledge from quantum information theory one can make the DMRG even
more accurate and even solve some of its intrinsic problems. One of the problems
of the original DMRG one has been aiming to solve was the wrong scaling behavior
of the correlation function in the critical region of many-body systems that undergo
a phase transition. As simple as it is, the idea to take entanglement of a state into
account was also somewhat genius. According to [96], the state optimization after
each step in the DMRG should be carried out in a such a way that the amount of
entanglement in this state is nearly the same as in the state before the renormal-
ization step. As it turned out, the entire DMRG can be understood in terms of
optimization over the so-called matrix product states (MPS) [111, 112, 113]. The
DMRG flow has a certain fixed point. The wave function that corresponds to this
fixed point is an MPS:

|Q〉 =
∑

{sj}
Tr (QA[sn] . . . A[s1]) |sn . . . s1〉, (1.92)

where |Q〉 represents a state of n d-dimensional systems si, with matrices A[si] of
the size D[si] × D[si+1]. The size of matrices A is the size of the virtual space,
which they are acting on. The ansatz wave function |Q〉 is uniform in the bulk. Its
boundary conditions are represented by the matrix Q under the trace. For example
the case Q = 1 corresponds to the state, which is translational symmetric with
periodic boundary conditions. For D = 2 the state (1.92) is an exact solution for
the one-dimensional AKLT model, which is defined by the Hamiltonian [114]

HAKLT =

N−1∑

n=0

{−→
S n ·

−→
S n+1 −

1

3

(−→
S n ·

−→
S n+1

)2
}

. (1.93)

Since it has been realized that optimization over a certain class of entangled
states improves the performance of DMRG there were several attempts to gener-
alize this renormalization technique to higher dimensions and also to improve its
performance further. Various classes of states arose, which were used to approx-
imate eigenstates of quantum many-body Hamiltonians: projected entangled-pair
states (PEPS) [115, 116] or tensor product states (TPS) [117, 118, 119, 120], which
are the two-dimensional generalization of MPS (note that the latter were applied also
to classical spin systems) or weighted graph states [121, 122]. Recently an another
class of states was introduced: the so-called concatenated tensor network (CTS)
states [123], however their performance is not well investigated yet.



36 Preliminaries

To summarize: using the concepts of the quantum information theory one was
able to shed light on some of the problems in condensed matter theory. Realizing
the crucial role of entanglement in strongly correlated many-body systems led to the
reappraisal of various concepts in physics of quantum phase transitions. Nowadays
a lot of work in this direction is concentrated on realizing the type of entanglement
that can be present in eigenstates of particular Hamiltonians. As one has already
agreed on, the eigenstates of critical Hamiltonians should be highly entangled. This
makes the search for the eigenstates slightly easier, since they are supposed to occupy
not the whole Hilbert space but only a rather small part of it. However, the term
highly entangled state is a bit rambling, since there are a lot of different types of
entanglement in many-body systems. The classification of multipartite entanglement
is a wide open question itself and different systems may, in fact, have different types
of multipartite entanglement in their thermal or ground states [98]. So further
investigations of the particular type of entanglement that can appear in e.g. ground
states of many-body systems is of a big importance for both fields: condensed matter
physics and quantum information theory.

1.5.3 Disordered systems

The investigation of disordered systems is motivated by a simple fact: models with
constant parameters describing spin-spin interactions or local action of the magnetic
field, are mathematical idealizations. One can introduce disorder in different ways.
There exist different theoretical models to describe the behavior of disordered sys-
tems. The subject of investigations in this thesis will be models without frustration.

At first sight one could think that introducing disorder in a model and describing
the couplings as stochastic variables will impede already difficult studies of the
model and make in intractable. Surprisingly, it is not always the case. It turns
out that in some cases one can achieve even more information about the disordered
model as for its non-random analog. Particularly in one dimension ground state
properties of quantum spin systems are relatively well understood [124]. For 2D only
partial answers are known. For instance it has been claimed in [125] that the von
Neumann entropy deviates from the area law for the 2D random transverse field Ising
model. However, the aforementioned results are based on particular renormalization
technique - strong disorder renormalization group approach. For one-dimensional
systems there exists an analytical proof, that this method converges [126, 127],
whereas for 2D there is only numerical evidence.

In this thesis we will introduce another renormalization scheme, which should
improve the usual strong disorder renormalization group method.

To finish this section we would like to mention that the behavior of the entangle-
ment in disordered quantum spin systems is essentially unresolved problem. On the
one hand one could guess that disorder should reduce the entanglement amount in
a ground state state in a given system. On the other hand, as it has been argued in
[125], the disorder causes building of clusters, which are happened to be in a highly
entangled state, namely in the N -particle GHZ state 1√

2

(
|0〉⊗N + |1〉⊗N

)
.



Chapter 2

Covariance matrices for finite dimensional

systems

In the introductory chapter we discussed entanglement properties of Gaussian
states. There the main tool for entanglement detection in a state was its covariance
matrix (1.22), which was characterized by the uncertainty relation (1.23). In this
chapter we focus on covariance matrices for finite-dimensional systems. We will an-
alyze the relationship between the CMs and quantum states, described by a density
matrix ρ. We will show that any state ρ can be described unambiguously in terms
of non-symmetric covariance matrices and one looses this unambiguity in the case of
the symmetric CMs. To this end we provide an example of two qubit states, which
have the same CM but different separability properties. In the end of the chapter
we investigate general properties of the CMs and their transformation laws under
the unitary evolution of quantum state ρ.

2.1 Definition of covariance matrices

In this section we define CMs and fix our notation (see [129] and references therein).

In what follows let ρ be a pure or mixed quantum state, described by a (positive)
density operator in a d-dimensional Hilbert space H and let {Mk : k = 1, . . . , N}
a suitable set of observables. Unless stated otherwise, we will always assume that
these observables are orthonormal observables with respect to the Hilbert-Schmidt
scalar product between observables, i.e., they fulfill

Tr (MiMj) = δi,j. (2.1)

Furthermore, we will typically assume that the Mi form a complete basis and span
the whole observable algebra. This implies that there are N = d2 different Mi, and
that any other observable can be expressed as a linear combination of the Mi.

As an example for such a set of observables for the case of a single qubit, one
can consider the (appropriately normalized) Pauli matrices,

M1 =
1√
2
, M2 =

σx√
2
, M3 =

σy√
2
, M4 =

σz√
2
. (2.2)

We can now formulate the main definitions for this work.
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Definition 2.1 (Covariance matrix). The d2×d2 covariance matrix γ = γ(ρ, {Mk})
and the d2 × d2 symmetric covariance matrix γS = γS(ρ, {Mk}) are defined by their
matrix entries as

γi,j = 〈MiMj〉 − 〈Mi〉〈Mj〉, (2.3)

γSi,j =
〈MiMj〉+ 〈MjMi〉

2
− 〈Mi〉〈Mj〉. (2.4)

Sometimes, the difference between the linear part of a CM and the nonlinear part
becomes relevant. Therefore, we define the linear part of γ as gi,j = 〈MiMj〉 and the
linear part of the symmetric CM as gSi,j = 〈MiMj +MjMi〉/2.

We will often for simplicity of notation also write γ(ρ) or γ({Mk}) instead of
γ(ρ, {Mk}), or simply γ. We will also sometimes indicate with respect to what state
an expectation value is taken, so 〈Mi〉 = 〈Mi〉ρ. It is straightforward to see that γ
is a complex Hermitian matrix. The matrix γS in turn is real and symmetric. Both
γ and γS are positive semidefinite, γ, γS ≥ 0 [130].

Note finally that for odd d, there is another basis of orthonormal observables that
can equally be used and that is commonly employed in the mathematical physics
literature in the context of discrete Weyl systems [131]. Let A(0, 0) be the parity
operator that maps P (0, 0) : |x〉 7→ | − x〉, where |x〉 ∈ {|0〉, . . . , |d − 1〉}, meant
modulo d. Then, for (q, p) ∈ Z2

d let

P (q, p) =W (q, p)P (0, 0)W (q, p)† (2.5)

the translated versions of P (0, 0) in discrete phase space, where W (q, p) are the
discrete Weyl operators 1. The operators {M(q,p)} = {P (q, p)

√
d} then form a set

of Hilbert-Schmidt orthonormal Hermitian matrices. This is the standard set of
observables when phase-space methods are made use of.

2.2 Covariance matrices for bipartite systems

In the focus of this work is the situation where the Hilbert space is a tensor product
H = HA ⊗ HB of Hilbert spaces of two subsystems A and B. We consider finite-
dimensional systems, and denote the dimension of HA (HB) with dA (dB), respec-
tively, such that the dimension of the tensor product Hilbert space is d = dA × dB .
We can choose a basis of the observable algebra in A as {Ak : k = 1, . . . , d2A} and in
B as {Bk : k = 1, . . . , d2B}, and consider the set of d2A + d2B observables

{Mk} = {Ak ⊗ 1,1⊗Bk}. (2.6)

Note that this set is not tomographically complete, since observables like Ak ⊗ Bl
are missing. However, this set can be employed to define a very useful form of CMs.

1Let X(q)|j〉 = |j + q〉 and Z(p)|j〉 = e2πipj/d|j〉 be shift and multiply operators, then the Weyl
operators are defined as W (q, p) = eπi(d+1)pq/dZ(p)X(q).
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Definition 2.2 (Block covariance matrices). Let ρ be a state of a bipartite system,
and let Mk = {Ak ⊗ 1,1⊗Bk} be a set of observables as outlined above. Then, the
block covariance matrix γ(ρ, {Mk}) has the entries γi,j = 〈MiMj〉 − 〈Mi〉〈Mj〉 and
consequently a block structure:

γ =

(
A C
CT B

)

, (2.7)

where A = γ(ρA, {Ak}) and B = γ(ρB , {Bk}) are CMs of the reduced states of
systems A and B, and

Ci,j = 〈Ai ⊗Bj〉 − 〈Ai〉〈Bj〉. (2.8)

Similarly, we can define a symmetric block covariance matrix γS({Mk}), for which
A and B are the corresponding symmetric CMs, while C remains unchanged.

2.3 Covariance matrices as description of quantum

states

Is it possible to completely reconstruct the state from a given CM? As our separabil-
ity criterion uses the CM to decide separability, this question is important in order to
understand, whether all states can be detected. We will discuss it in this subsection.
Let us first show how CMs depend on the set of observables {Mk : k = 1, . . . , N}:

Proposition 2.3 (Transformation of covariance matrices). Let γ({Mk}) be a CM
as defined in (2.3). If {Kk} is another set of observables, connected to the {Mk}
by a basis transformation Ki =

∑N
i=1Oi,jMj with some matrix O then γ({Kk}) is

given by
γ({Kk}) = Oγ({Mk})OT . (2.9)

Note that O is an orthogonal matrix if Ki and Mi are orthonormal bases.

Proof: A direct calculation gives

γ({Kk})i,j =
∑

l,m

〈Oi,lMlOj,mMm〉 − 〈Oi,lMl〉〈Oj,mMm〉

=
∑

l,m

Oi,lγ({Mk})l,mOTm,j , (2.10)

which proves the claim. �

The main point is that the previous proposition allows us to choose the basis
which we want to express our CM in arbitrarily, since we know how the CM will be
transformed under a basis transformation in the space of observables.

We can now come back to the initial question: Suppose we are given some CM
with a fixed basis of observables. Are we able to reconstruct the physical state from
this CM uniquely? We will start answering this question by considering a single
system.
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Proposition 2.4 (Characterization of states via non-symmetric covariance matri-
ces). Given a non-symmetric CM with tomographically complete set of observables,
we can reconstruct the corresponding physical state unambiguously.

Proof: We choose the following basis of the observables:

Di = |i〉〈i|, i = 1, . . . , d, (2.11)

Xi,j =
1√
2
(|i〉〈j| + |j〉〈i|), 1 ≤ i < j ≤ d, (2.12)

Yk,l =
i√
2
(|k〉〈l| − |l〉〈k|), 1 ≤ k < l ≤ d. (2.13)

These observables form an orthonormal basis, and we will refer to this basis as
to the standard basis later on. As in any basis Mk, we can write the state as
ρ =

∑

k〈Mk〉Mk, it suffices to know the first moments 〈Mk〉. From Eq. (2.3) one can
see that γi,j − γj,i = 〈[Mi,Mj ]〉. In the following we will show that in the chosen
basis, all first moments can be obtained from expectation values of commutators.

For the chosen standard basis we can explicitly calculate all commutators

[Dk,Xk,l] =
i√
2
Yk,l, [Dk, Yk,l] = − i√

2
Xk,l, (2.14)

[Xk,l, Yk,l] = i(|k〉〈k| − |l〉〈l|). (2.15)

Hence, all expectation values of the Xi,j and Yk,l can be calculated. The same is
true for the diagonal elements: Using the fact that the trace of the density matrix
is equal to one, we can calculate all the diagonal elements from the mean values of
[Xk,l, Yk,l]. �

Clearly, the same approach can be used for bipartite systems, if we use the CM in
the full (and not in a block) form. In this case we can use a product basis {|i1, i2〉}.
Identifying (i1, i2) =: i we can define the standard basis as above and find all first
moments from the covariance matrix.

As we have seen, the non-symmetric CM defined in Eq. (2.3) describes the phys-
ical state completely. The knowledge of the symmetric CM in Eq. (2.4) is, however,
not enough:

Proposition 2.5 (Inequivalence of states and symmetric covariance matrices). The
knowledge of the symmetric CM γS does, in general, not determine the state ρ
completely.

Proof: We prove the claim by providing a counterexample. Let us take a single
qubit. As observables we take the appropriate normalized Pauli matrices. The
symmetric CM has the following entries

γS0,j =
〈1σj〉+ 〈σj1〉

4
− 〈1〉〈σj〉

2
= 0 = γSi,0, (2.16)

γSi,j =
〈{σi, σj}〉

4
− 〈σi〉〈σj〉

2
=
δi,j − 〈σi〉〈σj〉

2
. (2.17)
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From this we can determine the norm of the mean value of the spin component in a
certain direction, but not its sign. Hence we know the length of the Bloch vector of
the system, up to some reflection to the origin, which corresponds to simultaneous
change of signs of all 〈σi〉’s.

One might think that the case of one qubit constitutes a special case. However,
the same ambiguity will arise if one embedded a qubit in a higher dimensional, say,
three level system. As it can be checked, the additional observables in the basis of
observables {Mk} will not provide any further information. �

To summarize: The knowledge of the symmetric CM of a qubit alone is not suf-
ficient to decide between two alternatives of states which have opposite (symmetric
to the origin) Bloch vectors. Also, merely the additional knowledge of a single bit
(the sign) is needed to make this correspondence unambiguous. This, however, is
specific to the qubit case. We will now turn to investigating the same question for
the block CM defined in Eq. (2.7):

Proposition 2.6 (Relationship between bipartite states and block covariance ma-
trices). For block CMs γ and γS on a bipartite system, the following statements
hold:

(i) The (non-symmetric) block CM γ determines the bipartite state ρAB com-
pletely.

(ii) The symmetric block γS does not determine ρAB completely.

Proof: Obviously, given a non-symmetric block CM for the set of variables Ak⊗1
and 1⊗Bl we can determine first all 〈Ak〉 and 〈Bl〉 for the reduced state ρA in the
same way as in Proposition 2.4 from the blocks A and B of γ. Then, knowing the
block C we can fix the rest 〈Ak ⊗Bl〉 as

〈Ak ⊗Bl〉 = Ck,l + 〈Ak〉〈Bl〉 (2.18)

and hence (i) is proved.

The validity of (ii) is straightforward to see for two qubit states, as there will
be the same lack of information on the mean values of observables as in Proposition
2.5 and hence γSAB does not provide the whole information about the state. �

The fact that the symmetric block CM γS does not determine the state com-
pletely will later be important for the discussion of our entanglement criteria. There-
fore, let us investigate this correspondence for the case of two qubits in some more
detail. For that, let Ai and Bj be Pauli matrices. We may write the state in the
form

ρAB =
1

4

∑

i,j

λi,jσ
A
i ⊗ σBj , (2.19)

where λi,j = Tr
(

ρσAi ⊗ σBj

)

.
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As one can see from Eq. (2.18) we have two possibilities of changing the λi,j while
keeping the Ci,j invariant: We can (i) flip the signs of both of the Bloch vectors of
the reduced density matrices, (λ0,j and λi,0 for i, j = 1, 2, 3), while keeping the left
hand side of Eq. (2.18) invariant. Alternatively, we can (ii) flip the sign of only one
of them, which implies that we also have to change the left hand side of Eq. (2.18).

Concerning (i), one can directly calculate the transformed state ρinv. It turns out
that the eigenvalues of ρ and ρinv are the same, suggesting that they are connected
by a unitary transformation maybe in addition with a global transposition which
transforms one state to the other. Actually the unitary transformation is a local
unitary one, and one has the following transformation:

(
ρinv

)T
= U †ρABU,

U =

(
0 −1
1 0

)

⊗
(

0 1
−1 0

)

.
(2.20)

Since there is no physical process which corresponds to a transposition of a state,
there are two physically different states ρ and ρinv which give rise to the same
covariance matrix and which are connected by the simultaneous flip of the Bloch
vectors of their subsystems. Nevertheless we can see from Eq. (2.20) that these states
have the same entanglement properties, because there is a local unitary operation in
addition to a global transposition connecting them. These transformations do not
change the outcome of the PPT criterion, and in fact do not change the entanglement
properties of any two-qubit quantum state.

Concerning (ii), it also possible to flip the Bloch vector of only one of the subsys-
tems in a such a way that the whole covariance matrix will remain unaltered. This
kind of transformation is done by

〈σAi 〉 7→ −〈σAi 〉,
〈σAi ⊗ σBj 〉 7→ 〈σAi ⊗ σBj 〉 − 2〈σAi 〉〈σBj 〉,

(2.21)

resulting in a transformation of ρ to a different ρinv. Such a change of the state is
nontrivial and can give rise to a matrix ρinv with negative eigenvalues, which clearly
does not correspond to any state. Two more cases that should be discussed. As one
can see from a numerical search, there are some states ρ, for which ρinv is still a
state and ρ and ρinv are either both separable or both entangled. But there exist also
states which alter their separability properties after a Bloch vector inversion. As an
example of states where ρ and ρinv have different separability properties, consider
the states of the form

ρε =
ε

2







1 + r 0 0 t
0 0 0 0
0 0 s− r 0
t 0 0 1− s







+ (1− ε)







0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0






. (2.22)

ρε is a slight modification of the family of the states introduced in Ref. [65] and
which are known to be detected by PPT but not by CCNR criterion for certain
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Figure 2.1. Entanglement properties of ρε and ρinvε are revealed by the
PPT criterion for s = 0.45 and t = 1

16 . ε and r are varied. Three
regions corresponds to three different cases. The region “Same” corre-
sponds to the case where ρε and ρinvε are either both separable or both
entangled. The region “Different” corresponds to the situation where ρε
is separable but ρinvε is entangled or vice versa. The last region consists
of states ρε for which the inversion of the Bloch vector of one of the
subsystems leads to ρinvε which is not positive semidefinite anymore.

parameters. The inverted form ρinvε of this states can be calculated analytically.
The states ρε are known to be PPT for (t = 0, ε = 1). Going away from ε = 1
and changing other parameters one can find regions where ρε and ρ

inv
ε have different

entanglement properties.

As we can see from Fig. 2.1 there are three different regions corresponding to the
different physical situations. The most interesting region is the “Different” region
where entanglement properties of the inverted state are different from that of the
initial one. This means that any separability criterion which uses only the symmetric
CM will not detect these states, as the symmetric CM is compatible with a separable
as well as with an entangled state. These states will not be detected by the CMC,
and also not by a variety of other criteria, as we will see later.

2.4 Properties of covariance matrices

In this section we will prove several properties of CMs which are important for our
later discussion. This concerns mainly properties of CMs for pure states and the
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behavior of CMs under the mixing of states. We will first show in the subsequent
proposition that a suitable choice of observables can dramatically simplify the form
of CM γ for pure states.

Proposition 2.7 (Covariance matrices of pure states). Let Gi be a tomographically
complete set of observables of a d-dimensional system. If ρ is a pure state then γ
(as a d2 × d2 matrix) fulfills:

(i) The rank is given by Rank(γ) = d− 1.

(ii) The nonzero eigenvalues of γ are equal to 1, hence Tr (γ) = d− 1.

(iii) Consequently, we have γ2 = γ.

Proof: Without any loss of generality we assume ρ = |1〉〈1| and take as observ-
ables the ones of the standard basis (2.13). Calculating directly and reordering of
the matrix elements afterword’s gives a block structure 2

γ =
d−1⊕

k=1

[
Bk
]⊕Od2−2d+2 with Bk =

(
1/2 i/2
−i/2 1/2

)

, (2.23)

where Ok denotes a k× k matrix of zeros. The matrix in Eq. (2.23) has the desired
properties. �

From this we can directly read off the properties of the symmetric form of the
covariance matrix:

Corollary 2.8 (Properties of symmetric CMs for pure states). Let {Gi} be a to-
mographic complete set of observables of a d-dimensional quantum system. If ρ is a
pure state, then γS (as d2 × d2 symmetric matrix) fulfills:

(i) The rank is given by Rank(γS) = 2(d − 1).

(ii) The nonzero eigenvalues of γS are equal to 1/2, hence Tr (γ) = d− 1.

We now turn to a proposition concerning the trace of a CM for mixed states.

Proposition 2.9 (Trace of CMs). Let ρ be a mixed state. Then

Tr (γ(ρ)) = d− Tr
(
ρ2)
)

(2.24)

which implies that d− 1/d ≥ Tr (γ(ρ)) ≥ d− 1. This holds also for γS.

Proof: By definition Tr (γ) =
∑

i γi,i =
∑

i δ
2(Mi) =

∑

i(〈M2
i 〉 − 〈Mi〉2). The

first summation is trivial, since we have
∑

kM
2
k = d1 [132]. Furthermore we can

write ρ =
∑

k〈Mk〉Mk which implies that
∑

k〈Mk〉2 = Tr
(
ρ2
)
, and further 1/d ≤

Tr
(
ρ2
)
≤ 1. The statement for γS follows directly from the fact that Tr (γ) =

Tr
(
γS
)
. �

We can also estimate the operator norm (i.e., the maximal eigenvalue) of CMs.

2We denote by A ⊕ B a 2 × 2 block matrix with A and B on the diagonal, and zero matrices
elsewhere.
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Proposition 2.10 (Operator norm of CMs). For the CM γ(ρ) and its linear part
g(ρ) the operator norm is bounded by

‖g(ρ)‖ ≤ ‖ρ‖ and ‖γ(ρ)‖ ≤ ‖ρ‖. (2.25)

The same bounds hold for symmetric CMs.

Proof: Let us first consider g(ρ). We have ‖g(ρ)‖ = max|x〉〈x|g(ρ)|x〉 =

〈x0|g(ρ)|x0〉 = Tr
(
ρAA†) with Tr

(
AA†) = 1. This is clearly smaller than ‖ρ‖.

For γ(ρ) this follows then from 〈AA†〉 − 〈A〉〈A†〉 ≤ 〈AA†〉. �

Finally, CMs also satisfy an interesting majorization relation. This has its root
in the way how one can relate CMs to the rotated CMs of the pure states occurring
in their convex decompositions in terms of pure states.

Proposition 2.11 (Majorization relation for CMs). For any (mixed) state ρ, both
the linear part g(ρ) with entries gi,j = 〈MiMj〉 as well as the CM γ(ρ) satisfy

k∑

j=1

λj [g(ρ)],

k∑

j=1

λj [γ(ρ)] ≤ min(k, d− δγ
1

d
), (2.26)

for the non-increasingly ordered eigenvalues, where δγ = 1 for γ(ρ) δγ = 0 if g(ρ) is
considered.

Proof: This is a consequence of ‖γ(ρ)‖, ‖g(ρ)‖ ≤ 1 as well as of Tr (γ(ρ)) ≤ d− 1
d

and Tr (g(ρ)) ≤ d. �

2.5 Explicit form of the block CM for pure states

In this section we pick up an example and calculate symmetric block CM of a pure
bipartite state, which is written in the Schmidt decomposition |ψ〉 =∑i

√
λi|iA〉 ⊗

|iB〉. Consider dA = dB = d. This example will be used later in chapter 6 where we
consider entanglement quantification with covariance matrices.

Again for convenience we choose the local orthogonal observables (LOOs) from
the standard basis (2.13), which satisfy following commutation relations:

{Di,Dj} = δij (|i〉〈j| + |j〉〈i|) , {Di,Xij} = Xij ,

{Di, Yij} = Yij, {Xij , Yij} = 0,

{Xij ,Xij} = Di +Dj , {Yij , Yij} = Di +Dj . (2.27)

Note that this is not the complete set of relations, however other relations will not
give any contribution to the CM and hence we leave them out here.
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The mean values for the state |ψ〉 are given by

〈XA
ij ⊗ 1〉 = 〈1⊗XB

ij 〉 = 〈Y A
ij ⊗ 1〉 = 〈1⊗ Y B

ij 〉 = 0

〈DA
i ⊗ 1〉 = 〈1⊗DB

i 〉 = λi

〈{DA
i ,D

A
j } ⊗ 1〉 = (λi + λj)δij (2.28)

The blocks A,B and C of the γS(|ψ〉) can be therefore written as 3×3 block matrices.
Because of the relations (2.27) and (2.28) a lot of terms in these blocks will be equal
to zero an we have the structure

A,B,C =





DA/B/C 0 0

0 XA/B/C 0

0 0 Y A/B/C



 , (2.29)

Since the off-diagonal terms can be calculated straightforward

〈DA
i ⊗DB

j 〉 − 〈DA
i 〉〈DB

j 〉 = λiδij − λiλj,

〈DA
i ⊗XB

qr〉 = 〈DA
i ⊗ Y B

qr 〉 = 〈XA
pq ⊗ Y B

rs 〉 = 0,

〈XA
pq ⊗XB

rs〉 =
√

λpλqδprδqs,

〈Y A
pq ⊗ Y B

rs 〉 = −
√

λpλqδprδqs, (2.30)

we can write the blocks in (2.29) as follows

D = D
A/B/C
ij = λiδij − λiλj ,

X = XA/B =
1

2
diag{λi + λk}, 1 ≤ i < k ≤ d,

Y = Y A/B =
1

2
diag{λi + λk}, 1 ≤ i < k ≤ d,

XC = diag{
√

λpλq}, 1 ≤ p < q ≤ d,

Y C = diag{−
√

λpλq}, 1 ≤ p < q ≤ d. (2.31)

Finally, we arrive at the general form of the CM for a pure state as a function its
Schmidt coefficients:

γS(|ψ〉) =











D 0 0 D 0 0
0 X 0 0 XC 0
0 0 Y 0 0 Y C

D 0 0 D 0 0
0 XC 0 0 X 0
0 0 Y C 0 0 Y











(2.32)

with the blocks given in Eq. (2.31).

2.6 Mixing property of covariance matrices

Separable states are those states that can be written as convex combinations of
product states. Therefore we have to understand the behavior of CMs under mix-
ing of states for the derivation of separability criteria. An important property of
covariance matrices which we refer to as concavity property is the following:
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Proposition 2.12 (Concavity property). Let ρ =
∑

k pkρk be a convex combination
of states ρk, then

γ(ρ) ≥
∑

k

pkγ(ρk). (2.33)

Clearly, this implies the same relation for the symmetrized CM γS .

Proof: As shown in Ref. [37] this inequality holds for an arbitrary symmetric
CM γS . Moreover, since 〈MiMj〉ρ =

∑

k pk〈MiMj〉ρk for all i, j, we have for the
non-linear part that

−〈Mi〉ρ〈Mj〉ρ ≥ −
∑

k

pk〈Mi〉ρk〈Mj〉ρk (2.34)

as a matrix inequality for the matrices Xi,j = −〈Mi〉ρ〈Mj〉ρ and Yi,j =
−∑k pk〈Mi〉ρk〈Mj〉ρk . From this, the above inequality follows for the non-
symmetric CM γ. �

This property will later be used to derive the separability criterion.

2.7 Transformations of observables and validity of co-

variance matrices

Transformations as generated by a general orthogonal matrix O used in Proposition
(2.3) do in general not preserve the positivity of the state ρ (see Ref. [133] for
discussion). Only a subgroup will correspond to unitary transformations on the
level of states. Here, we will clarify how unitary transformations of the state are
reflected by orthogonal transformations on the level of CMs.

For this aim, let us consider the case that ρ is transformed by some unitary
transformation ρ 7→ U †ρU . Equivalently, we can transform the operator basis,
denoted as {Gi}, as

Gi 7→ Hi = UGiU
† =

∑

j

Oi,jGj . (2.35)

It is then easy to see that the transformation of the CM is

γ(ρ) 7→ Oγ(ρ)OT = γ(U †ρU), (2.36)

We can now ask in what way O depends on U , and which orthogonal O ∈ O(d2)
correspond to a unitary U ∈ U(d) acting in state space as described above. That is,
we look for the group representation of U(d) in the space of CMs (compare also the
metaplectic representation of symplectic transformations in discrete Weyl systems,
see Ref. [131]). The following theorem gives an answer to this question.

Proposition 2.13 (Transformation laws for CMs). Let U ∈ U(d). Then the O ∈
O(d2) representing U as described above (2.35) is given by

O = ΓT (UT ⊗ U †)Γ∗, (2.37)
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where Γ is a d2 × d2 square matrix constructed as Γα,β|i = Gα,βi = (|G1〉, |G2〉, . . . ),
where we understand α, β as a row index, Gα,βi as vectors and construct Γα,β|i from
them.

Proof: Let us first explain some properties of the matrix Γ. This matrix has
entries which are just the basis vectors Gi written as columns. Moreover, ΓΓ† =1 = Γ†Γ, i.e., Γ is a unitary, since

(Γ†Γ)i,j =
∑

k

Γ†
ikΓkj =

∑

α,β

(Gα,βi )∗Gα,βj =
∑

α,β

(Gβ,αi )Gα,βj = Tr (GiGj) = δi,j ,

(2.38)
where we have used the orthogonality and hermiticity of Gi. However Γ is a special
unitary, since the columns correspond to orthonormal Hermitian observables. Now
we have in Eq. (2.35)

∑

j

Oi,jG
α,β
j =

∑

j

Gα,βj
(
OT
)

j,i
=
(
ΓOT

)

α,β|i , (2.39)

where we have used the definition of Γ and the fact that the expression in the middle
of Eq. (2.39) is nothing but i-th column of ΓOT . Conversely,

(UGiU
†)α,β = Uα,δG

δ,γ
i U †

γ,β = Uα,δU
∗
β,γΓδ,γ|i = (U ⊗ U∗)α,β,δ,γ Γδ,γ|i = (U ⊗ U∗Γ)α,β|i ,

(2.40)
where the definition of Γ and Ai,k ⊗ Bl,m ≡ (A ⊗ B)i,l,k,m was used. Therefore we
can write

OT = Γ†(U ⊗ U∗)Γ = ΓT (U∗ ⊗ U)Γ∗,

O = Γ†(U † ⊗ UT )Γ = ΓT (UT ⊗ U †)Γ∗, (2.41)

where we used that O is real. With these representations, we can finally check the
orthogonality of the O as

OTO = ΓT (U∗ ⊗ U)Γ∗ΓT (UT ⊗ U †)Γ∗ = ΓT (U∗ ⊗ U)1(UT ⊗ U †)Γ∗

= ΓT (U∗UT ⊗ UU †)Γ∗ = ΓTΓ∗ = 1. (2.42)

�

It is an interesting open question to see how CMs are transformed under general
completely positive maps, ρ 7→∑

iAiρA
†
i , where {Ai} are Kraus operators, directly

expressed in terms of the Kraus operators.

At the very beginning we have given two definitions of covariance matrices for
the symmetric and non-symmetric case (2.3,2.4). We will discuss this difference also
later in the chapter. However at this stage we mention a single connection between
these two definitions for block CMs:

Proposition 2.14 (Block forms of CMs under local basis transformations). It is not
possible to achieve for the block CMs γ = γS via local basis transformations of the
operator basis. The only states for which this relation holds have the reduced states
ρA = Tr (ρ)B = 1/dA and ρB = Tr (ρ)A = 1/dB , where dA,B are the dimensions of
ρA,B. It follows that γ = γS cannot be achieved by local unitary operations either.
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Proof: First note that if we write γ as in Eq. (2.7) in the block wise form,
A,B correspond to CMs of the subsystems A,B and C has entries of the form
〈Ai ⊗Bj〉 − 〈Ai〉〈Bj〉, where Ai, Bj are observables taken for subsystems A,B.

The condition γ = γS is equivalent to the condition γ = γT , in particular A = AT

and B = BT . If we change the local bases on A and B via O = OA ⊕ OB the CM
gets to

γ′ = (OA ⊕OB)γ(OA ⊕OB)T . (2.43)

As we can immediately see γ′T = (OA ⊕ OB)γT (OA ⊕ OB)T = γ′ if and only if
γT = γ, so the symmetry of CM does not depend on the particular choice of basis
in observable space.

Therefore we are able to choose the standard basis. Let us consider only sub-
system A, i.e., left upper block of matrix γ, and let us assume that A = AT holds.
As we have showed already, we can obtain ρA from the matrix A by use of the
commutators Ai,j −Aj,i = 〈[MA

i ,M
A
j ]〉. However, all those commutators vanish for

the case A = AT . Since then 〈Xk,l〉 = 〈Yk,l〉 = 0 for all k, l, it follows that ρA is
diagonal. The diagonal elements can be also determined as in Prop. 2.4 and since
also 〈Zk,l〉 = 0 for all k, l, it follows that ρA = 1/dA, which completes the first part
of the proof.

Finally, local unitary transformations are only a subclass of the orthogonal trans-
formations considered before, hence γ = γT cannot be achieved by a local unitary
transformation of ρ neither. �

2.8 Conclusion

After we investigated in detail properties of covariance matrices of quantum states in
finite-dimensional Hilbert spaces, we introduce in the next chapter an entanglement
criterion, which is formulated in terms of symmetric covariance matrices. Further,
we will investigate the properties of this criterion and evaluate it.
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Chapter 3

The covariance matrix criterion for

separability

Based on the properties of covariance matrices, discussed in the last chapter, we
formulate an entanglement criterion, which will be the main topic of discussion for
the next few chapters. We call this criterion the covariance matrix criterion (CMC).
After formulating and proving the criterion we point out the most evolving problem
in the evaluation of the CMC.

Proposition 3.1 (Covariance matrix criterion). Let ρ be a separable state and Ai
(Bi) be orthogonal observables on HA (HB), where the dimensions of the Hilbert
spaces are dA (dB , respectively). Define Mi = Ai ⊗ 1 for i = 1, . . . , d2A and Mi =1⊗Bi for i = d2A + 1, . . . , d2B + d2A. Then there exist pure states |ψk〉〈ψk| for A and
|φk〉〈φk| for B and convex weights pk such that if we define κA =

∑

k pkγ(|ψk〉〈ψk|)
and κB =

∑

k pkγ(|φk〉〈φk|) the inequality

γS(ρ, {Mi}) ≥ κA ⊕ κB ⇔
(
A C
CT B

)

≥
(
κA 0
0 κB

)

(3.1)

holds. This means that the difference between left and right hand side must be
positive-semidefinite. If there are no such κA,B then the state ρ must be entangled.

Proof: First note that for this special choice of Mi, for any product state

γ(ρA ⊗ ρB, {Mi}) = γ(ρA, {Ai})⊕ γ(ρB , {Bi}) (3.2)

holds. Now, since any separable state can be written as ρ =
∑

k pk|ψk〉〈ψk|⊗|φk〉〈φk|,
we can apply Prop. (2.12) and arrive at the conclusion. �

Note that the CMC is manifestly invariant under a change of the observables
{Ak} and {Bk}, as we know from Proposition 2.3 [see also Eq. (2.43)]; however,
a suitable choice of them may simplify the evaluation a lot. Also, note that we
have formulated the CMC for symmetric CMs, we will later discuss the case of
non-symmetric CMs.
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Obviously, as such, as formulated as in Prop. 3.1, it is not clear that the CMC
leads to an efficient and physically plausible test for separability: The main problem
is to characterize the possible κA and κB . As such, the formulation still contains
an optimization over all pure product states. We will refer to an “evaluation of the
CMC” hence whenever we can identify a property of κA,B that will render the above
criterion an efficient test.

Some properties of we have derived above, notably

Tr (κA) = dA − 1 (3.3)

(see Proposition 2.8), which we will use subsequently. We will now turn to feasible
ways to evaluate the CMC. As a first step, we have to derive conditions on the
blocks of a block matrix as in Eq. (3.1), which follow from the positivity condition
in Eq. (3.1). Then, we ask how the observables {Ak} and {Bk} must be chosen in
order to make a violation of Eq. (3.1) manifest.

Note the formal similarity of the condition γ ≥ κA ⊕ κB to tests for separability
for Gaussian states for systems with canonical coordinates (1.56) discussed in the
first chapter.

In the next chapter we address the question of the evaluation of the CMC. Based
on the general properties of covariance matrices and using several mathematical
tricks one can derive corollaries from the general CMC, presented in this chapter,
which detect many bound entangled states and which are easily to compute.
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Evaluation of the CMC

In order to evaluate the CMC presented in the previous chapter, we follow sev-
eral strategies. In the first part of this chapter we present strategies based on matrix
invariants such as eigenvalues or singular values. Namely, we address the charac-
terization of positive semidefinite matrices of a block structure in terms of singular
values of their submatrices. This characterization will result in an entanglement
criterion in terms of singular values of the off-diagonal blocks C of the covariance
matrix γ. We show that this criterion is equivalent to the extension of the com-
putable cross-norm or realignment (CCNR) criterion, discussed in Ref. [135], and
stronger than the criterion based on Bloch representation of the density matrices,
discussed in Ref. [136]. We conclude that both criteria are corollaries of the general
CMC.

In the second part of the chapter we apply the derived criteria to states, written
in a specific form. Firstly, one can use Schmidt decomposition of density matrix and
choose the Schmidt basis as local observables for constructing the covariance matrix
of the state. The resulting criterion in this case is strictly stronger than CCNR
criterion and as a consequence of this detects bound entangled states. Secondly,
since stochastic local operations assisted by classical communication (SLOCC) do
not affect separability, we apply the CMC to states, which are written in standard
form, discussed in Refs. [138, 139, 140]. The resulting criterion turns out to be really
strong for systems with dim(HA) = dim(HB) = d and necessary and sufficient for
two qubits.

In the remainder of the chapter we show the equivalence of the CMC and local
uncertainty relations. Thereafter we discuss two qubit case in more detail and show
how one can cast the CMC in framework of the semidefinite programming and test
derived criteria on several bound entangled states.

4.1 Evaluation of the CMC via singular values of sub-

matrices

As a start, we state the following Lemma:
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Lemma 4.1 (Block covariance matrices and unitarily invariant norms). If a positive
matrix partitioned in block form is positive semidefinite,

(
A C
CT B

)

≥ 0, (4.1)

then
|||A||| |||B||| ≥ ||| |C| |||2, (4.2)

holds, where |||.||| is any unitarily invariant norm. Specifically, this holds true for any
Ky-Fan norm ‖.‖KF defined as the sum of the largest k singular values. If we sum
over all singular values, we arrive at the largest Ky-Fan norm, which is the trace
norm.

Proof: The proof of this statement is actually a corollary of Theorem 3.5.15 of
Ref. [21]. It is shown that

|||Ap||| |||Bp||| ≥ |||(C†C)p/2|||2, (4.3)

for any p > 0 and any unitarily invariant norm. For p = 1 this is the result we are
interested in. We will nevertheless present an alternative proof of this statement for
Ky-Fan norms ‖A‖KF ‖B‖KF ≥ ‖C‖2KF , below, as the proof of Proposition 4.9 will
make use of this proof.

Independently of the proof presented above we found an alternative proof of the
Lemma 4.1. For a matrix as in Eq. (4.1) the following condition has to be fulfilled:

(
〈α|
〈β|

)(
A C
CT B

)
(
|α〉 |β〉

)
≥ 0, (4.4)

for all vectors |α〉, |β〉, which implies that 〈α|A|α〉 + 〈β|B|β〉 ≥ 2〈α|C|β〉, where we
took −|β〉 instead of |β〉 for convenience. Especially, we can take |α〉 = α|ψk〉 and
|β〉 = β|φk〉, where the vectors |ψk〉 and |φk〉 are singular vectors from the singular
value decomposition of C and 〈ψk|C|φk〉 = σk(C) is the k-th singular value. Hence

α2〈ψk|A|ψk〉+ β2〈φk|B|φk〉 ≥ 2αβ〈ψk|C|φk〉. (4.5)

Note that 〈ψk|A|ψk〉 and 〈ψk|A|ψk〉 are greater than zero, because A and B are
positive semidefinite matrices. Taking the sum over k and noting that for A and B
expressions like

∑K
k=1〈ψk|A|ψk〉 are a lower bound on the K-th Ky-Fan norm [21]

we get
α2‖A‖KF + β2‖B‖KF ≥ 2αβ‖C‖KF . (4.6)

The last formula is necessary and sufficient condition for the 2× 2 matrix
(
‖A‖KF ‖C‖KF
‖C‖KF ‖B‖KF

)

≥ 0 (4.7)

to be positive semidefinite and having a non-negative determinant, from which the
claim follows. �

Using the last Lemma we have:
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Proposition 4.2 (CMC evaluated using singular values). Let

γ =

(
A C
CT B

)

(4.8)

be a CM. Then, if ρ is separable, we have

‖C‖2Tr ≤
[
1−Tr

(
ρ2A
)] [

1− Tr
(
ρ2B
)]
. (4.9)

If this inequality is violated, then ρ must be entangled.

Proof: We prove the claim applying the formula (4.2) directly, yielding

‖C‖2Tr ≤ ‖A− κA‖Tr‖B − κB‖Tr (4.10)

Since A−κA as well as B−κB are Hermitian positive semidefinite matrices (due to
concavity property of CMs) their trace norm will coincide with their trace. Hence
‖A−κA‖Tr = Tr (A)−Tr (κA) = 1−Tr

(
ρ2A
)
, where we have used Corollary 2.9 and

the fact that
∑

iAi,i =
∑

i(〈A2
i 〉 − 〈Ai〉2) = 〈dA1〉 − Tr

(
ρ2A
)
, since Tr (AiAj) = δi,j

and ρ2A =
∑

i,j〈Ai〉〈Aj〉AiAj . �

Interestingly, this criterion has been proven already in a different context:

Remark 4.3 (CMC and the criterion of Ref. [135]). The separability criterion in
Proposition 4.2 is nothing but the separability criterion proposed in Theorem 1 of
Ref. [135], hence the criterion of Ref. [135] is a corollary of the CMC.

Let us now connect the CMC to another type of entanglement criteria: There
are several separability criteria in the literature which are based on the Bloch repre-
sentation of density matrices. This representation in our case is just some particular
choice of observables, namely one has to detach the identity from all others gener-
ators, which then have to be traceless. The fact that one of the observables is the
identity, can simplify the CMC sometimes.

By definition the entries of the matrix C are given by

Ci,j = 〈Ai ⊗Bj〉 − 〈Ai〉〈Bj〉, (4.11)

which consists of a linear (in the sense of mean values) and quadratic part. We
define C as the linear part of C, i.e., Ci,j = 〈Ai ⊗ Bj〉. Let us further consider Cred

as the submatrix of C, where the entries 〈1A ⊗Bj〉 and 〈Ai ⊗ 1B〉 are omitted, i.e.,
the first row and the first column are removed. Similarly, we can define matrices
like A and B from A and B. In the same spirit, we can define a submatrix of κ as
κred. Note that Tr (κ) = Tr

(
κred

)
, as the missing diagonal entry is the variance of1, which is vanishing.

We are now able to establish a connection between the CMC and criteria based
on the Bloch representation of density matrices:
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Proposition 4.4 (Relationship between CMC and criteria based on Bloch repre-
sentations). Let

γ =

(
A C
CT B

)

(4.12)

be a CM. Then if ρ is separable, we have

‖Cred‖2Tr ≤
(
1− 1

dA

)(
1− 1

dB

)
. (4.13)

If this inequality is violated, then ρ must be entangled.

Proof: First, we can define two vectors |ψ〉A/B with entries

|ψA〉i = 〈Ai〉 |ψB〉i = 〈Bi〉 (4.14)

resulting in C = C− |ψA〉〈ψB |. Similar relations hold for A and B, so we can write
the condition in CMC (3.1) in the form

(
A− κA C

CT B− κB

)

︸ ︷︷ ︸

X

−
(
|ψA〉
|ψB〉

)(
〈ψA|
〈ψB |

)T

≥ 0. (4.15)

Positivity of the left hand side implies positivity of the first term X alone, since
we subtract only one projector which is itself positive. Concerning positivity of X
we can take Ared, Bred, Cred, and κred instead, since positivity of a matrix implies
positivity of all its main minors. Using Eq. (4.2), we get

‖Cred‖Tr ≤ ‖Ared − κredA ‖Tr‖Bred − κredB ‖Tr. (4.16)

Using that Tr
(

Âred
)

=
∑

i≥2〈A2
i 〉 = 〈dA1A〉 − 〈1A/dA〉 and Tr

(
κredA

)
= dA − 1

proves the claim. �

Interestingly, this separability criterion has also been proven before:

Remark 4.5 (CMC and the criterion of Ref. [136]). The separability criterion in
Proposition 4.4 is nothing but the separability criterion for Bloch representations
proposed in Ref. [136], hence the criterion of Ref. [136] is a corollary of the CMC.

Note that in Ref. [136] the observables have been normalized in a different way,
leading to a slightly different formula.

Remark 4.6 (Connection between Propositions 4.4 and 4.2). Proposition 4.2 is
strictly stronger than Proposition 4.4.

This fact was proven in version 5 of [135].

Let us finish this subsection with a remark on the possible use of other Ky-Fan
norms in the above argument. In fact, we do know more about the singular values
(here eigenvalues) of κA and κB than their sum:
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Lemma 4.7 (Ky-Fan norms of matrices in the CMC). The matrices κA (and sim-
ilarly κB) in Proposition 3.1 satisfy

k∑

j=1

λj(κA) ≤ min(k, dA − 1), (4.17)

for the non-increasingly ordered eigenvalues of κA (and κB).

Proof: One can argue as in Proposition 2.11, using the fact that a convex com-
bination of matrices leads to more mixed matrices in the sense of majorization [21].
�

This property can immediately be applied to evaluate the CMC, making use of
Proposition 4.1 and Weyl’s inequalities1 For example, if we consider dA = dB = d
and the k-Ky-Fan norm ‖.‖KF (k) for k = (d2 − d+ 1 + s), we can apply the first of
Weyl’s inequalities with i = 1, and s = 1, . . . , d− 1, to conclude that

‖A− κA‖KF (k) =

k∑

j=1

λj(A− κA) ≤
k∑

j=1

λ1(A) +

k∑

j=1

λj(−κA)

= (d2 − d+ 1 + s)‖A‖ −
d2∑

j=d2−k+1

λj(κA), (4.20)

where ‖A‖ denotes the spectral norm of A. Using that κA will be more mixed in
the sense of majorization than diag(1, . . . , 1, 0, . . . , 0) of rank d− 1 and Proposition
2.9, one arrives at

‖A− κA‖KF (k) ≤ (d2 − d+ 1 + s)‖A‖ − s, (4.21)

and a corresponding statement for κB . Using Proposition 4.1, one hence arrives at
the observation that any separable state ρ on a bipartite Hilbert space satisfies

(
(d2 − d+ 1 + s)‖A‖ − s

) (
(d2 − d+ 1 + s)‖B‖ − s

)
− ‖C‖2

KF (k) ≥ 0. (4.22)

It is an interesting open question whether more sophisticated uses of the knowledge of
spectral properties of κA and κB can be employed the further sharpen the evaluation
of the CMC.

4.2 Evaluation of the CMC via traces of submatrices

Let us first prove a simple condition on the traces of A,B and C, which follows from
the CMC. In the following, we always assume that dA ≤ dB . Sometimes we assume
that the dimensions are the same, meaning that d = dA = dB .

1 Let A,B be Hermitian n× n-matrices. Then, the non-increasingly ordered eigenvalues satisfy

λj(A+B) ≤ λi(A) + λj−i+1(B), i ≤ j, (4.18)

λj(A+B) ≥ λi(A) + λj−i+n(B), i ≥ j. (4.19)
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Proposition 4.8 (CMC evaluated from traces). Let

γ =

(
A C
CT B

)

(4.23)

be the symmetric CM of a state ρ and let J = {j1, . . . , jd2A} ⊂ {1, . . . , d2B} be a subset

of d2A pairwise different indices. Then if ρ is separable, we have

2 ·
d2A∑

i=1

∑

j∈J
|Ci,j | ≤

d2A∑

i=1

Ai,i+

d2B∑

i=1

Bi,i− dA − dB +2 = 2−Tr
(
ρ2A
)
−Tr

(
ρ2B
)
, (4.24)

If this inequality is violated, then ρ must be entangled.

Proof: First, note that a necessary condition for a 2× 2 matrix

X =

(
a c
c b

)

(4.25)

to be positive semidefinite is that 2|c| ≤ a+ b. If ρ is separable, then by the CMC
we have Y = γ − κa ⊕ κB ≥ 0. This implies that all 2× 2 minor submatrices of Y
have to be positive semidefinite as well. Hence for all i, j we have

2|Ci,j | ≤ Ai,i +Bj,j − (κA)i,i − (κB)j,j. (4.26)

Summing over i, j and using Corollary 2.9 proves the claim. �

We will use this Proposition mainly for the case that dA = dB and where we
sum over the diagonal entries of C. In this case, it just gives the condition that for
separable states:

2Tr (C) ≤ 2− Tr
(
ρ2A
)
−Tr

(
ρ2B
)
. (4.27)

This is a quadratic polynomial in the entries of the state, and may be viewed as a
suitable entanglement witness on two specimens on a state. In the light of this fact,
the criterion evaluated in this fashion is surprisingly strong. The trace inequality
above can be further improved. One can introduce a matrix ηC , such that 1−ηTCηC ≥
0, under the trace of the left hand side of Eq. (4.27). Indeed from

(
A C
CT B

)

−
(
κA 0
0 κB

)

≥ 0 (4.28)

follows

Tr

((
A− κA C
CT B − κB

)( 1 ηC
ηTC 1 ))

≥ 0, for all

( 1 ηC
ηTC 1 )

≥ 0. (4.29)

It is also worth mentioning here that one can improve Proposition 4.8 by taking
4 × 4 minor submatrices for evaluation. Then, however, also off diagonal terms of
κA/B will occur, for which not many properties are known. This makes the resulting
conditions difficult to evaluate.
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Physically, Proposition 4.8 says that if the correlations Ci,j are sufficiently large,
then ρ must be entangled. The question arises, how to find the observables, for
which the Ci,j are large. There are several ways of doing this. A first result is the
following:

Proposition 4.9 (Criterion in Proposition 4.8 and diagonal block matrices). The
criterion in Proposition 4.8 detects most states if the observables are chosen in such
a way that C is diagonal. For any state there exist a choice of observables that this
can be achieved. However, even with this optimal choice of observables Proposition
4.8 delivers a strictly weaker separability criterion than Proposition 4.2.

Proof: It is clear that the criterion is optimal, if the trace of C is maximal, which
is the case if it is brought into the singular value diagonal form [135, 137]. This can
always be achieved [see Eq. (2.43)]. The fact that Proposition 4.2 is stronger, was
in a different language proven in Ref. [134].

Interestingly, the fact that Proposition 4.8 is weaker than Proposition 4.2 can
also be seen from Eq. (4.6) from the alternative proof of Lemma 4.1. If C is chosen
to be diagonal, then Proposition 4.8 reduces to this equation with α = β. Clearly,
allowing α and β to be different, improves the criterion. �

In the following, however, we will consider two different strategies: Firstly, we
use the Schmidt decomposition in operator space of the density matrix [132]. This
will lead to a natural choice of the observables {Ak} and {Bk}, and will further
connect the CMC to the CCNR criterion.

Secondly, we will consider appropriate local filterings of the state [140, 139, 44,
138]. These are active transformations of the state, which, however, do not change
the entanglement properties. As we mentioned in the beginning of the chapter,
under this transformations, the state can be transformed into its standard form. In
this standard form, the CMC becomes very strong and even necessary and sufficient
for two qubits.

4.3 Schmidt decomposition and the CMC

We will first remind ourselves of what is called the Schmidt decomposition in oper-
ator space. It is the same construction as the ordinary Schmidt decomposition in
the vector space now equipped with the Hilbert-Schmidt scalar product. A general
density matrix of a composite system can be written as

ρ =

d2A∑

k=1

d2B∑

l=1

ξk,lG̃
A
k ⊗ G̃Bl , (4.30)

with real ξk,l and the {G̃Al } (respectively, {G̃Bl }) form an orthonormal Hermitian
basis of observables. The Schmidt decomposition can now be achieved by diagonal-
izing the above expression using the singular value decomposition of the matrix ξ,
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ρ =

d2A∑

k=1

λkG
A
k ⊗GBk , (4.31)

where we made the assumption that dA ≤ dB . Clearly, the Schmidt coefficients
λk are real and non-negative. Using the new basis observables {GAk } and {GBk } as
observables for the construction of the symmetric block CM, we have a normal form
of the CMC, which we will call the Schmidt CMC.

Proposition 4.10 (Schmidt CMC). If ρ is separable, then

2
∑

i

|λi − λ2i g
A
i g

B
i | ≤ 2−

∑

i

λ2i
[
(gAi )

2 + (gBi )
2
]
, (4.32)

where we defined gAi = Tr
(
GAi
)
and gBi = Tr

(
GBi
)
. If this condition is violated, the

state must be entangled.

Proof: Using the orthonormality of the {GA/Bi }, it is not difficult to see that with
the observables from the Schmidt decomposition Ci,j = λiδi,j − λiλjg

A
j g

B
i holds. In

addition, we have Tr
(
ρ2A
)
=
∑

i λ
2
i (g

B
i )

2. Together with Proposition 4.8 this proves
the claim. �

Interestingly, this Proposition includes the CCNR criterion as a corollary. This
shows that the CMC, even without filtering, and evaluated merely via the trace of
the blocks, once the matrix is brought to Schmidt form, is stronger than the CCNR,
which it implies as a corollary.

Corollary 4.11 (CMC and CCNR). If a state ρ is separable, then in the Schmidt
decomposition

∑

k

λk ≤ 1 (4.33)

has to hold. This condition is just the CCNR criterion, hence the CCNR criterion
is a corollary of the CMC.

Proof: Using the relations |a − b| ≥ |a| − |b| and a2 + b2 ≥ 2|ab| we have
2
∑

i |λi − λ2i g
A
i g

B
i | ≥ 2

∑

i λi − 2
∑

i λ
2
i |gAi gBi | and 2 − ∑

i λ
2
i [(g

A
i )

2 + (gBi )
2] ≤

2(1 −∑i λ
2
i |gAi gBi |), which, due to the Proposition 4.10, proves the claim. �

4.4 Filtering and the CMC

Let us now consider local filtering operations or SLOCC (stochastic local operations
assisted by classical communication) [138] of the form

ρ 7→ ρ̃ = (FA ⊗ FB)ρ(FA ⊗ FB)
†, (4.34)

where and FA ∈ SL(dA,C) and FB ∈ SL(dB ,C) are invertible matrices on the
respective Hilbert spaces. Clearly, such operations cannot map a separable state
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into an entangled one (although they might increase entanglement measures). Also,
since FA and FB are invertible, they will also not destroy any entanglement that may
be present in the state. In other words, ρ is entangled if and only if ρ̃ is entangled.

As has been shown in Refs. [138, 140] we can bring any state of full rank (i.e.,
ρ > 0) by such filtering operations in its standard form which is given by

ρ̃ =
1

dAdB

(1+

d2A−1
∑

k=1

ξkĜ
A
k ⊗ ĜBk

)

, (4.35)

where the {ĜAk }, {ĜBk } are traceless orthogonal observables. Here, we again assumed
that dA ≤ dB .

The idea now is to first apply a filtering operation and bring the state into its
normal form. Then, the new separability criteria are applied afterward. Note that
the reduction to the normal form is always possible. The merits of this approach
are twofold: Firstly, the normal form reduces the number of relevant parameters,
while still encoding all information about entanglement and separability. Secondly,
the normal form is in a certain sense “more entangled” than the original state, as it
was shown in Ref. [44]:

Remark 4.12 (Extremality of states in normal form). The local filtering operations
bringing a mixed state into its normal form are those operations which maximize
all entanglement monotones that remain invariant under determinant 1 SLOCC
operations.

Therefore, it may be expected that many separability criteria become stronger
if we first bring the state into its normal form. Note, however, that this does not
hold for the PPT criterion, as local filtering leaves this criterion invariant.

Following Ref. [140], let us explain briefly an algorithm for transforming a state
of a form as in Eq. (4.30) to its normal form in Eq. (4.35). As a starting point, one
considers the compact space DA ⊗ DB of all normalized product density matrices
ρA ⊗ ρB . For any given density matrix ρ one can define a function f of ρA and ρB
via

fρ(ρA, ρB) =
Tr (ρ(ρA ⊗ ρB))

(det ρA)
1/dA (det ρB)

1/dB
. (4.36)

fρ(ρA, ρB) is a family of positive well defined functions on the interior of DA ⊗DB ,
where the reduced density matrices both have full rank. Since ρ has also full rank,
we have Tr (ρ(ρA ⊗ ρB)) > 0 and because of compactness of DA ⊗DB one has even
stronger Tr (ρ(ρA ⊗ ρB)) ≥ cρ > 0. Divergence of fρ(ρA, ρB) on the boundary implies
that it has a positive minimum on the interior of DA ⊗DB .

Minimization of the function fρ will, as proven in Ref. [140], yield the filtering
operations needed. Suppose the minimum value for fρ attained for some product
density matrix τA⊗τB with det τA > 0, det τB > 0. Each of them can be decomposed
as (see Eq. (66) in Ref. [140])

τA = T †
ATA, τB = T †

BTB , TA/B ∈ SL(dA/B ,C), (4.37)
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where the TA and TB are desired local filtering operations. Normalization factors
have been ignored.

Using this filtering operations one obtains the new state ρ̃ which has a form

ρ̃ =
1

dAdB

(1+

d2A−1
∑

i=1

d2B−1
∑

k=1

ξikĜ
A
i ⊗ ĜBk

)

. (4.38)

The final step involves a standard singular value decomposition of ξik, which leads
to Eq. (4.35). A priori, it is not clear whether the normal form is in some sense
unique or not. However, it is easy to see that if we start from a given state and
convert it into two different states in a normal form, then these two normal forms
have to be connected by a local filtering operation. Using the fact that the reduced
states of a state in the normal form are maximally mixed, one can further conclude
that two different normal forms can only differ by a local unitary transformation.

In practice, the minimization of fρ(ρA, ρB) in Eq. (4.36) can be performed by
an iteration as follows: let us fix ρB and consider only the minimization over ρA.
This minimization can further be split into a minimization over the spectrum of ρA
and a local unitary transformation. If the spectrum is fixed, the optimal unitary
is constructed such that ρA and X = Tr (ρ(1⊗ ρB))B are diagonal in the same
basis where the maximal eigenvalue of X has the same eigenvector as the minimal
eigenvalue of ρA and the second largest eigenvalue of X has the same eigenvector as
the second smallest eigenvalue of ρA etc. If the basis is fixed, and λk (µk) are the
eigenvalues of ρA (X) then a simple calculation using Lagrange multipliers shows
that the optimal λk fulfill

λk ∼
[

(
∑

i 6=k
µiλi)/(

∏

i 6=k
λi)

]1/2

, (4.39)

which can be used for an iterative determination of the optimal λk. In this way, the
optimization can be iterated, converging to a minimum. Note while it is known that
every state can be brought into this normal form, the above procedure of Ref. [140]
is not known to be strictly efficient in the physical dimension d. Yet, for “reasonable
physical dimensions”, the method in practice converges quickly. Moreover, and
importantly, at the end of the procedure, one can easily (and efficiently) check via
direct inspection whether the obtained filters map the state onto the normal form
or not. Global optimality can hence be easily certified.

As one can directly calculate, for a state in the normal form the CM takes a
really simple form, namely

γ =
1

dAdB

(
diag(0, dB , dB , . . . ) diag(0, ξ1, ξ2, . . . )
diag(0, ξ1, ξ2, . . . ) diag(0, dA, dA, . . . )

)

. (4.40)

Using this form we obtain the following strong separability criterion, which we call
the filter CMC.
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Proposition 4.13 (Filter CMC). If d = dA = dB and ρ is separable, then the
coefficients in the filter normal form fulfill

∑

i

ξi ≤ d2 − d. (4.41)

Proof: The claim obviously follows from Proposition 4.8 and the form of the CM
for the normal form of the state. �

Interestingly, for two qubits we have:

Remark 4.14 (Filter CMC for two qubits). For two qubits, the filter CMC in
Proposition 4.13 is a necessary and sufficient criterion for separability.

Proof: If a two-qubit state is of full rank, the normal form reads

ρ̃ =
1

4

(1+

3∑

k=1

ξkσ
A
k ⊗ σBk

)

, (4.42)

where {σA/Bk } are the Pauli matrices [140]. Such states are diagonal in the Bell

basis, and it is known that for these states
∑3

k=1 ξk ≤ 2 is necessary and sufficient
for separability [141, 140]. Note also that the filter normal form can be explicitly
stated for two-qubit systems.

If an entangled (or separable) state is not of full rank, it can, as explicitly shown
in Ref. [139], be brought by filtering operations arbitrarily close to a Bell diagonal
state with finite (or vanishing) concurrence. Such a state will also be detected by
the CMC (or not). �

Direct comparison of this result with the discussion in Section II and Fig. 2.1
(and later the result of Proposition 4.17) might be confusing at this point, since we
know already that the CMC itself cannot be necessary and sufficient for two qubits.
This can be resolved in the following way: We have already learned that filtering
brings the state in the form which in a certain sense contains the maximum amount
of entanglement (it maximizes all monotones). This indeed shows that the filter
CMC is sometimes a real improvement of the “bare” CMC, and filtering is more
than just an appropriate choice of the observables.

Let us now consider the asymmetric case, when dA < dB . We can formulate for
this case following statement:

Proposition 4.15 (Separability criterion for uneven local dimension). If ρ is sep-
arable, then the following inequalities hold

∑

i

ξi ≤
dAdB
2

[

1− 1

dA
+ (d2A − 1)

1

dB
+min(0,−(dB − 1) + (d2B − d2A)

1

dB
)
]

(4.43)

and ∑

i

ξi ≤ [dAdB(dA − 1)(dB − 1)]1/2 . (4.44)

holds. If one of these inequalities is violated, the state must be entangled.
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Proof: Eq. (4.44) is nothing but an application of Proposition 4.4 (or 4.2), it
has already been derived in Ref. [136]. Concerning Eq. (4.43), we will again apply
Proposition 4.8, but with two modifications. First, when carrying out the sum over
2|Ci,j | ≤ Ai,i+Bj,j−κA,i,i−κB,j,j [see Eq. (4.26) in Proposition 4.8] we do not sum
over all Bi,i. But then, we cannot subtract all of the κB,i,i anymore, since d2B − d2A
diagonal elements of κB do not occur in the sum.

As a first approach, we can drop completely the summation over all κB,j,j, since
they are positive anyway. This gives

2

dAdB

d2A∑

i=1

ξi ≤ 1− 1

dA
+
d2A − 1

dB
, (4.45)

justifying one part of Eq. (4.43).

In a second approach, we estimate
∑d2A

i=1 κB,i,i. As one can see by direct inspec-
tion, the non-vanishing elements of γ in Eq. (4.40) origin only from the linear part
of CM (in the spirit of Proposition 4.4 this linear part is denoted by g). But as we
have seen in the proof of Proposition 2.12 that this linear part g is just the same
as the linear part of the direct sum of κA ⊕ κB (denoted by kA ⊕ kB) for separable
states, i.e. g = kA ⊕ kB , hence B = B = kB . This implies that for the diagonal
elements of κB the relation κB,i,i ≤ Bi,i = Bi,i = 1/dB holds, leading to

d2A∑

i=1

κB,i,i = dB − 1−
d2B∑

i=d2A+1

κB,i,i ≥ dB − 1−
(
d2B − d2A

) 1

dB
. (4.46)

This proves the second part of Eq. (4.43). �

4.5 Connection to local uncertainty relations

In this section we will further analyze the connection of CMC with the separability
criterion based on local uncertainty relations (LURs) [71]. To start with, we again
state the LUR criterion as a reminder:

Proposition 4.16 (Criterion based on local uncertainty relations). Let be Âk and
B̂k observables in system A and B, respectively, for which some of the variances on
single systems is bounded by constants UA, UB such that

∑

k

δ2(Âk) ≥ UA and
∑

k

δ2(B̂k) ≥ UB . (4.47)

Then, we have for separable states

∑

k

δ2(Âk ⊗ 1+ 1⊗ B̂k) ≥ UA + UB (4.48)

and violation implies the presence of entanglement.
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Physically, the LURs state that separable states inherit the uncertainty relations
from their reduced states, which is not the case for entangled states. Due to this
observation the LURs have attracted a considerable interest, and a number of inter-
esting properties have been discovered: LURs can detect bound entangled states [72]
and can be used to estimate the concurrence [142]. They can be extended to other
formulations of the uncertainty principle [143, 144] and they can be generalized to
non-local observables [37]. Finally, they can be viewed as nonlinear entanglement
witnesses, which improve the CCNR criterion [132].

For the connection to the CMC we have the following:

Proposition 4.17 (Connection to local uncertainty relations). A state ρ violates
the CMC for symmetric CMs iff it can be detected by a LUR.

Proof: The proof is an adaption of a similar proof given in Ref. [37]. We will
often use the property that CMs can be used to compute variances. Imagine N =
∑

k νkMk is a linear combination of the Mk with νk ∈ R, then

δ2(N) =
∑

k,l

νkνl(〈MkMl〉 − 〈Mk〉〈Ml〉) = 〈ν|γ({M})|ν〉. (4.49)

Let us now assume that ρ violates the LURs and we can find Âk, B̂k, UA and
UB such that Ineq. 4.48 in Proposition 4.16 is violated. We assume that the CMC
is fulfilled, i.e., there exist κA and κB such that for the CM γ we have γ ≥ κA⊕κB .
We can write

Âk =
∑

l

α
(k)
l Al and B̂k =

∑

l

β
(k)
l Bl, (4.50)

where the {Ak} and {Bk} are the observables chosen in the definition of γ. This
leads to δ2(Âk ⊗ 1+ 1⊗ B̂k) = 〈α(k) ⊕ β(k)|γ|α(k) ⊕ β(k)〉. Also, by definition

κA ⊕ κB =
∑

l

plγ(|al〉〈al|)⊕ γ(|bl〉〈bl|) (4.51)

and hence 〈α(k)⊕β(k)|κA⊕κB |α(k)⊕β(k)〉 =∑l pl[δ
2(Âk)|al〉〈al |+ δ

2(B̂k)|bl〉〈bl|]. But
then summing over k yields

∑

k

δ2(Âk ⊗ 1+ 1⊗ B̂k) ≥
∑

k,l

pl
[
δ2(Âk)|al〉〈al | + δ2(B̂k)|bl〉〈bl |

]

≥ min
|a〉〈a|

∑

k

[
δ2(Âk)|a〉〈a|

]
+min

|b〉〈b|

∑

k

[
δ2(B̂k)|b〉〈b|

]
(4.52)

≥ UA + UB ,

which is a contradiction to our assumption that ρ violates the LURs.

To show the converse direction, let us assume that ρ violates the CMC. Let us
define a set of matrices asX = {x|x = κA⊕κB+P with P ≥ 0}, which geometrically
is a closed convex cone. Using this definition, we can formulate the CMC differently,
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by saying that if ρ is separable, then γ ∈ X. As our ρ violates the CMC, we have
γ /∈ X.

According to a corollary to the Hahn-Banach theorem [145] for each γ /∈ X there
exist a symmetric matrix W and a number C such that Tr (Wγ) < C while

Tr (Wx) > C ∀x ∈ X. (4.53)

Since X is a non-compact cone, and we can add arbitrary positive operators to
the elements of X, we can conclude that Tr (WP ) ≥ 0 has to hold for all P ≥ 0,
and consequently we have W ≥ 0. Now let us make use of spectral decomposition
of W and write W =

∑

k λk|ψk〉〈ψk| =:
∑

k λk|α(k) ⊕ β(k)〉〈α(k) ⊕ β(k)|. Defining

Âk =
√
λk
∑

l α
(k)
l Al and B̂k =

√
λk
∑

l β
(k)
l Bl we have for ρ that

Tr (Wγ) =
∑

k

δ2(Âk ⊗ 1+ 1⊗ B̂k). (4.54)

Furthermore, by definition we have for all κA ⊕ κB ∈ X and from Proposition 2.12
it follows that all γA ⊕ γB ∈ X. Hence for each product state ρ = ρA ⊗ ρB we have
C < Tr (WγA ⊕ γB) =

∑

k[δ
2(Âk)ρA + δ2(B̂k)ρB ]. This implies that

C < min
ρA,ρB

[∑

k

(δ2(Âk)ρA + δ2(B̂k)ρB )
]

< min
ρA

[∑

k

δ2(Âk)ρA
]
+min

ρB

[∑

k

δ2(B̂k)ρB
]

=: UA + UB . (4.55)

Finally, since the CMC is violated, γ /∈ X and
∑

k δ
2(Âk⊗1+1⊗ B̂k) = Tr (Wγ) <

C < UA + UB leading to a violation of the LURs criterion.

Note that in principle this proof also applies to the CMC for non-symmetric CMs.
Then, however, the ”observables” in the LURs will be non-Hermitian, their variance
has to be defined as δ2(X) = 〈XX†〉 − 〈X〉〈X†〉 and their physical interpretation is
not so clear.
�

This result show that the LURs for appropriate observables and the CMC are
equivalent, however, the CMC has the major advantage that it can be directly
evaluated, while for the LURs the appropriate observables have to be identified.
Moreover, we can state:

Corollary 4.18 (Insufficiency of LUR to detect all entangled states). There exist
entangled two qubit states which can not be detected by a LUR, hence LURs are not
a necessary and sufficient criterion for separability.

Proof: In the Section 2.3 we have already constructed a family of states ρε which
cannot be detected by the CMC, as their symmetric block CM is compatible with a
separable as well as an entangled state. This proves the claim. �
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4.6 The CMC for two qubits

After the previous discussion of the situation of Hilbert spaces of arbitrary finite
dimension, we now turn to the important simple case of a 2 × 2-system – two
qubits – in some more detail. We take as observables the set {Ak} = {Bk} =
{1/√2, σx/

√
2, σy/

√
2, σz/

√
2} as in Eq. (2.2).

Since these observables contain the identity, one can easily check that many
terms in the symmetric block CM vanish. Effectively, γ is actually a 6 × 6 matrix
(denoted by γeff) originating only from the {Ak} and {Bk} with k = 1, 2, 3 which
are not proportional to the identity, and not by an 8 × 8 as one could guess from
the general theory.

To characterize the κA in the CMC, note that for a pure state |a〉 on system A
we find, according to Proposition 2.8, the following properties of the 4 × 4 matrix
γ(|a〉〈a|):

(i) Rank(γ) = 2.

(ii) The nonzero eigenvalues of γ are equal to 1/2 in a suitable basis.

We also know that in the chosen basis, the first row as well as the first column of
γ(|a〉〈a|) vanish, and we have

γ(|a〉〈a|) = O1 ⊕ γ(|a〉〈a|)eff, (4.56)

where γeff is the effective 3 × 3 CM as above. This has to be of rank two with
eigenvalues 1/2. This implies that γ(|a〉〈a|)eff can be written as

γ̃(|a〉〈a|)eff =
1

2
(13 − |φa〉〈φa|), (4.57)

where 13 denotes a 3× 3 identity matrix, and |φa〉 ∈ R3. In fact, any matrix of this
form is a valid CM:

Lemma 4.19. For any vector |φ〉 ∈ R3 a matrix of the form (13 − |φa〉〈φa|)/2, is a
valid CM of some two qubit state. Consequently, the set of valid κA is given by all
matrices of the form

κA =
1

2
(13 − ρA), (4.58)

where ρA is a real 3× 3 matrix with trace one and positive eigenvalues.

Proof: We have already shown that the CMs are of the required form, and only
have to argue that any matrix of the formX = (13−|φx〉〈φx|)/2 is a valid CM. To see
this, note that unitary transformations of the |a〉 result in orthogonal transformation
on γ(|a〉〈a|)eff. Moreover, for the special case of a single qubit any orthogonal trans-
formation on γeff can be generated by a unitary transformation on state space [141],
expressing the isomorphism between the Lie-algebras su(2) and so(3). Therefore,
we can transform X into γ(|a〉〈a|)eff and construct the corresponding state vector
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|x〉. To finish the argument, note that the set of all κA is by definition the set of all
convex combinations of pure state CMs. �

The characterization of κ for one qubit provided by the last Lemma is exhaustive
in the following sense:

Lemma 4.20 (Characterization of κs in the case of qubits). There exist positive
matrices XA and XB such that Tr(XA/B) = 1 and γ ≥ XA⊕XB if and only if there
exist valid κA/B that fulfill the CMC.

Proof: The sufficiency is given by the last Lemma. Suppose we have found
such matrices X. We know, that κs for qubits must have special form, namely
κ = 1

2 (13 − ρ). Since X satisfy the condition γ ≥ XA⊕XB and γ have eigenvalues,
which are less or equal than 1

2 any X can be written in the form X = 1
2 (13 − x),

where Tr(x) = 1 and x ≥ 0 and is exactly of the form (4.58). �

After having proven this Lemma we can formulate the two-qubit version of the
CMC:

Proposition 4.21 (CMC for two qubits). Let ρ be a state of two qubits and let

{Ak} = {Bk} = {1/√2, σx/
√
2, σy/

√
2, σz/

√
2} (4.59)

be the chosen set of observables. Let γeff be the 6×6 CM as mentioned before. Then
the state ρ fulfills the CMC iff there exist 3×3 density matrices ρA and ρB such that

γeff − 1

2
16 + 1

2
(ρA ⊕ ρB) ≥ 0. (4.60)

Proof: The claim follows if we insert the κ’s from Eq. (4.58) into Proposition 3.1.
Note that it suffices to find complex ρA and ρB . If we can identify such matrices,
their real part will saturate Eq. (4.60) as well. �

In this form, the problem is a special instance of an efficiently solvable semidefi-
nite program (SDP) [35, 36] in primal form, a feasibility problem .

In general, a SDP consists of a linear function cTx which is minimized subject
to a semidefinite constraint

F (x) = F0 +
∑

i

xiFi ≥ 0, (4.61)

which is linear in the problem variables xi. Hence the problem is defined by the real
vector c and by the Hermitian or symmetric matrices Fi. If c = 0, then the problem
is referred to as a feasibility problem. Via Lagrange-duality, a dual problem can be
formulated in which the expression −Tr (F0Z) is maximized over a positive semidef-
inite (Hermitian or symmetric) matrix Z, with the constraints that Tr (FiZ) = ci.
Since

cTx+Tr (F0Z) = Tr (F (x)Z) ≥ 0 (4.62)
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holds true due to the positive semidefiniteness of F (x) and Z, solutions of the dual
problem deliver a bound on the solutions of the primal problem and vice versa, which
is referred to as weak duality. Finally, if there is a solution to the primal problem
with F (x) > 0 or a solution to the dual problem with Z > 0, then strong duality
holds, meaning that a pair (x∗, Z∗) exists such that cTx∗+Tr (F0Z

∗) = 0 holds. See
also Ref. [146] for an extensive treatment of the subject.

For the evaluation of the CMC, we can formulate the problem differently, such
that if the primal problem detects the state as entangled, then from the solution
of the dual problem local operators can be extracted which allow for the detection
of the state with LURs. This is similar in spirit as the solution in the continuous
variable case [34].

Explicitly, we formulate the primal problem as

min −λ (4.63)

subject to γeff − κA ⊕ κB ≥ 0

κA,B =
1

2

[
(1 + λ)13 − ρA,B

]
≥ 0

Tr (ρA,B) = 1 + λ.

In this formulation, the matrices κA,B are positive and have trace 1 + λ. If the
constraints can be fulfilled for λ < 0 only, then the state corresponding to γeff is
entangled. The SDP can be formulated with block-diagonal matrices {Fi} collecting
all the constraints. For instance, by inserting the definition of κA,B into the first
constraint and expressing the equality constraints by a ‘≥’ and a ‘≤’ constraint, we
can write F0 as

F0 = (γeff − 1

2
16)⊕ 1

2
13 ⊕ 1

2
13 ⊕ (−1)⊕ 1⊕ (−1)⊕ 1, (4.64)

and the matrices Fi accordingly by choosing a basis for real, symmetric matrices for
the blocks. Without loss of generality, the matrix Z can be chosen block-diagonal
accordingly. In the order from above we have Z = Z1 ⊕ ZA2 ⊕ ZB2 ⊕ ZA13 ⊕ ZA23 ⊕
ZB1
3 ⊕ ZB2

3 , where Z1 is a 6 × 6 matrix, ZA,B2 are of dimension 3 × 3, and ZA,B;1,2
3

are scalar. The dual problem can then be formulated as

max −[Tr
(

γeffZ1

)

− 1] (4.65)

subject to −1

2
[Tr (Z1)− Tr

(
ZA2
)
− Tr

(
ZB2
)
] = ZA13 − ZA23 + ZB1

3 − ZB2
3 − 1

(ZA,B1 )i,i − (ZA,B2 )i,i = −2(ZA,B;1
3 − ZA,B;2

3 )

(ZA,B1 )i<j = (ZA,B2 )i<j ,

where ZA,B1 are the single-particle sub-blocks of system A and B, respectively, and i
and j run from 1 to 3. It turns out that Z1 has the properties of an entanglement wit-
ness in the space of covariance matrices (CM-witness) as in the continuous-variables
case [34]:
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Proposition 4.22 (CM-Witness from dual program). For every feasible solution Z
to the dual problem formulated above, the matrix Z1 is a CM-witness in the sense

that it fulfills Tr
(

γeffS Z1

)

≥ 1 for all CMs γeffS from separable states. Hence if

Tr
(
γeffZ1

)
< 1 then the corresponding state is entangled. Further, it is optimal in

the sense that Tr
(
γeffZ1

)
is the minimal value of Tr

(
γeffX

)
for any X ≥ 0 of the

same dimensions.

Proof: It follows from weak duality that Tr
(
γeffZ1

)
≥ 1+λ, hence Tr

(
γeffS Z1

)
≥ 1

holds for all γeffS from separable states. In this case, strong duality holds, which we
prove by providing an example:

Z =
3

2
16 ⊕ 13 ⊕ 13 ⊕ 3

4
⊕ 1⊕ 3

4
⊕ 1 > 0 (4.66)

fulfills all constraints. Hence there exist (λ∗, Z∗) such that Tr
(
γeffZ∗

1

)
= 1 + λ∗

holds, and the dual program reaches the minimal value of Tr
(
γeffZ1

)
. �

If the entanglement of a state is detected by a CW-witness Z1, then it is possible
to write down a LUR detecting the state as well. This is remarkable because it is in
general very difficult to find a LUR detecting the entanglement of a given state.

Proposition 4.23 (LUR observables from witness). Given a CM-witness Z1, it is
possible to define LUR matrices {Âk} and {B̂k} from Z1 such that

Tr
(

γeffZ1

)

=
∑

k

δ2(Âk ⊗ 1+ 1⊗ B̂k) (4.67)

holds.

Proof: The LUR corresponding to Z1 can be extracted as shown in the proof of
Proposition 4.17: we can spectrally decompose Z1 =

∑

k λk|ψk〉〈ψk| =:
∑

k λk|α(k)⊕
β(k)〉〈α(k) ⊕ β(k)|. Defining the local LUR variables Âk =

√
λk
∑

l α
(k)
l Al and B̂k =√

λk
∑

l β
(k)
l Bl we have for ρ that Tr

(
Z1γ

eff
)
=
∑

k δ
2(Âk⊗1+1⊗ B̂k), where {Ak}

and {Bk} are defined in Eq. (4.59). �

4.7 Detecting bipartite bound entangled states with the

CMC

In this section, we consider different bound entangled states, and investigate the
strength of the different criteria discussed in this chapter.

In the first example, we take the 3×3 bound entangled states, called chessboard
states, introduced by D. Bruß and A. Peres [147]. They are defined as

ρ = N
4∑

j=1

|Vj〉〈Vj |, (4.68)
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Figure 4.1. Detection of 3×3 chessboard states. For the different criteria
the fraction of states which are detected is shown. See text for further
details.

where N denotes the normalization, and we used the unnormalized vectors

|V1〉 = |m, 0, ac/n; 0, n, 0; 0, 0, 0〉,
|V2〉 = |0, a, 0; b, 0, c; 0, 0, 0〉,
|V3〉 = |n, 0, 0; 0,−m, 0; ad/m, 0, 0〉,
|V4〉 = |0, b, 0;−a, 0, 0; 0, d, 0〉. (4.69)

Characterization of the family is done by six real parameters. We tested all cri-
teria, presented in this chapter on randomly generated chessboard states, where
parameters have been drawn from the normal distribution with zero mean value
and standard deviation of two. The results of this test are presented on the Fig. 4.1.

As one can see from Fig. 4.1 the most of the states are detected by bringing
first the state in its normal form (Proposition 4.13) - 98.86% of all states. The cri-
terion, which uses an estimation of singular values of the off diagonal block of CM
(Proposition 4.2), which was also proposed earlier in [134] detects 22.57%, whereas
another criterion proposed in this chapter (Proposition 4.9) detects 22.00%. More-
over the criterion, which uses Schmidt decomposition (Proposition 4.10) detects
20.00% which is more or less the same amount as is detected by CCNR criterion -
19.52%. Finally the criterion presented in Proposition 4.4, which was first proposed
by de Vicente [136] detects only 8.57% of randomly generated chessboard states.

As the second example, we consider 3 × 3 bound entangled states arising from
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an unextendible product basis [49], mixed with white noise:

|ψ0〉 =
1√
2
|0〉(|0〉 − |1〉), |ψ1〉 =

1√
2
(|0〉 − |1〉)|2〉,

|ψ2〉 =
1√
2
|2〉(|1〉 − |2〉), |ψ3〉 =

1√
2
(|1〉 − |2〉)|0〉,

|ψ4〉 =
1

3
(|0〉 + |1〉 + |2〉)(|0〉 + |1〉+ |2〉),

ρBE =
1

4

(1−
4∑

i=0

|ψi〉〈ψi|
)

,

ρUP(p) = pρBE + (1− p)
1
9
. (4.70)

These states are detected by Proposition 4.13 for p ≥ 0.8723 while the best known
positive map detects them only for p ≥ 0.8744 (see [132] and references therein).
Besides this we have also tested all other criteria presented in this chapter. Criteria
of Propositions 4.2, 4.9 both detect these states for p ≥ 0.8822. The criterion derived
for Schmidt decomposed states (Proposition 4.10) detects the states for p ≥ 0.8834,
whereas the CCNR criterion detects them for p ≥ 0.8897. Finally Proposition 4.4
detects the states for p ≥ 0.9493.

In the last example [149] we compare the performance of three particular criteria,
namely the CMC evaluated from traces 4.8, the Schmidt CMC 4.10 and the filter
CMC 4.13, on two one parametric families of the bound entangled states. These
states were introduced in [60] - ρ3×3(a) and ρ2×4(b) and are defined for the 3 × 3
and 2× 4 systems respectively:

ρ3×3(a) =
1

8a+ 1


















a 0 0 0 a 0 0 0 a
0 a 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
a 0 0 0 a 0 0 0 a
0 0 0 0 0 a 0 0 0

0 0 0 0 a 0 1+a
2 0

√
1−a2
2

0 0 0 0 a 0 0 a 0

a 0 0 0 a 0
√
1−a2
2 0 1+a

2


















, (4.71)

ρ2×4(b) =
1

7b+ 1
















b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0
0 0 b 0 0 0 0 b
0 0 0 b 0 0 0 0

0 0 0 0 1+b
2 0 0

√
1−b2
2

b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0

0 0 b 0
√
1−b2
2 0 0 1+b

2
















. (4.72)

Testing different criteria on this states shows (FIG. 4.2) that the criteria are
indeed not equivalent. For example the ρ3×3 is not detected by Filter CMC for some
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values of the parameter a, whereas other two criteria detect it for all a. Therefore we
conclude that applying filtering operations is not always the best strategy to detect
bipartite entanglement.
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Figure 4.2. Left picture: Detection of the ρ3×3 depending on the param-
eter a. For every a the state is detected by the Schmidt CMC and by
the CMC evaluated from traces of submatrices of the block covariance
matrix. However there is a specific region of parameter a where the fil-
ter CMC fails to detect the state. Right picture: Detection of the ρ2×4

depending on the parameter b. The state is detected only for certain
parameter values and only by the Proposition 4.

Finally, let us shortly comment on the efficiency of the implementation of all
these criteria. The filtering operation can be implemented quite fast, using the
simple algorithm outlined above takes a few seconds on a desktop computer (5 × 5
system: ca. 6 sec., 10× 10 system: ca. 24 sec., 15 × 15 system: ca. 72 sec.). Then,
the trace norm of C can be quickly computed as the trace norm of the realignment of
the matrix ρ− ρA⊗ ρB [135]. For comparison, only the first step of the semidefinite
program of Ref. [148] requires already ca. 10 min. for a 4 × 4 system, becoming
practically unfeasible for higher dimensions.

4.8 Conclusion

In this chapter, we investigated the covariance matrix criterion (CMC) presented
in the previous chapter. We have shown that this is a strong separability crite-
rion, which can be simply evaluated. Combined with filtering it is necessary and
sufficient for two qubits and in higher dimensions it detects states where the PPT
criterion fails. Moreover, it contains many other separability criteria, which have
been proposed to complement the PPT criterion as corollaries.

An interesting question is how to develop a theory similar to ours for entangle-
ment of multipartite systems. Here, however, a significant amount of work has yet
to be done, as it is not even obvious how to identify the object corresponding to the
block CM for multipartite systems. Some of the results in this direction have been,
however, already achieved and we present them in the next chapter
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Moreover would be interesting to relate the CMC to quantitative statements,
which will be the topic of discussion in chapter 6.



Chapter 5

CMC: generalization to more than two

parties

In this chapter we address the question of possible generalizations of the covariance
matrix criterion to the multipartite setting. In particular we give a generalization
of the CMC formulated in chapter 3 to the case of three parties. After formulating
the general criterion we will evaluate it using positive semidefiniteness of the 3 × 3
block matrix. We test the resulting criterion on the three qubit pure states in the
normal form and discuss possible issues of the straightforward generalization of the
bipartite CMC and the use of the local observables.

In the second section of this chapter we consider two families of three qubit states
that are separable with respect to any bipartition, although not fully separable. Both
families are thermal states of particular Hamiltonians. We compare the amount
of states detected by the tripartite CMC with the amount detected by the spin
squeezing inequalities. For the second family the CMC detects more states than the
spin squeezing inequalities.

5.1 General criterion and its evaluation

To start with we observe that having a tripartite state we can describe it in terms
of block CM if we choose a set of local observables to construct the CM

γ =





A D E
D† B F
E† F † C



 . (5.1)

One can easily see that for any fully product state γ takes a block-diagonal
form. Hence, using the concavity property of covariance matrices we can formulate
separability criterion in the following way:

Theorem 5.1 (Tripartite CM). Let ρ be a fully separable tripartite state.
Then there exist states matrices κA, κB and κC of the form κA/B/C =
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∑

i piγ(|ai/bi/ci〉〈ai/bi/ci|) such that

γ −





κA 0 0
0 κB 0
0 0 κC



 ≥ 0, (5.2)

if such matrices κ do not exist, the state is entangled.

Before we present some results we mention that there are several strategies to
evaluate the criterion in Theorem 5.2. Firstly, one can again resort to semidefinite
programming and formulate the problem of searching over all possible κ as a fea-
sibility problem [35, 36]. Secondly, one can deduce computable criteria from the
positivity semidefiniteness of the matrix in Eq. (5.2). We start with the second
strategy and investigate some properties of 3×3 positive matrices. These properties
can be formulated as

Lemma 5.2. Let η be a 3× 3 real positive matrix

η =





a d e
d b f
e f c



 ≥ 0, (5.3)

then 



a |d| |e|
|d| b |f |
|e| |f | c



 ≥ 0 (5.4)

is also a positive matrix.

Proof: We shall split the proof into three parts. (i) if all off-diagonal elements of
η are positive, the claim follows immediately. (ii) if only two off-diagonal elements
of η d and f are negative then, the positivity of the matrix η implies that vT ηv ≥ 0
for all real 3-vectors v. Therefore





−u
v
−w





T 



a d e
d b f
e f c









−u
v

−w



 = (5.5)





u
v
w





T 



a −d e
−d b −f
e −f c









u
v
w



 (5.6)

holds and therefore




a −d e
−d b −f
e −f c



 ≥ 0 ⇔





a d e
d b f
e f c



 ≥ 0. (5.7)

(iii) finally, if only e < 0, we have to prove that positivity of η(e) guarantees
positivity of η(|e|). To this end let us show an equivalence of positive semidefiniteness
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of any 3 × 3 matrix A and positive semidefiniteness of any of its 2 × 2 submatrix
and its determinant.

Necessary condition is trivial. Sufficiency is proved by considering the charac-
teristic polynomial of a 3× 3 matrix A, which is given by

χA(λ) = −λ3 + Tr(A)λ2 −
3∑

i=1

det(Aii)λ+ detA. (5.8)

Positivity of all 2 × 2 submatrices guarantees then that none of the eigenvalues
is complex. Now if detA is negative, then the characteristic polynomial certainly
has at least one negative eigenvalue and the matrix A is not positive semidefinite
anymore. Therefore the characteristic polynomial (5.8) has only positive roots.

Now consider

det η = abc+ 2e|f ||d| − be2 − a|d|2 − c|f |2

= abc− 2|e||f ||d| − be2 − a|d|2 − c|f |2 ≥ 0. (5.9)

Observe that if we take |e| instead of −|e| then the expression on the left hand side
of the inequality becomes only larger, since |e||f ||d| > 0. Hence det η̃ > det η ≥ 0
and η(e) > 0 implies η(|e|) > 0.

Combining the steps (i), (ii) and (iii) we prove the claim of the Lemma. �

Using the last Lemma we arrive at

Proposition 5.3. If the state ρ is separable, then





||A||Tr − ||κA||Tr
∑

i |dii|
∑

i |eii|∑

i |dii| ||B||Tr − ||κB ||Tr
∑

i |fii|∑

i |eii|
∑

i |fii| ||C||Tr − ||κC ||Tr



 ≥ 0. (5.10)

In order to test the performance of the derived entanglement criteria we investi-
gate three qubit pure states. According to [42] any three qubit state can be written
in generalized Schmidt form.

|ψ〉 = λ0|000〉 + λ1e
iφ|100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉

N
,

λi ≥ 0, 0 ≤ φ ≤ π,
∑

i

λ2i = N. (5.11)

Varying real parameters λi and φ one achieves eight different families of entangled
states. Proposition 5.3 detects most of the entangled three qubit states. Surprisingly,
the exceptional case, where Proposition 5.3 fails to detect entanglement is the case
of GHZ states. However, even a small coherent perturbation of the GHZ state solves
the problem, e.g. the state

|ψ′
GHZ〉 =

1

N

(
|000〉 + 10−5|110〉 + |111〉

)
(5.12)
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is detected.

In order to test whether this is an artifact of the general CMC as stated in The-
orem 5.1 we use the first strategy of evaluating the general criterion and formulate
the positivity test (5.2) as a special instance of an efficiently solvable semidefinite
program (SDP) namely as a feasibility problem. Note that in the case of qubits one
can give an exact characterization of κA/B/C in terms of vectors in R3 (see Lemma
4.58 in chapter 4.6). The SDP for the three-qubit case reads

max t > 0

subject to γ − tκA ⊕ κB ⊕ κC ≥ 0

κA,B,C =
1

2
(13 − ρA,B,C)

ρA,B,C ≥ 0, T r(ρA,B,C) = 1 (5.13)

If the above semidefinite program has a solution only for t < 1 then the state is
detected by the CMC and must be entangled.

The semidefinite program also fails to detect GHZ states and their mixtures,
which can be explained by the fact that any reduced density matrix of such
a state is separable. Indeed considering only two qubit reduced density ma-
trices it is impossible to distinguish |GHZ〉〈GHZ| from fully separable state
(|000〉〈000| + |111〉〈111|)/2. This fact has deeper consequences and is reflected in
various criteria that detect multipartite entanglement with bi-local observables. For
instance in spin squeezing inequalities [50, 51] or in the criterion based on structure
factor [151] are based on the following property of entangled states. For mean val-
ues of a particular bi-local observable one can always write down a separable state,
which gives exactly the same mean value of this particular observable. However the
sum of the mean values or their entity cannot be reproduced by a single separable
state. For example one can draw analogy with cluster states, for three qubit linear
cluster state each of the mean values 〈ZX1〉 = 1, 〈1XZ〉 = 1 and 〈XZX〉 = 1 can
be fulfilled by different three qubit product states, but it is impossible to fulfill all
three equations with any product state.

In other words, in order to detect GHZ states (|000〉 + |111〉)/
√
2 one has to

measure three party correlations and since such type of correlations is not considered
neither in the CMC or spin squeezing inequalities or in structure factor analysis, none
of these approaches is able to detect GHZ states.

5.2 Example: Detection of bound entanglement

Thermal entanglement was discussed recently in several papers. In Ref. [150] it
has been shown that there are entangled mixed states of three spins (Fig. 5.1) that
are separable with respect to any bipartition. These states were detected by spin
squeezing inequalities [50, 51, 150]. In particular the authors of the cited works
considered an inequality

δ2 (Jx) + δ2 (Jy) + δ2 (Jz) ≥
N

2
, (5.14)
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where N is the number of spins and Jα = 1
2

∑N
i=1 σ

i
α. First family of thermal states

we are going to discuss are the states of the following Hamiltonian:

H = ~S1 · ~S2 + ~S2 · ~S3 + ~S1 · ~S3 + h
(
σ1z + σ2z + σ3z

)
. (5.15)

This a Hamiltonian describes three spin-12 particles interacting via Heisenberg in-

Figure 5.1. Configuration of three spins interacting via Heisenberg in-
teraction in external magnetic field.

teraction and subjected to an external magnetic field of the strength h. The thermal
states are defined as

ρT (h) =
e−H/kT

Tr
(
e−H/kT

) (5.16)

and represent a two-parametric family of density matrices. Using the spin-squeezing
inequalities one was able to find regions on the T-h diagram where all thermal states
were PPT with respect to any bipartition although not fully separable.

We applied general criterion (5.2) to the thermal states of the Hamiltonian (5.15)
and evaluated it using semidefinite program. For these states, however, the tripartite
CMC detects exactly the same amount of states as the spin squeezing inequalities.
The results are presented in Fig. 5.2, where the left picture corresponds to the vio-
lation of the tripartite CMC and the right picture to the violation of spin squeezing
inequality (5.14).

Different colors correspond to different strength of the criteria. In the case of
the CMC it corresponds to the value of the parameter t in the semidefinite program
(5.13). In the region where magnetic field h ∼ 4 − 6 and kT ∼ 0.2 − 0.6 the
violation of both criteria becomes of the order of the numerical error, which results
in ’discontinuity’ of the region of the detected states in Fig. 5.2.
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Figure 5.2. Detection of bound entanglement in thermal states of three
spins interacting via Heisenberg interaction in external magnetic field by
the tripartite CMC (left side) and by spin squeezing inequalities (right
side). Dark red region corresponds to states that are not detected by
either of criteria. Variation of the color corresponds to the strength
of violation of the criteria. The ’discontinuity’ of the region of the
states that are detected by either CMC or spin squeezing inequalities is
explained by the fact that the violation of either criteria becomes of the
order of the numerical error for h ∼ 4− 6 and kT ∼ 0.2 − 0.6.

Interestingly, we were able to find another family of the states that is PPT with
respect to any bipartition, but which is detected by the CMC and by spin squeez-
ing inequalities. However, in this case, CMC evaluated again by the semidefinite
program (5.13) detects more states than spin squeezing inequality does.

These states are also thermal states but of a slightly modified Hamiltonian:

H ′ = ~S1 · ~S2 + ~S2 · ~S3 + ~S1 · ~S3 + h
(
σ1z + σ2x + σ3z

)
. (5.17)

Note that the difference to the Hamiltonian (5.15) is the direction of the magnetic
field applied to the second spin. In Fig. 5.2 we present the detection of the thermal
states of the Hamiltonian (5.17). The top left picture corresponds to the PPT crite-
rion. Here we characterize states by taking the maximum of three values of negativity
corresponding to three different bipartitions. The dark red region corresponds to
the states that are PPT with respect to all three bipartitions. The top right picture
corresponds to the detection of these states by the spin squeezing inequalities. As in
the previous case spin squeezing inequalities are able to detect bound entanglement.
The bottom picture shows the detection by the tripartite CMC. As one can easily
see, the CMC, in this case, detects more states than either PPT criterion or spin
squeezing inequalities.

Provided above examples we can conclude that the tripartite CMC is useful in
particular in detection of not fully separable states.
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Figure 5.3. Detection of the thermal states of the Hamiltonian (5.17)
for different values of temperature and external magnetic field. Top left:
violation of the PPT criterion characterized by negativity. The dark red
region corresponds to the PPT-states. The states corresponding to all
other colors are definitely NPT states. Top right: detection of the states
by spin squeezing inequalities. Dark red region corresponds to the states
that are not detected by the spin squeezing inequality. Bottom: detection
by the tripartite CMC. For the magnetic field larger than h = 4 the
criterion detects more PPT states than spin squeezing inequality does.

5.3 Conclusion

Formulating entanglement criteria for multipartite systems is with no doubt a diffi-
cult task. In this chapter a partial answer on the problem of detecting multipartite
entangled states was provided. The covariance matrix criterion for three parties,
formulated in the beginning of the chapter can be used in addition to the bipartite
criterion in order to reveal entanglement structure of a given state. For instance
states in the provided example will be never detected by the bipartite CMC. The
GHZ states that are not detected by a tripartite criterion are detected by the bipar-
tite criterion.
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Chapter 6

Quantification of entanglement with

covariance matrices

In chapters 3, 4 and 5 we showed that covariance matrices can be effectively used for
entanglement detection. Sometimes, however, one is interested not only in detecting
entanglement but also in quantifying it. As we will show in this chapter entanglement
quantification can be, at least to some extent, also done in terms of covariance
matrices. The idea of quantification of entanglement is reminiscent of the idea we
used in chapter 5, as we discussed entanglement detection by a semidefinite program
(5.13). There we used parameter t as a strength of violation of the CMC. It turns out
that the strength of violation of the criterion can be indeed used for entanglement
quantification. In forthcoming sections we define an entanglement parameter, prove
its convexity and show how to calculate it for pure and for Schmidt correlated states.
Then we turn to general mixed states of d×d systems and show that the introduced
entanglement parameter provides a lower bound on the concurrence for d ≤ 4 (Eq.
(1.74)).

6.1 Definition of the entanglement parameter

In this section we introduce a function based on the bipartite CMC that can be used
to estimate the amount of entanglement in a given quantum state. For our purpose
we chose a complete set of orthogonal observables Ai on HA with i = 1, ..., d2A
and Tr (AiAj) = δij and a similar set Bj for HB. We will refer to them as local
orthogonal observables, an example for dA = 2 are the (appropriately normalized)
Pauli matrices and the identity. Note that these observables are reminiscent of the
observables of standard basis (2.13) we used in chapter 2. Then, we can consider
observables on HA ⊗HB defined by

{Mα} = {Ai ⊗ 1,1⊗Bj}, i = 1, . . . , d2A,

j = d2A + 1, . . . , d2A + d2B , (6.1)

which then also obey Tr (MαMβ) = δαβ and define block form of covariance matrix
as in (2.7)

γ =

(
A C
CT B

)

.
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As we will use some of propositions from chapter 4 later, we remind some of
them here. For block covariance matrices of separable states following inequalities
hold (see Propositions 4.8 and 4.2):

2Tr (|C|) =
[
1− Tr

(
ρ2A
) ]

+
[
1−Tr

(
ρ2B
) ]
, (6.2)

‖C‖2tr ≤
[
1− Tr

(
ρ2A
) ][

1− Tr
(
ρ2B
) ]
, (6.3)

If one of this inequality is violated, then ρ must be entangled.

In order to define now our entanglement parameter, let us reformulate the CMC
in a slightly different way. Imagine some state ρ is detected as entangled by the
CMC. On the one hand there exist no κA and κB as in Proposition 3.1 such that
γ(ρ) − κA ⊕ κB ≥ 0. On the other hand we can find κeA and κeB and some number
te ∈ [0, 1] such that γ(ρ)− teκ

e
A ⊕ κeB is again positive semidefinite:

γ(ρe)− teκ
e
A ⊕ κeB ≥ 0. (6.4)

For a state that is not detected by the CMC (e.g. a separable state) the parameter
t can be chosen to be at least one, or even larger than one.

Parametrization of the condition (3.1) in Proposition 3.1 results in a alternative
formulation of the CMC:

Theorem 6.1 (Parameterized CMC). Let ρ be a bipartite state. Assume that
we choose pure states |ψk〉〈ψk| on HA and |φk〉〈φk| on HB such that κoA =
∑

k pkγ(|ψk〉〈ψk|) and κoB =
∑

k pkγ(|φk〉〈φk|) are optimal in the sense that

γ − toκ
o
A ⊕ κoB ≥ 0, (6.5)

for some 0 ≤ to ≤ 1, but

γ − tκA ⊕ κB � 0, for all t > to and all κA, κB . (6.6)

Then if the state ρ is separable there exist κoA and κoB such that

max
t

{t ≤ 1 : γ − tκoA ⊕ κoB ≥ 0} = 1, (6.7)

otherwise the state is entangled.

This leads to the idea, to use the parameter to for entangled states as an entan-
glement parameter. More precisely, we can define:

Definition 6.2. Let ρ be a bipartite quantum state with CM γ(ρ). We define a
function V (ρ) as

V (ρ) = max
t,κA,κB

{t ≤ 1 : γ(ρ)− tκA ⊕ κB ≥ 0}. (6.8)

The entanglement parameter E(ρ) is then defined as

E(ρ) = 1− V (ρ). (6.9)
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The parameter E(ρ) vanishes for separable states and is larger than zero for all
states that are detected by the CMC. This function E(ρ) is the main topic of study
in this chapter and, as we shall see later, can be used to quantify entanglement
in quantum states on. A similar function has been already used to quantify en-
tanglement in infinite dimensional systems, namely Gaussian states [152], although
there this parameter turned out to be an entanglement monotone only for special
operations.

Interestingly, using the parametrized version of the CMC (Theorem 6.1) and
inequalities 6.2 and 6.3 one can immediately give a lower bound E(ρ). We can
formulate:

Proposition 6.3 (Bounds on E(ρ)). Assuming that dA = dB we have in the situa-
tion from above that

E(ρ) ≥ Tr
(
ρ2A
)
+ Tr

(
ρ2B
)
+ 2Tr (|C|)− 2

2dA − 2
(6.10)

and

E(ρ) ≥ 1

dA − 1

{Tr
(
ρ2A
)
+ Tr

(
ρ2B
)
− 2

2
+

+
√

1
4 [Tr

(
ρ2A
)
− Tr

(
ρ2B
)
]2 + ‖C‖2tr

}

. (6.11)

Proof. For the first case, a calculation as in the proof of Proposition 4.8 (see also
Ref. [129]) gives a parametrized version of inequality 6.2 and results in

2Tr (|C|) ≤ Tr (A+B − t(κA + κB)) . (6.12)

Using Tr (γ(ρ)) = d− Tr
(
ρ2
)
(see Proposition 2.9 and Ref. [129]) gives

t ≤ 2dA − Tr
(
ρ2A
)
− Tr

(
ρ2B
)
− 2Tr (|C|)

2dA − 2
. (6.13)

and finally Ineq. (6.10). Ineq. (6.11) can be derived with help of Ineq. (6.3) and
from the calculations in Proposition 4.2 (see also Ref. [129]). From

‖C‖2tr ≤ Tr (A− tκA)Tr (B − tκB) (6.14)

it follows

t2 − t
Tr (A) + Tr (B)

2(dA − 1)
+

Tr (A) Tr (B)− ‖C‖2tr
(dA − 1)2

≥ 0. (6.15)

Generally the last relation has two solutions, but only one of them does not violate
the condition (6.13), namely

t ≤ 1

dA − 1

{

2dA − Tr
(
ρ2A + ρ2B

)

2
−
√

1

4
(Tr

(
ρ2A
)
− Tr

(
ρ2B
)
)2 + ‖C‖2tr

}

, (6.16)

from which Ineq. (6.11) immediately follows. �
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6.2 Properties of the entanglement parameter E

In this section we investigate general properties of the function E(ρ). Since the
function E(ρ) should be used to quantify entanglement in a given quantum state,
two of the properties that have to be fulfilled should be that it is convex and does
not change under local unitary transformations. Indeed, this is the case:

Lemma 6.4. The entanglement parameter E(ρ) is invariant under local unitary
transformations and is convex in the state, that is for ρ = pρ1 + (1 − p)ρ2 we have
that E(ρ) ≤ pE(ρ1) + (1− p)E(ρ2).

Proof: The invariance under local unitary transformations follows simply from
the fact that the CMC is invariant under such transformations [137, 129]. In more
detail, such transformations map a set of local orthogonal observables to another
set of local orthogonal observables, and the CMC does not depend on the choice of
the observables.

Concerning convexity, it is sufficient to prove the concavity of V (ρ), i.e. that for
any state ρ = pρ1 + (1 − p)ρ2 the inequality V (ρ) = t̃ ≥ pt̃1 + (1 − p)t̃2 ≡ t′ holds,
where t̃1 = V (ρ1) and t̃2 = V (ρ2).

To prove this we exploit the connection between the CMC and local uncertainty
relations (LURs) (see Proposition 4.17 or [137, 129]). V (ρ) = t̃ implies that the
parametrized CMC criterion is fulfilled and there exist κA, κB and t̃ such that
γ(ρ) − t̃κA ⊕ κB ≥ 0. According to the Proposition 4.17 this means that if we take
arbitrary local observables on Alice’s and Bob’s side Ak ⊗ 1 and 1 ⊗ Bk such and
define positive constants UA = minρ

∑

k δ
2 (Ak) and UB = minρ

∑

k δ
2 (Bk) then

∑

k

δ2 (Ak ⊗ 1+ 1⊗Bk)ρ ≥ t̃ (UA + UB) . (6.17)

Therefore it suffices to show that t′ fulfills the last inequality as well. Due to the
concavity of the variance we can write

∑

k

δ2 (Ak ⊗ 1+ 1⊗Bk)ρ ≥ p
∑

k

δ2 (Ak ⊗ 1+ 1⊗Bk)ρ1

+ (1− p)
∑

k

δ2 (Ak ⊗ 1+ 1⊗Bk)ρ2 . (6.18)

Since the states ρ1 and ρ2 both fulfill the CMC with the parameters t̃1 and t̃2 we
can write

p
∑

k

δ2 (Ak ⊗ 1+ 1⊗Bk)ρ1 + (1− p)
∑

k

δ2(Ak ⊗ 1+
+1⊗Bk)ρ2 ≥

[
t̃1p+ t̃2(1− p)

]
(UA + UB) . (6.19)

Note that t̃ is defined as maximal value of all possible t which using (6.18) and (6.19)
finishes the proof. �
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A further important property of entanglement measures is they do not increase
under local operations assisted with classical communication. This condition can be
demanded in two different forms (see e.g. [153, 82]): Minimally, one requires that
if ρ̂ arises from ρ via some LOCC transformation, then E(ρ) ≥ E(ρ̂) holds. Often,
however, a stronger condition is required and fulfilled, namely that E(ρ) should not
increase under LOCC operations on average. This means that if an LOCC protocol
maps ρ onto some states ρi with probabilities pi, then

E(ρ) ≥
∑

i

piE(ρi), (6.20)

should hold.

In the following, we will show by giving an example that E(ρ) can increase
on average under LOCC operations. This does not exclude a priori exclude the
usability of E(ρ) as an entanglement monotone (since the requirement might still
hold), however, it is a hint that E(ρ) might not be an entanglement measure. As
we will see later, however, E(ρ) can be very useful to derive lower bounds on the
concurrence for mixed states.

Lemma 6.5. There exists a two-qubit state ρ and an LOCC-protocol, such that E(ρ)
increases on average.

Proof. We prove the statement by providing an explicit example of a two qubit
state, which can be found numerically. To give such an example we pick up a
certain family of states. This family is parametrized by four real parameters and
was discussed in Section 2.3. Within this family one can find pairs of states ρ and
ρ′ with the same covariance matrix but where ρ is entangled, while ρ′ is not. Hence,
ρ can not be detected by the CMC criterion, and E(ρ) vanishes.

It was shown in Section 4.6 (see also Refs. [137, 129]), however, that after an
appropriate filtering operation

ρ 7→ ρfilt = FA ⊗ FBρF
†
A ⊗ F †

B (6.21)

any entangled two-qubit state can be detected by the CMC. Hence E(ρfilt) > 0 and
the filtering operation will give rise to the desired LOCC operation.

To be more concrete, a numerical example of the aforementioned state ρ is

ρ =







0.48508 0 0 0.02094
0 0.33 0 0
0 0 0.00067 0

0.02094 0 0 0.18425






, (6.22)

which is not detected by the CMC (see also [129]) but which is clearly NPT and
hence entangled. The corresponding filter operations are

FA =

(
0.16457 0

0 0.98637

)

,

FB =

(
0.96526 0

0 0.26128

)

. (6.23)
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The final state after ρfilt filtering will be

ρfilt =
FA ⊗ FBρ

′FA ⊗ FB
Tr (FA ⊗ FBρ′FA ⊗ FB)

=







0.47636 0 0 0.03336
0 0.02375 0 0
0 0 0.02364 0

0.03336 0 0 0.47626







(6.24)

and is detected by the CMC, hence E(ρfilt) > 0. Since ρ is not detected, we have
E(ρ) = 0.

Using the filter operations FA and FB we can now construct a POVM type of
measurements for Alice and Bob. The complementary operations are given by

F cA = (1− FAFA)
1
2 =

(
0.98637 0

0 0.16457

)

,

F cB = (1− FBFB)
1
2 =

(
0.26128 0

0 0.96526

)

. (6.25)

With this operations we establish LOCC protocol with four different outcomes

ρ1 ≡ ρfilt with probability p1 = 0.02570,

ρ2 with probability p2 = 0.17629,

ρ3 with probability p3 = 0.46200,

ρ4 with probability p4 = 0.33601. (6.26)

Important for us is the fact that applying this protocol to a state with E(ρ) we
achieve a state such that E(ρfilt) with non-zero probability. Therefore 0 = E(ρ) <
∑4

i=1 piE(ρi), and E(ρ) increases on average under LOCC. �

Note that for provided example one can check the separability of the state
ρ̃ =

∑

i piρi as this state has a positive partial transpose though and is therefore
separable. Consequently, the protocol given is not a counterexample to the LOCC
condition of the first kind.

6.3 Evaluation of E(ρ) for pure and Schmidt-correlated

states

In this section we compute E(ρ) for pure states and a family of mixed states. We
start with the case of two-qubits. Then, we generalize it to d-dimensional systems.

6.3.1 Pure states of two qubits

Using the relations that can be found in Section 2.5, it is straightforward to calculate
the CM of a two-qubit state |ψ〉 =

√
λ1|00〉 +

√
λ2|11〉 with λ1 + λ2 = 1. The CM
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will have the familiar block form

γ(|ψ〉) =
(

A C
CT B

)

(6.27)

with

A = B =







λ1 − λ21 −λ1λ2 0 0
−λ1λ2 λ2 − λ22 0 0

0 0 1
2 0

0 0 0 1
2






,

C =







λ1 − λ21 −λ1λ2 0 0
−λ1λ2 λ2 − λ22 0 0

0 0
√
λ1λ2 0

0 0 0 −
√
λ1λ2






. (6.28)

The next step in the calculation of the parameter t and therefore of the function
E(ρ) is to find the optimal κA ⊕ κB . In the two-qubit case we first guess the correct
solution and the prove its optimality.

To construct the matrix κA⊕κB we take two product states |00〉〈00| and |11〉〈11|
and get κA⊕κB = 1

2diag{0, 0, 1, 1, 0, 0, 1, 1}. Then we calculate the V (|ψ〉) from the
condition γ− tκA⊕κB ≥ 0. This matrix is positive iff 1− t ≥ 2

√
λ1λ2 and therefore

for any

t ≤ 1− 2
√

λ1λ2 (6.29)

we can find κA and κB such that γ − tκA ⊕ κB ≥ 0 holds.

Note that taking some particular expansion for κA ⊕ κB , strictly speaking, does
not provide any information about the entanglement, except for the case when we
are able to find κA ⊕ κB such that γ − tκA ⊕ κB ≥ 0 for some t ≥ 1. Then the state
is not detected by the CMC and E(ρ) = 0. However, we can use the Proposition 4.8
to prove the following

Lemma 6.6. The upper bound on the parameter t for two qubits provided in
Eq. (6.29) is tight.

Proof: Directly applying the relation (6.13) to the two qubit case we have
t ≤ 1 − 2

√
λ1λ2, which coincides with (6.29) and therefore gives an optimal bound

on parameter t. Indeed, on the one hand, it follows immediately from (6.29), that if
t ≤ 1−2

√
λ1λ2 then we can find a decomposition κA⊕κB such that γ−tκA⊕κB ≥ 0

holds. On the other hand, the condition (6.13) implies that for all t, with t >
1− 2

√
λ1λ2 and for all κA and κB the relation γ − tκA ⊕ κB � 0 holds. �

According to the last Lemma the function E(|ψ〉) can be calculated exactly for
two-qubit pure states as

E(|ψ〉) = 2
√

λ1λ2. (6.30)
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6.3.2 Pure states of two qudits

To estimate the parameter t for a pure state of two d-level systems, we follow the
same strategy as in the two qubit case and take the states |kk〉〈kk| for the decompo-
sition of κA ⊕ κB in order to derive the upper bound on the parameter t. We make
the ansatz

κA ⊕ κB =
d∑

i=1

piγ(|ii〉). (6.31)

with some probabilities pi.

The positive semi-definiteness of the matrix γ−tκA⊕κB then implies the positive
semi-definiteness of 2× 2 blocks of the type

Bij
2×2 =

(
λi + λj − t(pi + pj) ±2

√
λiλj

±2
√
λiλj λi + λj − t(pi + pj)

)

(6.32)

for all i < j. Therefore, if for all i < j

t ≤
(√
λi −

√
λj
)2

pi + pj
(6.33)

holds, then we can find κA and κB such that γ − tκA ⊕ κB ≥ 0 holds. To achieve
the goal and calculate the function E(|ψ〉) we need to prove that the choice of the
expansion of the κA ⊕ κB in Eq. (6.31) was optimal.

Lemma 6.7 (Optimality of the decomposition). The optimal expansion for κA⊕κB
can always be written in a form of the Eq. (6.31):

κoptA ⊕ κoptB =

d∑

i=1

piγ(|ii〉). (6.34)

Proof. First, we show that for pure states in Schmidt decomposition γ(|ψ〉) −
tκB ⊕ κA ≥ 0 is equivalent to γ(|ψ〉) − tκ ⊕ κ ≥ 0, for some κ, which can be
found explicitly. This κ can be constructed by choosing the product states in a
proper way. Indeed, note that since the CM of a state in Schmidt decomposition
is symmetric with respect to the interchange of the parties (A ↔ B) the relation
γ(|ψ〉) − tκB ⊕ κA ≥ 0 must hold as well. Hence

γ(|ψ〉) − t

2
(κA ⊕ κB + κB ⊕ κA) ≥ 0. (6.35)

Since κA⊕κB+κB⊕κA = κA⊕κA+κB⊕κB , the appropriate choice of the product
states is

|ηk〉 =
{

|ai〉 ⊗ |ai〉, i = 1, . . . , d (for κA ⊕ κA),
|bi〉 ⊗ |bi〉, i = d+ 1, . . . , 2d (for κB ⊕ κB).

(6.36)

Hence we have γ(|ψ〉) − tκ⊕ κ ≥ 0, with

κ =

2d∑

k=1

p̃kγ|ηk〉, (6.37)
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where p̃k =
1
2pk mod d.

Secondly, because the blocks D in Eq. (2.32) in Section 2.5 are the same, we
note that all diagonal elements Dii from κ must be zero, otherwise only t = 0 will
satisfy γ(ρ) − tκA ⊕ κB ≥ 0. This means that the only states, which can appear in
the expansion (6.37) are of the form |ηk〉 = |kk〉, since the |ak〉 and |bk〉 have to be
eigenstates of the operators Di. �

Having proved the optimality of the expansion of κA ⊕ κB in Eq. (6.31) we
can now provide the general formula for the function E(|ψ〉) for pure states in the
Schmidt decomposition. The value of the function V (|ψ〉) is given by the solution
of the following max-min problem

α0 = max
P

min
i<j

(√
λi −

√
λj
)2

pi + pj
, 1 ≤ i < j ≤ d, (6.38)

where the first max is taken over all possible probability distributions P =
{p1, p2, ...}. We present a solution of this problem for the case d = 3 and d = 4
and give its details in separate section at the end of this chapter:

Proposition 6.8. (a) If |ψ〉 =∑3
i=1

√
λi|ii〉 is a pure two-qutrit state, then

E(ψ) = 2
√

λi0λj0 + 2
√

λi0λk0 − λi0 , (6.39)

where i0, j0, k0 are pairwise different and j0, k0 are such that (
√
λj0 −

√
λk0)

2 ≥
(
√
λj −

√
λk)

2 for all j, k.

(b) If |ψ〉 =∑4
i=1

√
λi|ii〉 is a pure state in a 4× 4-system, then

E(ψ) = max{e1, e2, e3}, (6.40)

where

e1 = 2
√

λ1λ2 + 2
√

λ3λ4, e2 = 2
√

λ1λ3 + 2
√

λ2λ4,

e3 = 2
√

λ1λ4 + 2
√

λ2λ3. (6.41)

Note that in both cases we have for a maximally entangled state E(ψ) = 1.

6.3.3 Schmidt-correlated states

To conclude the section we consider a family of mixed states, for which the intro-
duced function E(ρ) can be also computed exactly. These states are called Schmidt-
correlated (SC) states in the literature [154]. By definition, SC states are a mixture
of states that share the same Schmidt basis

ρSC =

N∑

u=1

qu|ψu〉〈ψu|, with (6.42)

|ψu〉 =
d∑

i=1

√

λ
(u)
i |ii〉. (6.43)
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SC states can be written in computational basis directly as

ρSC =
∑

ij

ρij |ii〉〈jj|, with ρij =
∑

u

qu

√

λ
(u)
i λ

(u)
j . (6.44)

As in the case of pure states, we find for the SC states the optimal decomposition
of κA ⊕ κB :

Lemma 6.9 (Optimality for SC states). In the case of SC states the optimal decom-
position of κA ⊕ κB for the estimation of the parameter E(ρ) can always be written
in the form of Eq. (6.31):

κoptA ⊕ κoptB =

d∑

i=1

piγ(|ii〉). (6.45)

Proof: There were two essential ingredients in the proof of the Lemma 6.7.
First, we used the fact that the CM of a state, written in Schmidt decomposition,
is invariant under interchange of parties. Apparently the same invariance does also
hold for SC states. Second, we used the fact, that all blocks D of the CM are the
same. Using the formulas of the Section 2.5 one easily verifies that DA

SC = DB
SC =

DC
SC . �

For these states the problem of calculating the function E(ρ) reduces to the max-
min problem (6.38). This is due to the fact that diagonal elements of the covariance
matrix have a pretty simple form for ρSC . Indeed, using the formulas from the
Section 2.5 we calculate directly:

(

D
A/B/C
SC

)

ij
= ρiiδij − ρiiρjj, 1 ≤ i ≤ d,

X
A/B
SC = Y

A/B
SC =

1

2
diag{ρii + ρkk}, 1 ≤ i < k ≤ d,

XC
SC = −Y CSC = diag{ρik}, 1 ≤ i < k ≤ d. (6.46)

The 2× 2 blocks in Eq. (6.32) will then take the form

Bij
2×2 =

(
ρii + ρjj − t(pi + pj) ±2ρij

±2ρij ρii + ρjj − t(pi + pj)

)

, (6.47)

which leads to the following max-min problem for V (ρSC)

V (ρSC) = max
P

min
i<j

ρii + ρjj − 2ρij
pi + pj

= max
P

min
i<j

∑

k qk

(√

λ
(k)
i −

√

λ
(k)
j

)2

pi + pj
. (6.48)

This problem can be effectively solved numerically or as in Section 6.5 and its solu-
tion gives the exact value of the function E(ρSC). For two qubits one finds

E(ρSC) = 2
∑

k

qk

√

λ
(k)
0 λ

(k)
1 (6.49)

as a nice analytical expression.
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6.4 The entanglement parameter E(ρ) as a lower bound

on the concurrence

In this section we demonstrate that the function E(ρ) can be used to estimate the
amount of entanglement in a quantum state. More specifically, we show how it
delivers a lower bound on the concurrence, which is a well known measure of bipartite
entanglement. For bipartite pure states in a d× d-system the concurrence is defined
as [85, 86, 87]:

C(|ψ〉) =
√

d

d− 1

√

1− Tr
(
ρ2A
)
. (6.50)

In this definition, we introduced already a prefactor which guarantees that 0 ≤ C ≤
1, this will turn out to be useful for our purposes.

The concurrences is then extended to mixed states by the convex-roof construc-
tion

C(ρ) = min
pi,|ψi〉

∑

i

piC(|ψ〉), (6.51)

where the minimization is taken over all possible decompositions of the state ρ =
∑

i pi|ψi〉. Of course, this minimization is quite difficult to perform, and only for
two-qubits a complete solution is known [86]. Therefore, it is desirable to have at
least some lower bounds on the concurrence.

The idea of obtaining lower bounds on C from E is as follows: Let us assume
that one can prove a lower bound like

C(|ψ〉) ≥ αE(|ψ〉) + β (6.52)

for pure states only with some constants α, β and α ≥ 0. Then, since E is convex,
the right hand side of Eq. (6.52) is convex, too. By definition, the convex roof is the
largest convex function which coincides with C on the pure states. Consequently,
C(ρ) ≥ αE(ρ) + β holds for all mixed states, too. This trick has already been
employed in several works to obtain lower bounds on entanglement measures [88,
134, 142, 155, 156]. However, as the CMC detects many bound entangled states
where other criteria fail [129], our results will deliver entanglement estimates for
states, where the other methods fail.

6.4.1 Two qubits

Using the Schmidt decomposition, one can express the concurrence for pure states
in terms of Schmidt coefficients as [85, 86, 87, 88]

C(|ψ〉) =
√

2d

d− 1

√
∑

i<j

λiλj . (6.53)

Comparing (6.53) and (6.30) from the Section 6.3 we see that the concurrence and
the function E(|ψ〉) coincide for on two qubit pure states

E(|ψ〉) = 2
√

λ1λ2 = C(|ψ〉). (6.54)
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Consequently, C(ρ) ≥ E(ρ) holds for any mixed state. Note, however, that for the
special case of two qubits one can calculate the concurrence also directly.

6.4.2 Two qutrits

Using the solution of the problem (6.38) it is possible to derive a lower bound on
concurrence for pure states of two d-level systems. Before we proceed, note that
[88]:

C(ψ) =

√

2d

d− 1

√
∑

i<j

λiλj ≥
2

d− 1

∑

i<j

√

λiλj . (6.55)

This follows from the fact that

∑

i<j

λiλj =
1

d(d − 1)

∑

i<j

∑

k<l

(λiλj + λkλl) (6.56)

≥ 2

d(d − 1)

∑

i<j

∑

k<l

√

λiλjλkλl =
2

d(d− 1)

[∑

i<j

√

λiλj

]2
.

Concerning to qutrits, E(|ψ〉) is given by Eq. (6.39). We have that

2
√

λiλj + 2
√

λiλk − λi = 2
√

λiλj + 2
√

λiλk + 2
√

λjλk − 2
√

λjλk − 1 + λj + λk

≤ 2C(|ψ〉) + (
√

λj −
√

λk)
2 − 1 ≤ 2C(|ψ〉). (6.57)

Hence we have for mixed two-qutrit states

C(ρ) ≥ E(ρ)
2

. (6.58)

Using the results from Proposition 6.3 we have, for instance,

C(ρ) ≥ 1

4

{Tr
(
ρ2A
)
+Tr

(
ρ2B
)
− 2

2
+
√

1
4 [Tr

(
ρ2A
)
− Tr

(
ρ2B
)
]2 + ‖C‖2tr

}

, (6.59)

which is an easily computable lower bound that delivers non-trivial estimates for
many bound entangled states.

6.4.3 4× 4 systems

In this case E(|ψ〉) is given by (6.40). We can directly estimate:

E(ψ) = max{e1, e2, e3} (6.60)

≤ 2
√

λ1λ3 + 2
√

λ2λ4 + 2
√

λ1λ2 + 2
√

λ3λ4 + 2
√

λ1λ4 + 2
√

λ2λ3

≤ 3C(|ψ〉)

and hence for arbitrary mixed states

C(ρ) ≥ 1

3
E(ρ). (6.61)
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6.4.4 Examples

Let us discuss the strength of these lower bounds by considering some examples.
Let us first consider Bell-diagonal two-qubit states. For them, the reduced states ρA
and ρB are maximally mixed, and then Proposition 6.3 delivers the bound C(ρ) ≥
Tr (|C|) − 1/2. On the other hand, it is known that for Bell diagonal states the
concurrence is given by C(ρ) = 2λmax−1, where λmax is the maximal eigenvalue, i.e.,
the maximal overlap with some Bell state [85]. Noting that λmax = [1+2Tr (|C|)]/4
(this can be easily seen if the closest Bell state is the singlet state and we take
appropriately normalized Pauli matrices as observables in the definition of the matrix
C), one finds that our lower bound is tight for Bell diagonal states.

For general two-qubit states, the lower bound cannot be tight, as they are en-
tangled two-qubit states, which are not detected by the CMC. On the other hand,
any full rank two qubit state can be brought to a Bell-diagonal state by filtering op-
erations. Since it is known how the concurrence changes under filtering operations
[139], one could use the filtering and our lower bound to determine the concurrence
for arbitrary two-qubit states.

For two qutrits, our bound is not tight for states like |ψ〉 = (|00〉+|11〉+|22〉)/
√
3

or |ψ〉 = (|00〉 + |22〉)/
√
2, however, for the latter the reason lies in the fact that

the bound (6.55) is not tight. On the other hand, the presented method delivers
nontrivial lower bounds for many bound entangled states (such as the the family of
chessboard states), as many states of this type are detected by the CMC [129], but
not by the PPT or CCNR criterion (which means that the methods from Ref. [88]
must fail). Similarly, our methods can be used to estimate the entanglement of
bound entangled states for 4× 4-systems.

6.5 Solution of the max-min problem for d = 3 and d = 4

In this section we discuss the possible ways of solving the max-min problem:

t̃ = max
P

min
i<j

(√
λi −

√
λj
)2

pi + pj
, 1 ≤ i < j ≤ d. (6.62)

We consider the cases d = 3 and d = 4. We define

bij ≡
(√

λi −
√

λj

)2
, (6.63)

αij ≡
bij

pi + pj
= αji. (6.64)

For d = 3 there are only three different α’s that can be arranged in a tableaux as in
FIG.6.1(a).

The properties of the solution can be summarized as follows:
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Figure 6.1. (a) In the case d = 3 there are only three elements αij.
These elements are written in the form of tableaux in order to visualize
the problem considered. (b) Tableaux of the elements αij in the max-min
problem for d = 4.

Lemma 6.10. (a) Consider the optimization problem in Eq. (6.62) for d=3 with
the only assumption that bij ≥ 0 for d=3. Let j0, k0 be such that

bj0k0 = max{bjk}. (6.65)

Then the optimal solution α0 is given by

α0 = min
{
αI , αII

}
, (6.66)

where

αI =
1

2
(b12 + b13 + b23), (6.67)

αII = bi0,j0 + bi0,k0 (6.68)

with j0 6= i0 6= k0.
(b) For the same problem, if the bij are given via Eq. (6.63) as functions of Schmidt
coefficients and fulfill therefore further restrictions, the optimum is always given by

α0 = αII = 1 + λi0 − 2
√

λi0λj0 − 2
√

λi0λk0 . (6.69)

Then we also have that αII = minijk{1 + λi − 2
√
λiλj − 2

√
λiλk} where the i, j, k

are pairwise different.

Proof: (a) Let us first assume only that bij ≥ 0. In the max-min problem (6.62)
the maximization is taken over all possible probability distributions. It is convenient
to distinguish two cases:
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Case 1: The optimal probability distribution does not have any zero elements.
Assume P0 is the optimal distribution and p0i 6= 0 ∀i. We show that this optimal
distribution necessarily has to be such that α0

12 = α0
13 = α0

23 = α0, otherwise the
optimality is violated. Indeed, assume that this is not case. Then, without loss of
generality, we can write α0

12 ≤ α0
13 ≤ α0

23, where one of the inequalities must be
strict. Now consider some distribution P ′ such that

p′1 = p01 − 2ε, p′2 = p02 + ε, p′3 = p03 + ε (6.70)

with some ε > 0. The coefficients αij will change and become according to the new
distribution P ′

α′
12 > α0

12, α′
13 > α0

13, α′
23 < α0

23. (6.71)

Since the parameter ε can be chosen arbitrarily small the number α′
12 will be still the

minimal one, i.e. α′
12 = mini<j α

′
ij . But α

′
12 > α0

12. Consequently the distribution P ′

gives a bigger minimum of the set {αij} than the distribution P0, which contradicts
the assumption that P0 is optimal. Hence we conclude that α0

12 = α0
23 must hold,

which implies α0
12 = α0

13 = α0
23.

Having established that if P0 is optimal and contains no zero elements, then
α0
12 = α0

13 = α0
23 = α0 holds, we can calculate α0 explicitly. We have

α0 =
b12

p01 + p02
=

b13
p01 + p03

=
b23

p02 + p03
. (6.72)

Multiplying by the denominators summing up these equations gives

2α0(p01 + p02 + p03) = b12 + b13 + b23. (6.73)

Because p01 + p02 + p03 = 1 we arrive at

αI ≡ α0 =
1

2
(b12 + b13 + b23). (6.74)

Case 2: The optimal probability distribution P0 has at least one zero element.
This means that one α0

ij = bij independently of the two free parameters of the
probability distribution. We can distinguish three cases, and assume for definiteness
b12 ≤ b13 ≤ b23.

(i) If α0
12 = b12 (that is, p03 = 0), then clearly α0

ij ≥ bij for i, j = 1, 3 and

i, j = 2, 3. Then we have min{α0
ij} = α0

12. But then decreasing one of the p1 or

p2 and increasing consequently p03 will lead to an increasing of α0
12 and an better

solution which belongs to case 1. So a solution with α0
12 = b12 can never be optimal.

(ii) If α0
13 = b13 the optimal probability distribution has to be such that α0

13 ≤ α0
12

and α0
13 ≤ α0

23. But as in the case (i) one can directly see that this leads to case 1
and can never be optimal.

(iii) Finally, consider the case α0
23 = b23. Then, one can see as in case 1 one

can achieve α0
12 = α0

13 without giving up optimality. More precisely, the optimal
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probability distribution has to fulfill this from the beginning (if α0
12 and α0

13 are the
minima) or it can be achieved (if α0

23 is the minimum).

This leads as in case 1 to the conclusion, that we have

α0
12 =

b12
p02

=
b13
p03

⇒ α0
12 = b12 + b13, (6.75)

and consequently

αII ≡ α0
12 = b12 + b13 = 1 + λ1 − 2

√

λ1λ2 − 2
√

λ1λ3. (6.76)

However, it is not yet clear what the min{αij} is. Two cases can be distinguished:

(iiia) If α0
12 ≥ α0

23 = b23 one would take min{α0
ij} = α0

23 = b23, but then, one can
improve it further as in the cases (i) and (ii) by going to the case I and taking finally
αI from Eq. (6.74). Note that αI = (αII+b23)/2. Therefore, if α

II = α0
12 ≥ α0

23 = b23
one has also that αI ≤ αII , so effectively one takes min{αI , αII}.

(iiib) If α0
12 < α0

23 = b23 we take min{α0
ij} = αII and going to case 1 does not

bring anything. But in this case, we have αI ≥ αII , so effectively one takes again
min{αI , αII}.

Finally, let us discuss shortly the meaning of the choice j0 and k0 in Eq. (6.65)
as one may consider also αIIj,k in Eq. (6.68) with other indices. However, one can

directly compute that αIIi,j < αI is equivalent to bij + bik < bjk and this can only

be true, if j and k are chosen as in Eq. (6.65). In other words, the αIIj,k for other
indices than j0, k0 can never contribute and one could alternatively write that α0 =
min{αI , αII12, αII13, αII23}.

(b) Let us now assume that the bij stem from Schmidt coefficients as in Eq. (6.63).
We know from the previous discussion that we have to take αII iff bi0j0+bi0k0 ≤ bj0k0 .
In terms of the Schmidt coefficients, this implies that

(
√

λj0 −
√

λk0)
2 ≥ (

√

λi0 −
√

λj0)
2 + (

√

λi0 −
√

λk0)
2. (6.77)

This, however, is true for any triple of positive real numbers
√
λν , if j0 and k0 are

chosen as in Eq. (6.65). Then, its also clear that the αII chosen is minimal among
all the bij + bik. �

Further, we discuss the case d = 4. The elements αij are again embedded in
a tableaux as in Fig. 6.1(b). We begin with studying of properties of the optimal
probability distribution P0. Suppose as in the case d = 3 that α0

ij correspond to the

optimal probability distribution P0 and that α0
12 = minij{α0

ij}. We can formulate:

Lemma 6.11. The solution of the max-min problem (6.38) for d = 4 is given by

α0 = min{aI , aII , aIII}, (6.78)

where

aI = 1− 2
√

λ1λ2 − 2
√

λ3λ4,

aII = 1− 2
√

λ1λ3 − 2
√

λ2λ4,

aIII = 1− 2
√

λ1λ4 − 2
√

λ2λ3. (6.79)
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Proof: The proof proceeds in several steps.
Step 1. Let us first consider optimal probability distributions P0 = {p01, p02, p03, p04}
where all p0i are nonzero. In this case we show that for α0

k0l0
= min{α0

ij} at least
one of the three equations must hold:

α0
k0l0 = α0

12 = α0
34,

α0
k0l0 = α0

13 = α0
24, (6.80)

α0
k0l0 = α0

14 = α0
23.

The idea of the proof of the above statement is similar to the idea of the proof
of the Lemma 6.10, i.e. we consider small perturbations of the optimal probability
distribution P0 that increase the minimal element α0 (note that we dropped the
indices k0 and l0 in order to shorten notation) and therefore destroy the optimality
if some additional constraints are not fulfilled. As we will see, these constraints will
give us the conditions (6.80).

Let us assume for definiteness that the optimal α0 is given by α0
12. We can

consider the following four transformations of the pi :

T1 : p′1 = p01 − 3ε, p′i = p0i + ε for i 6= 1,

T2 : p′2 = p02 − 3ε, p′i = p0i + ε for i 6= 2,

T3 : p′3 = p03 + 3ε, p′i = p0i − ε for i 6= 3,

T4 : p′4 = p04 + 3ε, p′i = p0i − ε for i 6= 4, (6.81)

where ε can be chose arbitrarily small. All the transformation increase α0
12, but

all have to keep the optimality of the probability distribution, so that minimal α
given by P ′ cannot be larger than α0

12. From transformation T1 it follows that P0 is
optimal if and only if α0

12 = min{α0
23, α

0
24, α

0
34}, as these entries decrease under the

transformation. Similarly, it follows from T2 that α
0
12 = min{α0

13, α
0
14, α

0
34}, and from

T3 that α0
12 = min{α0

13, α
0
23, α

0
34}, and finally from T4 that α0

12 = min{α0
14, α

0
24, α

0
34}.

Given this finite number of possibilities, one can directly check that either α0
12 = α0

34

or α0
12 = α0

13 = α0
24 or α

0
12 = α0

14 = α0
23 must hold for optimal probability distribution

P0 which proves the first claim.

From these conditions we see that there are the three candidates for the optimal
α0:

α0 = α0
12 = α0

34,

⇒ α0 = aI = b12 + b34 = 1− 2
√

λ1λ2 − 2
√

λ3λ4,

α0 = α0
13 = α0

24,

⇒ α0 = aII = b13 + b24 = 1− 2
√

λ1λ3 − 2
√

λ2λ4,

α0 = α0
14 = α0

23,

⇒ α0 = aIII = b14 + b23 = 1− 2
√

λ1λ4 − 2
√

λ2λ3. (6.82)

Step 2. At this point, we have identified three candidates for the α0, but is is
not clear yet, which one should be taken.
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We will show now, however, that only the minimum of these can give a valid
solution. For that, assume that one has a probability distribution P1 which has the
optimal α0(P1) = aI . Then α0

34 = α0
12 = minij{α0

ij} and hence

α0
12 ≤ α0

13 ⇒ b12(p
0
1 + p03) ≤ b13(p

0
1 + p02),

α0
34 ≤ α0

23 ⇒ b34(p
0
2 + p04) ≤ b24(p

0
3 + p04). (6.83)

Consequently, b12 + b34 ≤ b13 + b24 and hence aI ≤ aII . Similarly, it follows that
aI ≤ aIII . So if one finds a solution, then it has to be the minimum of all ak.

This also shows that if there is a second solution P2 with α0(P2) = aII , then
α0(P1) = α0(P2) must hold, since aI ≤ aII and aII ≤ aI . Note also that the
arguments leading to this did not require the assumption that the probability dis-
tributions have nonzero elements.

Summarizing Step 1 and Step 2, we can state that if there is a optimal probability
distribution with non-zero elements, then the solution is given by

α0 = min{aI , aII , aIII}. (6.84)

Step 3. Now we have to consider the cases where the optimal probability distri-
bution has some zero elements. Let us first consider the case that there is exactly
one zero element.

There exist two possibilities. The first one arises, when the minimum is given
by α0

12 and p04 = 0. Then, the transformations T1, T2 and T4 in Eq. (6.81) can still
be applied, but we have to modify T3, since there are no negative probabilities

T̂3 : p
′
3 = p03 + 2ε, p′i = p0i − ε for i = 1, 2, p′4 = p04 = 0. (6.85)

This transformation leads exactly to the same condition as T3 above α0
12 =

min{α0
13, α

0
23, α

0
34}. Therefore, the same conclusion as in Step 1 can be drawn.

Similarly, by considering T̂4, one can show that if p03 = 0, the conclusion from Step
1 still holds.

The second possibility arises, if the minimum is again given by α0
12, but this

time p01 = 0. Then, only T2 in Eq. (6.81) can be applied. We define the modified
transformations:

T̃3 :p
′
3 = p03 + 2ε, p′i = p0i − ε for i = 2, 4, p′1 = p01 = 0,

T̃4 :p
′
4 = p04 + 2ε, p′i = p0i − ε for i = 2, 3, p′1 = p01 = 0. (6.86)

Then, repeating the argumentation from Step 1, one arrives at the same conclusion,
apart from the special case: α0

12 = α0
13 = α0

14 < α0
kl for k, l ∈ {2, 3, 4} holds.

In this special case, we have that α0 = (b12 + b13 + b14) and consequently p0k =
b1k/(b12+ b13+ b14) for k = 2, 3, 4. Since α0

23 = b23/(p
0
2+ p

0
3) > α0 = (b12+ b13+ b14)

it follows that b23 > b12 + b13. Generally we have bkl > b1k + b1l, for k, l ∈ {2, 3, 4}.
Due to the definition of the bij , it means that the Schmidt coefficients have to

fulfill
(
√

λk −
√

λl)
2 > (

√

λ1 −
√

λk)
2 + (

√

λ1 −
√

λl)
2 (6.87)
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for k, l ∈ {2, 3, 4}. Since the
√
λk are positive real numbers, this can only hold if√

λ1 is inside the interval [
√
λk;

√
λl]. As there are three intervals, and two of them

intersect in only one point, we must have that
√
λ1 =

√
λi for some i ∈ {2, 3, 4},

which implies that the corresponding b1i = 0 and α0
1i = 0. Since α0

12 = α0
13 = α0

14

all of them must be zero and hence α0 = 0 and all b1k = 0 for any k ∈ {2, 3, 4}.
Physically, this means that all Schmidt coefficients are the same and the state is a
maximally entangled one. But then also aI = aII = aIII = 0, so this special case
does not deliver a novel solution.

Step 4. Let us now consider the case, where two or more p0i equal zero.

Let us first assume that exactly two p0i are zero, namely p02 = p03 = 0. Then
α0
14 = b14 and α0

23 = ∞ are independent of the probability distribution. However, if
we make the transformation

T : p′i = p0i − ε i ∈ {1, 4}, p′k = p0k + ε k ∈ {2, 3}, (6.88)

the minimal value α0 does not decrease (as all α0
12, α

0
13, α

0
24, α

0
34 remain constant,

α0
14 increases and α0

23 can still be considered close to +∞ due to the infinitesimality
of ε). Therefore we arrive at a solution, where none of the p0i is zero and which is
as good as a solution with p02 = p03 = 0. Thus we conclude that solutions given by
distributions with two zero elements are contained in solutions characterized in Step
1.

Finally, we have to discuss the case that three p0i equal zero and consequently
the remaining one equals one. This can be excluded with a similar transformation
as in Eq. (6.88). Assume p01 = 1 and the rest probabilities are zero, then the
transformation similar to T reads

T̃ : p′1 = p01 − 3ε p′k = p0k + ε k ∈ {2, 3, 4}. (6.89)

None of the elements α′
ij will be smaller than α0

ij , which finishes the proof. �

6.6 Conclusion

In conclusion, we have introduced an entanglement parameter E that quantifies the
violation of the covariance matrix criterion. We have shown that this parameter
is convex and invariant under local unitary operations, but it can increase on av-
erage under local operations and classical communication. Most importantly the
parameter E can be used to deliver lower bounds on the concurrence.
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Chapter 7

Local renormalization method for random

systems

Questions of entanglement detection and quantification discussed in previous chap-
ters are of big importance for quantum information science. Up to now we considered
quantum states as a rather abstract mathematical object, i.e. in most cases we char-
acterized a physical state by its density matrix. We did not draw any connection to
real physical systems (ensembles of interacting free atoms or electrons, atoms peri-
odically ordered in a lattice of a solid or trapped in a periodic optical lattice an so
on), which the state is supposed to describe. In Section 5.2, however, we discussed
states that correspond to a real physical system described by a certain Hamiltonian.
Investigation of entanglement properties of such states is therefore of a big interest,
since one knows for sure that these states exist in nature.

As we mentioned in introductory chapter to this thesis, entanglement plays an
important role in quantum phase transitions. For several many-body critical systems
entanglement amount is known to grow when the temperature decreases and the
system is in the vicinity of its critical point. Furthermore it is known that the
description of these systems is usually a hard task. With exception of few models,
where an exact solution is known. So, there seems to be a relation between hardness
of solving, describing or simulating a system and amount of entanglement it possesses
in the ground state. The subject of our study will be systems that can be described
by Hamiltonians defined on a two dimensional rectangular grid of atoms, which
interact only with their nearest neighbors and might be subjected to an external
magnetic field. Moreover we consider systems, where the strength of the nearest
neighbor interaction and of the local magnetic field is a stochastic variable, i.e. it
varies from spatially, described by its mean value and the variance.

In order to investigate to which extent this kind of systems can be simulated
on the classical computer and how is this connected with the strength of disorder,
we introduce a real-space renormalization transformation for random spin systems
on 2D lattices. The general method is formulated for random systems and results
from merging two well known real space renormalization techniques, namely the
strong disorder renormalization technique (SDRT) and the contractor renormal-
ization (CORE). We analyze the performance of the method on the 2D random
transverse field Ising model (RTFIM).
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7.1 Short historical overview

Most physical systems are disordered and the description and modeling of such
systems is one of the most special problems in condensed matter physics. In the
early 70’s the role of the disorder in physical systems was discussed in several papers.
Harris [157] formulated a criterion for the relevance of the weak disorder caused by
locally random impurities in the system. According to the criterion, the relevance of
the disorder depends on the sign of the critical exponent for the specific heat. Just
one year later, Imry and Ma [158] formulated another criterion, which points out
the relevance of the weak disorder in less than four dimensions (the ordered state
became unstable against an arbitrarily weak random field). As it became clear later
these criteria can be understood in terms of the real space renormalization group
(see for instance [159, 160] and references therein). Real space renormalization group
(RG) methods for quantum disordered systems were applied first in the late 70. In
the pioneering work on this topic Ma, Dasgupta and Hu considered a spin-1/2 anti-
ferromagnetic Heisenberg chain, where the coupling strengths were assumed to be
stochastically distributed [175]. The authors studied the model at zero temperature
using a method that essentially relies on the reduction of the number of degrees of
freedom in the system. Their approach attracted a lot of attention, was extensively
studied and developed further by Fisher [126, 127] and has been used to investigate
a big variety of systems in one and two dimensions (a review on the real space RG
approach can be found in [124]). The method has recently been referred to as strong
disorder renormalization technique (SDRT).

Indeed it turned out that the behavior of a system with randomness is in many
cases quite different from the non-random case. The main ingredient of the dis-
ordered systems, which has no counterpart in the systems without disorder, is the
existence of so called rare regions, i.e., regions possessing atypical properties (for the
phase under consideration) compared to the rest of the system. It is known that this
kind of rare effects can govern the behavior of the systems at long distances and re-
sult in exotic phases, e.g. Griffiths-McCoy [161, 162, 167, 169, 163, 164, 124] phase.
It is worth to note that the application of the method to two dimensional systems
is not straightforward, since it distorts the geometry of the underlying lattice, and
only numerical calculations are possible. Therefore analytic proofs like asymptotic
exactness of the SDRT in thermodynamical limit (see [126, 127]) do not apply. We
will come back to the SDRT in the next section and discuss it in more detail. Despite
its beauty, the SDRT is a perturbative method and applying it to the finite sized
systems may cause a problem. A non-perturbative RG method, that for our knowl-
edge has not been applied to random systems yet, was introduced by Morningstar
and Weinstein in [109]. This method is called contractor renormalization (CORE)
group approach and is especially suited for lattice systems (for CORE applications
see [177, 178, 179, 180, 181, 176, 182, 183, 184]). By definition, this method keeps
the eigenvalues of the low energy sector and produces an optimal truncation opera-
tor from the original Hilbert space to the effective one. In other words, the CORE
is a non-perturbative block-spin renormalization, which uses exact diagonalization
to extract the effective interactions in a coarse grained system.
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Having a non-perturbative method on the one hand and ideas of spatially local
renormalization of the system from the SDRT on the other hand, we introduce a
method that unifies both techniques and is suited to investigate two dimensional
disordered systems. The purpose of this chapter is to show that such merging is
possible and results in a non-perturbative real space renormalization transformation
for 2D quantum systems at zero temperature that preserves the underlying lattice
geometry.

A reliable real space renormalization group method for description of the low
temperature behavior of some system gives information about the long distance
properties of the system while keeping the fundamental structure of the ground
state. This fact is especially relevant in quantum random systems where the en-
tanglement properties of the ground state have been identified as the key feature in
understanding the behavior of these materials [168, 171, 172]. Since the method we
are about to introduce involves local real-space renormalization steps we will have to
analyze errors introduced by these local operations. As a benchmark we are going to
use statistical arguments, showing that long range interactions are not important in
the renormalized system and therefore can be neglected, i.e., if we consider a model
that initially has only nearest neighbors interactions, we can neglect next nearest or
more sophisticated terms introduced by renormalization and proceed further with
a model that has only nearest neighbor interactions. The statistical justification
of the fact that our method can be applied locally in the real space and without
renormalizing the whole lattice at once, is a crucial point here.

7.2 Real space renormalization group methods and ran-

dom systems

7.2.1 Strong Disorder Renormalization Technique

The name strong disorder renormalization technique reveals perfectly the idea of
real space RG for random systems introduced by Ma, Dasgupta and Hu in [175].

There are a priori several different situations that can appear in disordered
systems in the thermodynamical limit. When the size of the system increases and
the effective disorder becomes a major effect compared to the thermal or to the
quantum fluctuations, this effective disorder can either become

• smaller and smaller without bound: the system is then controlled by a pure
fixed point,

• larger and larger without bound: the system is then controlled by an infinite
disorder or infinite-randomness fixed point (IRFP),

• or it may converge towards a finite level: the system is then controlled by a
finite disorder fixed point.
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A class of systems whose critical behavior is governed by an infinite-randomness
fixed point (IRFP) is characterized by a very broad distribution of couplings and a
dynamical exponent z that becomes infinite at the critical point. In certain models,
any initial disorder, even very small, drives the system towards the IRFP at the
large scale: in particular, this is the case for the random anti-ferromagnetic quantum
spin−1/2 chain (see also [126]).

We will illustrate very briefly a concrete scheme for renormalization of systems
with infinitely strong disorder in one dimension on example of the random transverse
field quantum Ising chain (RTFIC) (for detailed consideration see [127]). The system
has the following Hamiltonian

H = −
∑

(ij)

Jijσ
z
i σ

z
j −

∑

i

hiσ
x
i . (7.1)

The basic strategy is to find the strongest coupling in the chain (it can be either
{Jij} or {hi}) and minimize the corresponding term in the Hamiltonian. The degrees
of freedom associated with this maximum energy scale Ω0 = max{Jij , hi} are then
frozen at lower energy scales.

If the strongest coupling is a field, say hk then the spin σk is put in its local
ground state, i.e., in the x-direction, causing it to become non-magnetic. Effective
interactions are then generated between its nearest neighbors; but, as all other
nearby couplings are likely to be much smaller than hi, these can be treated by
second order perturbation theory. This introduces new effective interactions

J̃ij '
JikJkj
hk

, (7.2)

where i and j are the nearest neighbors of k.

If the strongest coupling is an interaction, say Jkl, then two spins are combined
forming a cluster which, in the zeroth order of perturbation theory, has a double
degenerate ground state (both up or both down) and thus can be represented again
by an effective two-level particle: a new spin. The effective local magnetic field being
applied to the cluster (kl) is

h̃(kl) '
hkhl
Jkl

, (7.3)

which results from the second order perturbation theory, where magnetic fields,
acting on two spins are considered to be small.

The magnetization of the cluster will be the sum of magnetization of single spins k
and l, i.e., it changes additively m(kl) = mk+ml. Since all new couplings are smaller
than the initial one Ω0, the energy is rescaled and the maximum energy is reduced
(for more details see [126, 127]). Note that the decimation as described above would
change the geometry of the system in dimensions higher than D = 1, so that we
would have to consider the spins to be the vertexes of a somewhat random graph
with the RG modifying the spatial structure in these larger dimensions [124, 164].
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If the quantum disordered phase is renormalized, the fields eventually tend to
dominate the bonds and at small values of Ω almost all decimations are cluster anni-
hilation and the effective interactions connecting them becoming weaker and weaker;
in the procedure of the renormalization, the system hence becomes a collection of
asymptotically uncoupled clusters with a broad distribution of effective fields. In
the ordered phase, in contrast, the interactions tend to dominate the fields at low
energies, and most decimations are thus decimations of bonds; eventually this causes
an infinite cluster to form. The zero temperature quantum transition between these
phases is a novel kind of percolation with the annihilation and aggregation of clusters
competing at all energies at the critical point [124, 164, 175, 126, 127].

Before closing this section we would like to point out that the SDRT consists of
successive local renormalizations in the real space, where no long range interactions
are considered. It means that after an elementary renormalization step the system
is described by a Hamiltonian with only nearest neighbors interactions (if one had
started with a nearest neighbors interactions Hamiltonian) and no next nearest
neighbors appear in the Hamiltonian. Strictly speaking, after every RG step the
ground state of the effective Hamiltonian will deviate from the ground state of the
initial one, but the error will become asymptotically small in the thermodynamical
limit as has been proven by Fisher in [127]. This is the feature we want to retain in
our ansatz later on.

7.2.2 The CORE method

The CORE is the Hamiltonian version of the Kadanoff-Wilson real space RG trans-
formation for lattice field theories and lattice spin systems and relies on contraction
and cluster expansion techniques. We briefly sketch the main idea of the CORE and
how it works and refer to Ref. [109] for details.

The first step in this method is to choose small clusters, elementary blocks which
cover the lattice. After that, one picks up some of the clusters (since the CORE was
introduced for systems with no disorder and with translation symmetry, all clusters
are the same) and considers the part of the whole Hamiltonian that corresponds to
this cluster. In what follows we call this part of the Hamiltonian cluster Hamilto-
nian. For the cluster Hamiltonian one has to choose states that are relevant for the
description of physical behavior of the cluster (the number and the form of these
states can vary depending on the particular model). The span of the chosen states
forms the effective Hilbert space of the cluster. Then a projection Peff on the effec-
tive Hilbert space of the cluster is constructed. This projection is used to obtain the

so-called range-1 terms of the Hamiltonian expansion (h
(1)
i = PeffH

i
clusterPeff ). The

range-2 terms arise from the Hamiltonian that corresponds to two adjacent (con-
nected) clusters. The states of the effective Hilbert space of the connected clusters
are obtained by taking tensor products of the states single clusters. Afterward a uni-
tary matrix is constructed by means of which the range-2 terms are produced (this
matrix is called triangulation matrix [109]). This procedure is iterated to achieve
the range-N terms. Finally the expansion of the truncated Hamiltonian, which is
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the effective Hamiltonian after single renormalization step is written as

Heff =
∑

i

h
(1)
i +

∑

<i,j>

h
(2)
i,j +

∑

<i,j,k>

h
(3)
i,j,k + · · · (7.4)

where h
(N)
i1,...iN

stands for range-N term. For more details and rigorous proof that
the truncated Hamiltonian can be expanded in this way, we refer the reader to Ref.
[109].

Note that for the construction of the range-N terms in the expansion (7.4) one
obtains the eigenvalues {εn} and eigenvectors {|n〉} by the exact diagonalization of
N contiguous clusters. The optimal truncation operator (triangulation matrix) is
obtained by a Gram-Schmidt orthogonalization of the eigenvectors of the Hamil-
tonian projected on the effective Hilbert space. In this way, a basis {|φn〉} (the
remnant eigenstates of the range-N Hamiltonian) is built such that the first vector
overlaps with the lowest energy eigenvector and those above, the second one with
the second lowest and those above and so on, i.e.,

|φNn 〉 =
∑

m≥n
λm|m〉. (7.5)

In fact, this reduced basis stems from the QR-decomposition of the overlap ma-
trix between the reduced Hilbert space and the space of exact eigenvectors of the
complete Hamiltonian[181].

Usually, two situations can occur after several steps of the renormalization. The
Hamiltonian either flows to a point where it can be solved exactly and the correlation
length in the effective lattice model goes to zero, or the system is self-similar at every
scale, the correlation length diverges and the mass gap goes to zero: at this point,
the system is said to be at the critical point.

In summary, the CORE has two major advantages over traditional perturbative
real-space renormalization schemes:

• the CORE is not an expansion in weak/strong bonds between block-spins. Its
convergence does not necessarily depend on the existence of a large gap to the
discarded states of the Hilbert space.

• the CORE is based on an exact mapping form the original Hamiltonian to an
effective Hamiltonian, whose truncation error can be estimated numerically by
calculating higher orders in the expansion.

Finishing this section we point out that when the Hilbert space dimension is
reduced, the CORE provides a good description of the initial states in terms of
the renormalized states. In order to estimate the quality of the description of the
states from the constructed effective Hilbert space, one can use an overlap of the
lowest energy states |m〉 with the remnant states |φNm〉, when the range-N term in
the expansion is constructed. Note that both issues are related, as the closer the
truncated space is to the exact one, the smaller is the number of terms that should
be kept in the cluster expansion for a given error.
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7.2.3 Combining the CORE and the SDRT

In this section we provide the idea how to construct a real space renormalization
method for two dimensional disordered systems. The details concerning the accuracy
of the method are presented in section 7.3.

General idea of the method

The real space RG method we are about to introduce combines the SDRT to target
the clusters to be decimated as the ones with the biggest energy gaps and the CORE
as a tool to obtain the effective dynamics at a new scale.

To begin with we elaborate on the notion of a renormalization step. A single
renormalization step involves one single ladder of the whole lattice with its direct
neighborhood, which reflects the fact that each renormalization step is done locally
in the lattice. Before we explain how to target the ladder and how to renormalize
it, we point out that such renormalization step will preserve the initial rectangular
structure of the lattice. In Fig.7.1 we show how a 4× 4 lattice looks like before and
after the single renormalization step. The region that is involved in the renormal-
ization is marked with green color, the rest of the lattice remains unrenormalized
and marked black. Renormalization of the green region results in a chain of effective
particles (red dots in Fig. 7.1) and effective couplings either between these effective
particles (blue dashed lines in Fig. 7.1) or between the effective particles and their
uninvolved neighbors (red dashed lines in Fig. 7.1). Finally one is left with a 3× 4
rectangular lattice.

The choice of the ladder occurs according to the position of the local two spin
Hamiltonian with the biggest gap between the first an the second excited state.
Once this Hamiltonian is found, the whole ladder is renormalized. The criterion
of targeting the ladder is arbitrary, but might have an impact on the outcome of
the procedure for some Hamiltonians. For example one can target the ladder, which
contains a maximal number of local Hamiltonian with a rather big energy gap, albeit
the local Hamiltonians with a maximum energy gap does not belong to the ladder.
We leave the discussion of the different strategies of the ladder targeting as an open
question.

Every renormalization step (renormalization of a ladder with its direct neighbor-
hood) is a sequence of two basic renormalization transformations. In order to see
how these basic transformations enter the renormalization, we discuss the renormal-
ization of the ladder in more details. First, the ladder is decomposed into four-spin
blocks, such that some of the blocks form chains and some of them form plaquettes
(from Fig.7.2 a) to Fig.7.2 b)). The chain terms correspond to the interaction of
every rung (two spins) of the ladder to its nearest neighbors. The plaquette terms
describe interactions between two rungs inside the ladder. Note that every pair of
spins in the ladder (the rung) contributes to two plaquette terms and to one chain
term. After the decomposition, each term, representing one of the two basic lattice
substructures is renormalized separately using the CORE. This leads to a set of
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Figure 7.1. Single renormalization step: renormalization of one ladder
with its direct neighborhood in a 4 × 4 lattice (green colored spins and
bonds of the 4 × 4 lattice). Red dots are new effective 2-level systems,
which interact via effective couplings between each other (blue dashed
lines). Note that the ladder is not necessarily a column, it can be also
a row of the initial lattice.

Figure 7.2. Four essential constituents of the single renormalization
step: a) choice of the relevant ladder b) decomposition of the ladder
into 4 particle terms: plaquettes and chains c) renormalization of each 4
particle term via CORE d) averaging of the local effective terms (dashed
circles) and assembling of the effective Hamiltonians into a renormal-
ized lattice.
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effective 2 and 3 particle Hamiltonians (Fig. 7.2 c)). In the final step the effective
Hamiltonians are assembled to the renormalized Hamiltonian on the smaller lattice
(Fig. 7.2 d)).

The renormalization step can hence be summarized as follows:

1. Target the ladder with the biggest local energy gap.

2. Define the reduced Hilbert space by the lowest energy sector of every pair of
spins in the ladder and the rest of the untouched spins in the lattice.

3. Compute exactly the eigenvalues of the four spin problem (the hardest com-
putational step).

4. Obtain the Hamiltonian on the next scale and rescale the unit of distance and
energy.

Repeating renormalization steps, discussed above, will result in a renormaliza-
tion of the whole spin lattice. The effective Hamiltonian after renormalization will
contain less degrees of freedom as the initial one and will be defined on a coarse
grained (but still rectangular) lattice.

It is noteworthy that step 2. and 3. of the algorithm rely on an unusual imple-
mentation of the CORE method. In the introductory part we mentioned that CORE
makes use of a uniform blocking of the lattice (elementary blocks have the same form
because of the translational symmetry and used to construct the range-1 terms of
the Hamiltonian expansion). Since we now perform the renormalization transforma-
tion locally (translational symmetry does not apply in the presence of randomness),
we need to introduce a non-uniform blocking. The details of the non-uniform block-
ing will be discussed on an example in the next section, where a four spin chain is
renormalized. In Sec. III, we analyze the performance of the non-uniform blocking
in presence of disorder and take a particular type of two-body Hamiltonians which
describe spin−1/2 particles interaction via Ising type of interaction and exposed to
an external magnetic field in transversal direction.

Elementary steps for the successive renormalization transformation.

The elementary renormalization transformations of the four spin terms mentioned
above can be divided into two groups.

The first type is renormalization of a plaquette, that results in two new particles
and new coupling strengths between them (Fig. 7.3). We use the CORE to renormal-
ize spins in the plaquette configuration. Each pair forms an elementary cluster and
used to construct the range-1 term. The interaction between two effective particles
is given by the range-2 term.

The second type is a renormalization of 4 spins in a chain configuration (Fig. 7.4).
The latter introduces effective interactions to the neighboring spins that increase the
accuracy of the method. To use the CORE as it described in Fig. 7.4 we need to
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Figure 7.3. Renormalization of four spins in a plaquette configuration.
The renormalization transformation results in two new particles 1′ and
3′ and an interaction between them.

modify it. That is to say the size of the elementary clusters varies. We call this
way of implementation of the CORE - non-uniform blocking. Elementary clusters
are formed by central spins and spins on the boundaries. To construct the range-1
terms the initial Hilbert space of the boundary spins are kept, whereas the effective
Hilbert space of the central two spins is spanned by the ground state and by the
first excited state of the two spin Hamiltonian. The range-2 terms are achieved by
constructing the triangulation matrix, while the effective Hilbert space is a tensor
product of the Hilbert spaces of two boundary spins and the span of the two lowest
eigenstates of the Hamiltonian of two central spins. This modification reflects the
fact that the renormalization transformation is local in real space due to intrinsic
disorder of the system.

Figure 7.4. Renormalization of four spins in a chain configuration. The
renormalization transformation results in three particles 1, 2′ and 4.
The interaction between the particles is of the short range character
(only nearest neighbors interact).

7.3 Estimation of long distance and multi-spin interac-

tions

In order to investigate the performance of the elementary renormalization trans-
formations described briefly in section 7.2.3 we pick up a particular model that is
a 2D random transverse field quantum Ising model (RTFIM). The Hamiltonian of
the 2D RTFIM possesses Z2-symmetry that can be exploited in the renormalization
transformation and provides a special form of the effective Hamiltonian after each
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renormalization step (the same observations were made for the 1D Ising model in
[109]).

7.3.1 Z2-symmetry of the 2D Random Transverse Field

Ising Model

The 2D RTFIM is described by the Hamiltonian

H = −
∑

(ij)

Jijσ
z
i σ

z
j −

∑

i

hiσ
x
i (7.6)

where {Jij} are random interactions and the random transverse fields {hi} leading
to the quantum fluctuations. The specific form of the distribution will be defined
later.

As we explain in the introduction, this Hamiltonian has two different phases.
On the one hand, if the strength of the magnetic field is bigger than the interaction,
the system is in the quantum disordered phase. On the other hand, if the strength
of the interaction dominates over the magnetic field, the system is in the ordered
phase. The phase transition between these phases is described by an infinite disorder
quantum critical point. In the whole phase diagram, there is a global Z2-symmetry
of the Hamiltonian that any RG transformation should respect. Although this fact
is well known, it is also true that real space renormalization group transformations
always generate long-range and multi-spin interaction. The most simple and relevant
interaction that fulfills all the symmetries of our model is the random transverse field
Ising model (Eq. (6)). Nonetheless, in what follows we will see that more general
interactions are possible and, in fact, we will use a more general Hamiltonian (see
Eq. (8)) that still fulfills all the symmetry properties but can improve the accuracy
of the results.

This Hamiltonian is invariant under the transformation σzi → −σzi (Z2-
symmetry). The CORE has to preserve this symmetry so that the most general
form the renormalized Hamiltonian can take is

Heff = −
∑

{µ},i
g{µ}Ô

{µ}
i , Ô

{µ}
i = σµ1i σ

µ2
i+1 · · · σ

µn
i+n (7.7)

where i is the site index, {µ} = {µ1, . . . , µn} is the multi-index (µi ∈ {u, x, y, z})
and the g{µ}’s are the couplings.

Due to the Z2-symmetry of the model the only operators that can appear in
the one particle Hamiltonian in the cluster expansion are {σ0, σx}; in the two
particle nearest neighbor interactions, the symmetries allow terms of the form
{σzσz} from the Ising interaction and also {σxσx, σyσy} and the only three site
operators that can appear are: {σxσxσx, σxσzσz, σzσzσx, σzσxσz, σxσyσy, σyσyσx,
σyσxσy, σxσ0σx, σyσ0σy, σzσ0σz}. From the above discussion we conclude that the
Z2-symmetry puts certain constrains on the form of the range-N terms that can
appear in the expansion of the effective Hamiltonian (7.4).
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Exploiting the symmetry arguments we will investigate the relevance of the
range-3 and range-4 terms that remain in the expansion (7.4), when the renor-
malization follows the Z2-symmetry

HIsing
eff =

∑

i

h
(1)
i +

∑

<i,j>

h
(2)
i,j +

∑

<i,j,k>

h
(3)
i,j,k + · · ·

To achieve the task we will consider several scenarios of non-uniform and uniform
blocking in various toy models.

7.3.2 Chain of four spins

First of all we consider a chain of four spins, which after renormalization becomes
a chain of three spins (Fig. 7.5). (This step is an essential part of renormaliza-
tion transformation as discussed in section 7.2.3). The encircled pair of spins and
spins on the boundaries of the chain form the range-1 Hamiltonians. The effective
Hamiltonian consists of range-1, -2, and -3 terms.

Figure 7.5. Renormalization of four spins of the RTFIM in a chain con-
figuration using a non uniform blocking. The encircled pair of spins and
spins on the boundaries of the chain are used to form range-1 terms for
the effective Hamiltonian. The circles on the right hand side of the fig-
ure correspond to the range-1 terms in the effective Hamiltonian. These
circles are connected by the lines that correspond to range-2 terms.

Our goal here is to estimate the range-3 terms, which appear in the effective
Hamiltonian. There are 10 possible terms in the range-3 Hamiltonian that satisfy
the Z2-symmetry (see section 7.3.1). As our simulations show all this terms are
negligibly small in the presence of disorder. In Fig. 7.6 we present the XX (the
upper picture) and ZZ (the lower picture) couplings between the first and the third
particle of the renormalized chain. The initial couplings were uniformly distributed
on the interval [0, 1] and presented statistics were taken after testing 105 different
configurations. As one can see from the Fig. 7.6 the resulting distributions of both
XX and ZZ couplings are symmetric and centered at 0. The standard deviations
are 0.704 and 0.746 for XX and ZZ interactions respectively.

7.3.3 Ladder of six spins. Uniform blocking

In our next example we consider a ladder of six spins, that we transform to a chain
of three spins using the uniform blocking (Fig. 7.7). The encircled pairs of spins
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Figure 7.6. Renormalization of four spins of the RTFIM in a chain
configuration using a non-uniform blocking. (Left plot) XX coupling
between the first and the third particle. 〈σx ⊗ 1⊗ σx〉 = 0.041, σ(σx ⊗1 ⊗ σx) = 0.704. (Right plot) ZZ coupling between the first and the
third particle. 〈σz ⊗ 1⊗ σz〉 = 0.003, σ(σz ⊗ 1⊗ σz) = 0.746.

Figure 7.7. Renormalization of six spins of the RTFIM using a uniform
blocking. To form range-1 terms of the effective Hamiltonian the encir-
cled pairs of spins are used. The circles on the right hand side of the fig-
ure correspond to the range-1 terms in the effective Hamiltonian. These
circles are connected by the lines, that correspond to range-2 terms.

are taken to form range-1 terms in the expansion of the effective Hamiltonian. As
in the previous example the expansion will comprise up to range-3 terms.

In Fig. 7.8 we present the distributions of XX and ZZ coupling strengths
between the first and the third particle in the resulting chain. The initial distribution
was again a uniform distribution from the interval [0, 1] and we collected statistics
after testing 105 configurations. As in the previous example both of the resulting
distributions have a peak at 0 and standard deviations 0.500 and 0.0996 for XX
and ZZ interactions respectively.

7.3.4 Ladder of six spins. Non-uniform blocking

In the last example in this section we consider a ladder of six spins, that one trans-
forms to a plaquette of four spins using a non-uniform blocking (see Fig. 7.9). Two
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Figure 7.8. Renormalization of six spins of the RTFIM using a uniform
blocking. (Left plot) XX coupling between the first and the third parti-
cle. 〈σx ⊗ 1 ⊗ σx〉 = 0.064, σ(σx ⊗ 1 ⊗ σx) = 0.500. (Right plot) ZZ
coupling between the first and the third particle. 〈σz⊗1⊗σz〉 = 0.0003,
σ(σz ⊗ 1⊗ σz) = 0.0996.

encircled pairs of spins and two single spins are used to derive the range-1 terms of
the effective Hamiltonian. In this case the resulting Hamiltonian will contain also
range-4 terms. Our goal here is to show that range-4 terms present in the effective
Hamiltonian can be dropped.

Figure 7.9. Renormalization of six spins of the RTFIM using a non-
uniform blocking. To form range-1 terms of the effective Hamiltonian
the encircled pairs of spins and two single spins (the not encircled ones)
are used. The circles on the right hand side of the figure correspond
to the range-1 terms in the effective Hamiltonian. These circles are
connected by the lines, that correspond to range-2 terms.

In Fig. 7.10 we present statistics for two of the range-4 terms in the effective
Hamiltonian, that satisfy the Z2-symmetry of the Ising model. These terms are
σxσxσxσx and σZσZσZσZ . The mean value of both distributions can be with a good
approximation considered to be zero. The standard deviation is 0.823 and 0.240 for
the XXXX and ZZZZ term respectively.

Finally, we present analogous statistics for the corresponding range-3 terms (Fig.
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Figure 7.10. Renormalization of six spins of the RTFIM using a non-
uniform blocking. (Left plot) XXXX plaquette coupling of the range-4
term. 〈σx⊗ σx⊗σx⊗ σx〉 = 0.024, σ(X ⊗X ⊗X ⊗X) = 0.823. (Right
plot) ZZZZ plaquette coupling of the range-4 term. 〈σz⊗σz⊗σz⊗σz〉 =
0.001, σ(σz ⊗ σz ⊗ σz ⊗ σz) = 0.240.

7.11). These terms correspond to the next nearest neighbor interactions in the
renormalized model. We can compare these results with the results of the previous
section, where we considered the transformation of the six spin ladder to a three
spin chain. The mean value here is 0.034 for XX and 0.032 for ZZ interaction. The
corresponding standard deviation is 0.835 and 0.805 for XX and ZZ interactions
respectively.

Figure 7.11. Renormalization of six spins of the RTFIM using a non-
uniform blocking. (Left plot) XX coupling between the first and the
third particle. 〈σx ⊗ 1⊗ σx ⊗ 1〉 = 0.034, σ(σx ⊗ 1⊗ σx ⊗ 1) = 0.835.
(Right plot) ZZ coupling between the first and the third particle. 〈σz ⊗1⊗ σz ⊗ 1〉 = 0.032, σ(σz ⊗ 1⊗ σz ⊗ 1) = 0.805.

From the presented examples we conclude that one can apply the non-uniform
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blocking to perform the renormalization transformation locally in the real space. Our
numerical results show that the range-3 and range-4 terms are small and average out
and therefore can be neglected in further considerations. Indeed, as it can be seen
from our numeric, there are equal number of couplings with negative and positive
signs. These contributions cancel each other in average. Since a priori no particular
distribution of initial couplings was assumed, this fact substantiates the assumption
that in the case of appropriate, by means of [127], distribution of couplings the
contribution from the long-range interactions to the effective Hamiltonian becomes
negligible.

It could, for example, happen that the encircled pair of spins has a non-
degenerate ground state and a double degenerate first excited state. This is true if
for example both local magnetic fields are much stronger than the coupling. Such
situation is unfavorable for the construction of a range-1 term in the expansion of
the effective Hamiltonian, since in every range-1 term we keep two states. This, as
we believe, is the main source of errors that cause a rather big variance of the distri-
butions of the strengths of range-3 and range-4 terms presented in this section. Now
if we assigned a particular coupling strength to each bond and a particular magnetic
field to each spin on the lattice, we would avoid the error, and the all range-3 and
range-4 terms would turn exactly to zero, which is illustrated by the fact that all of
them have an arbitrarily small mean value.

In the renormalization transformation, introduced in this chapter, one chooses
a particular part of a lattice (a ladder), that corresponds to a suitable distribution
of couplings and magnetic fields. According to previous numerical evidence, this
choice allows to write the resulting Hamiltonian after every renormalization step in
the form, which contains only range-1 and range-2 terms

Heff = −
∑

〈i,j〉

(

Jzijσ
z
i σ

z
j + Jxijσ

x
i σ

x
j + Jyijσ

y
i σ

y
j

)

−
∑

i

hiσ
x
i (7.8)

with nearest neighbors interactions J and local magnetic fields hxi .

Summarizing Subsections B, C and D we point out that the sharp form of the
distributions of the long-range terms in Figs. 6, 8, 10, 11 indicates that our method
can be applied to the disordered transverse field Ising model. Our conclusion relies
on the applicability of the SDRT for two dimensional systems and its exactness
in one dimensional systems. However, there is neither theoretical nor numerical
justification for dropping out these terms in our method for general type of two-
body Hamiltonians. Rigorous treatment of these terms for Ising type of interaction
as well as for general type of two body interaction will be left as an open problem.

7.3.5 Renormalization of the basic constituent of the ladder

and flow for consecutive steps

In the last part of this section we investigate the performance of the renormalization
transformation applied to a toy model, which is a basic constituent of a ladder. In
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Figure 7.12. The basic constituent of the renormalization step: two 4-
spin chains, whose central spins are coupled. The renormalization in-
volves two central spins of both chains and results in two new spin-12
particles (red circles) and five effective interactions (blue dashed lines).

other words we investigate the basic constituent of the renormalization step, as it is
described in section 7.2.3.

The toy model is presented in the Fig. 7.12. Two chains of four spins are
coupled such that the central spins form two rungs of a ladder. The renormalization
transformation involves two rungs, while the boundary spins are kept untouched.
The basic renormalized systems consists of six particles that interact as shown in
Fig. 7.12. Red circles correspond to effective particles that originate from clustering
of two central spins of both chains.

In the Fig. 7.13 we compare the spectra of the initial model (with eigenvalues
λexactn ) and the model after the renormalization (with eigenvalues λeffn ) and we define

the absolute error as en = |λexactn −λeffn |
λexactn

. The absolute error for the first gap is smaller

than 10−3. The error grows slightly, as one considers higher energy levels and is of
the order of 6 · 10−3 for the fourth gap. From this observation we conclude that
the low energy levels of the initial Hamiltonian are reproduced with a very good
accuracy.

So far we have analyzed one component of our suggested renormalization pro-
cedure, the statistical properties of the non-uniform CORE method as applied to
several typical local lattice systems. We now turn to the statistical properties of
the renormalization procedure if all steps are put together, including a choice of
ladder to be renormalized, i.e., in the following we subsequently apply non-uniform
CORE renormalization steps to ladders that are selected according to the size of the
gaps. This procedure implies a concatenation of several renormalization steps, as
performed on the local effective systems. Repeating renormalization steps causes a
renormalization flow of the (statistical) distribution of coupling strengths. The flow
of the couplings is then subject to statistical analysis.

We demonstrate the method using the example of the Ising Hamiltonian with
uniform random couplings (as before in the analysis of the local steps) on a 4 × 4
rectangular lattice. In spite of small size lattice it is possible to perform three
consecutive renormalization steps.

Fig. 7.14 depicts the development of the variance of the initial distribution over
three successive renormalization steps. We observe a broadening of the distributions.
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Figure 7.13. Renormalization of eight spins of the RTIM using a non-
uniform blocking. Histograms of the error in the first eigenvalues be-
tween the effective Hamiltonian and the exact Hamiltonian. The mean
values of the errors that appears in the plots are: first gap (2 · 10−4),
second gap (1.4 · 10−3), third gap (1.4 · 10−3), fourth gap (2 · 10−3).

The final outcome, as we believe, indicates a broadening of the initial (in our example
uniform) distribution of local magnetic fields and coupling strengths, caused by the
renormalization. Therefore, the results presented in Fig. 7.14 indicate that the
defined RG method flows towards the infinite randomness fixed point for Ising type
of interaction in the Hamiltonian.

7.4 Conclusion

We have introduced a renormalization transformation for disordered systems on 2D
lattices that preserves the geometry of the underlying rectangular lattice. The trans-
formation is done using the real space renormalization group method CORE with
non-uniform blocking. We tested the ability of the non-uniform blocking on the ran-
dom Ising Hamiltonian. Our numerical tests showed that the ferromagnetic random
Ising model is self-similar, i.e. it can be described again by an Ising model with
nearest neighbor interactions and local magnetic fields. This fact is in agreement
with the conjecture proposed in the Ref. [164]. Furthermore we argue that there
is a rigorous analytical form of the introduced renormalization transformation and
that the renormalization flow has a certain fixed point.
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1 2 3
RG STEPS

0.1

0.15

0.2

0.25
VARIANCE

Figure 7.14. RG evolution of the width of the field distribution (red
color) and bond distributions (blue color) for a typical case. The RG
evolution is in the direction of decreasing number of spins. Although no
conclusive, the increasing width indicates the RG flow towards infinite
randomness.

We close this chapter by mentioning that the method presented in this chapter
offers itself to go beyond the usual randomness and investigate models possessing a
spin glass phase[165, 166, 170, 174]. Also, since Hamiltonian of a spin model can
be used to investigate entanglement properties of the model [173, 67], our method
provides also a tool for studying the entanglement in 2D disordered quantum spin
models.
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[67] O. Gühne, G. Tóth, Physics Reports, 474, 1 (2009).

[68] M. D. Reid, P. D. Drummond Phys. Rev. Lett., 60, 2731 (1988).

[69] L.-M. Duan, G. Giedke, J. I. Cirac, P. Zoller Phys. Rev. Lett., 84, 2722 (2000).

[70] R. Simon, Phys. Rev. Lett., 84, 2726 (2000).

[71] H. F. Hofmann, S. Takeuchi Phys. Rev. A, 68, 032103 (2003).

[72] H. F. Hofmann, Phys. Rev. A, 68, 034307 (2003).

[73] M. Barbieri, F. De Martini, G. Di Nepi, P. Mataloni, G. M. D’Ariano, C. Mac-
chiavello, Phys. Rev. Lett., 91, 227901 (2003).

[74] O. Gühne, private communications

[75] J. S. Bell, Physics, 1, 195 (1964).

[76] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, Phys. Rev. Lett., 23, 880
(1969).

[77] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, Phys. Rev. Lett., 24,
549(E) (1970).



126 Bibliography

[78] J. F. Clauser, M. A. Horne, Phys. Rev. D, 10, 526 (1976).

[79] B. S. Cirel’son, Lett. Math. Phys., 4, 93 (1980).

[80] M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Monroe,
D. J. Wineland, Nature, 409, 791 (2001).

[81] V. Vedral, M. Plenio, M. A. Rippin, P. L. Knight, Phys. Rev. Lett, 78, 2275
(1997).

[82] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys.,
81, 865 (2009).

[83] M. J. Donald, M. Horodecki, O. Rudolph, J. Math. Phys., 43, 4252 (2002).

[84] G. Vidal, R. F. Werner, Phys. Rev. A, 65, 032314 (2002).

[85] S. Hill, W. K. Wootters, Phys. Rev. Lett., 78, 5022 (1997).

[86] W. K. Wootters, Phys. Rev. Lett., 80, 2245 (1998).
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