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Abstract

The empirical testability of the Kochen-Specker theorem is a subject of ongoing

debate. We address this question from a quantum mechanical as well as a classical

(hidden-variable) perspective. To this end, we perform explicit quantum mechan-

ical analyses of the noise-tolerance of Kochen-Specker tests, quantifying the de-

gree of violation of noncontextuality inequalities in terms of measurement-induced

noise. Furthermore, we find classical models capable of violating noncontextuality

inequalities despite being arguably noncontextual, by means of introducing spe-

cific incompatibilities into ostensibly compatible measurements. We then resolve

this problem via the introduction of a generalized notion of contextuality appli-

cable to a system’s evolution as opposed to measurements performed on a system

in a fixed state. We then obtain inequalities that are obeyed by noncontextu-

ally evolving systems, but are violated by quantum mechanics; furthermore, this

violation is experimentally accessible and implies the Kochen-Specker theorem.
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Chapter 1

Introduction and Motivation

Noncontextuality may be understood as the idea that properties—of an object,

a physical system, or even a theory—should stand on their own, i.e. be inde-

pendently fixed; that for every given property, one can in principle uniquely and

definitely determine whether or not some object has that property.

Take, for instance, the property of having a certain color: of any object in our

everyday experience, we can definitely say whether or not it has the property of,

say, being blue. Indeed, this ability is to a large extent what defines the usual

notion of objecthood: any object can in principle be uniquely identified via a

list of all its properties. If that list were sufficiently detailed, the object could

be recreated anytime, anywhere, from nothing but that list, and a supply of the

necessary raw materials. Let us concretely imagine that list as simply containing

the answers to the question ‘does the object have property x?’ for all possible

properties, which may be represented as simply a string of 1s and 0s. In this

sense, the list contains all of the object’s information.

That in the quantum world, there are no such lists, is one way of express-

ing the content of the Kochen-Specker theorem. Basically, it asserts that, if

quantum mechanics—which famously only gives probabilistic predictions for any

observation—were to be completed with so-called hidden variables in order to

explain its inherent indeterminism as merely a lack of information about the true

fundamental parameters, these hidden variables would have to be contextual: if

each property of a quantum system is to be made definite, then this can only be

done in a way such that the assignment of values to every property depends on
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the context, i.e. on what other properties are investigated simultaneously.

To understand this, one must first recall that, according to quantum mechanics,

no list of properties can be complete, since not all can be observed simultaneously.

This is essentially the content of Heisenberg’s uncertainty theorem. However, the

same property—the same observable—may be co-measurable with different sets

of observables, i.e. may be observable in different contexts.

For a macroscopic analogy, consider a ball drawn from a set of balls which differ

along certain characteristics, for instance size: they can be either small or large,

mass: they can be either heavy or light, and color: they can be either green or

red. Let us stipulate the following correlations between the properties:

1. whenever color and size are measured together, the outcome is either that

the ball is green and small, or that it is red and large, with equal probability;

2. whenever size and mass are measured together, we find a ball that is either

small and heavy, or large and light, where both results are again equiprob-

able; and

3. whenever mass and color are measured together, each ball is heavy and red,

or light and green, again with the same probability.

Clearly, these assignments are consistent in the sense that whenever a random

ball is chosen, it will have a probability of 1
2

to be green (or red), small (or large),

and heavy (or light). However, if we try to observe all three possible properties

at the same time, a contradiction arises: the property ‘being green’ is perfectly

correlated with ‘being small’, which, is perfectly correlated with ‘being heavy’;

however, ‘being heavy’ is perfectly correlated, in turn, with ‘being red’ !

This means that there exists no joint probability distribution for all the proper-

ties of the balls that marginalizes to the distributions for sets of two properties

as defined in 1.-3.; even though those distributions marginalize to perfectly con-

sistent single-property probability distributions, such that looking only at those

properties by themselves, one would never have noticed anything strange!

The problem discussed above is known as the marginal problem, the question of

whether or not it is possible to find, for a given set of probability distributions,
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a common joint distribution that marginializes to these distributions, and our

example is a variant of the simplest setting in which its answer is negative [1].

In the setup we have presented, any two properties are simultaneously observable,

i.e. compatible. However, as we have seen, it is something very different to observe

a ball’s color in one context with its mass, than it is to observe it in one context

with its size! It is now the main lesson of the Kochen-Specker theorem that

if quantum system are to have definite properties at all, then they are like the

properties of our hypothetical balls, rather than like the classical macroscopic

properties that one can collect in lists.

But does the Kochen-Specker theorem apply to nature? That is, can we actually

perform an experiment demonstrating the noncontextual nature of reality—is

there actually an appropriate urn from which to draw the balls, so to speak—,

and if so, will the quantum mechanical predictions, or classical expectations be

supported by this experiment?

These questions and related ones have recently attracted much attention (e.g.

[24, 25, 26, 28, 32, 38, 39, 44]), as well as caused a certain amount of controversy

([47, 48, 49, 53, 54, 56, 61]). However, great strides have already been made

on the experimental front, using photons ([41, 34]) and neutron interferometry

([42, 43]) to exhibit quantum violations for specific quantum states, and even in

a state-independent way using sequential measurements on trapped ions [45].

Nevertheless, important open questions still remain. In this thesis, we will

be specifically concerned with the so-called problem of compatibility [44, 66]:

roughly, measurements in the real world are never perfect; but perfect com-

patibility requires perfect measurements (otherwise, noise effects and accidental

couplings to the environment may spoil compatibility), and thus, the notion of

contextuality as introduced above does not directly apply. We will attempt to

take a step towards resolving this issue.

First, after having provided a brief overview of the theory and history of the sub-

ject in chapter 2, in chapter 3 we discuss the behaviour of Kochen-Specker tests

under various models of quantum-mechanical noise. This provides bounds on

the minimum experimental quality needed in order to theoretically expect to be

able to observe the quantum-mechanical violation of noncontextual inequalities,

and thus, the results obtained therein may be used to gauge the likelihood with
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which an observation of the violation of noncontextuality is genuinely quantum

mechanical in nature.

Then, in chapter 4, we attack the problem from the other side, concentrating on

finding explicit models of hidden-variable dynamics that are capable of induc-

ing violations of noncontextuality inequalities by randomly changing the hidden-

variable state after measurement. The randomness of this change means that it is

independent of the measurement context, and in this sense, such models may be

considered ‘noncontextual’. These models are inspired by considering the actual

measurement process: every measurement necessitates an interaction with the

measured system; this interaction may introduce arbitrary disturbances on the

hidden variable level, over which we have no control. In real experiments, this

would show up in the form of measurement errors, i.e. deviations from the ideal

quantum mechanical predictions.

Chapter 5 then considers a way out of these troubles by introducing a novel no-

tion of noncontextuality, applicable not to the state, but rather, to the evolution

of a system as a whole. This notion is independent of the compatibility of observ-

ables, and thus, defined even in the presence of violations of compatibility, i.e.

in real experiments. As we explicitly demonstrate, inequalities obeyed by non-

contextually evolving systems are violated by quantum mechanics, yet obeyed

by the models that were found to violate Kochen-Specker inequalities in chapter

4. Since furthermore, violation of noncontextual evolution implies a violation of

Kochen-Specker noncontextuality, because the Kochen-Specker notion of noncon-

textuality is a special case of the notion of noncontextual evolution, experimental

verification of such a violation directly implies the validity of the Kochen-Specker

theorem.

Finally, in chapter 6, we give a brief summary of the results, consider their

implications and point to possible future applications.
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Chapter 2

Theory and Background

Since its inception in the beginning of the 20th century, quantum mechanics has

been subject to continuous discussion and controversy. In this chapter, we will

give both a historical and technical overview of some particular aspect of this

controversy, namely, the possibility of completing quantum mechanics with so-

called hidden variables. In particular, we will focus on so-called ‘no-go’ theorems,

which may be used to put empirical limits on any possible completions. We will

gradually work our way towards the Kochen-Specker theorem and examine the

question of its experimental testability.

2.1 The Completeness of Quantum Theory

In contrast to classical theories, quantum mechanics provides fundamentally prob-

abilistic predictions. Thus, the question of the completeness of quantum theory

arises: in analogy to classical theories, one might suppose that probabilities only

enter into the theory because of our ignorance of the true, fundamental kinematics

and/or dynamics. This may be called the ignorance interpretation of quantum

probability. In order to yield a complete description of reality, quantum me-

chanics would then have to be supplemented by additional parameters, so-called

hidden variables.

This question has been raised most famously by A. Einstein, B. Podolsky and N.

Rosen (abbreviated EPR) in 1935 [2] (brought into the form most familiar today,
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2.1 The Completeness of Quantum Theory

referring to spin-entangled electrons, by D. Bohm and Y. Aharonov in 1957 [3]).

EPR define the following condition of completeness :

Every element of the physical reality must have a counterpart in

the physical theory. ([2])

Thus, their conception of completeness rests on the notion of elements of reality.

On these, they say the following:

If, without in any way disturbing a system, we can predict with

certainty [...] the value of a physical quantity, then there exists an

element of physical reality corresponding to this physical quantity.

(Ibid.)

Their argument then is simple, yet striking: according to Heisenberg’s uncer-

tainty principle, if the observables corresponding to two physical quantities A

and B do not commute, i.e. [A,B] 6= 0, both quantities cannot simultaneously

be measured to arbitrary accuracy. However, they set up an example of two

physical systems which, having interacted in the past, must be described by a

simultaneous, entangled wave function. They then explain that by measurements

on one of the systems, i, the other, ii, may be left in an eigenstate of either of two

observables, even if they fail to commute. Hence, by their criterion, since system

ii is not disturbed during the measurement, both observables must correspond to

an element of physical reality—while naively, the uncertainty principle seems to

allow definite reality for at most one of the observables. Thus, they conclude,

quantum mechanics must be incomplete1. EPR end their discussion with the

words:

While we have thus shown that the wave function does not provide

a complete description of the physical reality, we left open the question

of whether or not such a description exists. We believe, however, that

such a theory is possible. (Ibid.)

1Actually, they discuss another option: assigning simultaneous reality to two quantities only

when both can be simultaneously measured or predicted. However, this would make the reality

of a quantity dependent on the measurement, which they discard on the basis that this could

not be permitted by any ‘reasonable’ definition of reality.
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2.1 The Completeness of Quantum Theory

This further question had, in fact, already been tackled by von Neumann in 1932

[4], in his seminal work on the mathematical foundations of quantum mechanics.

In it von Neumann purported to answer this question in general, and in the neg-

ative: no completion of quantum mechanics through the introduction of hidden

variables is possible. However, in 1966, J. S. Bell pointed to a critical short-

coming of the argument [5]. It is instructive to briefly review his version of von

Neumann’s theorem in order to build a foundation for different ‘no-go’-theorems

to be discussed later.

Consider two observables A and B of a system, represented in QM by self-adjoint

operators (which we will not notationally distinguish from the observables them-

selves). Then, there exists an observable C such that C = αA + βB, and

if 〈A〉 and 〈B〉 denote the expectation values of A and B respectively, then

〈C〉 = α〈A〉 + β〈B〉 is the expectation value of C. A hidden-variable theory now

is committed to the simultaneous existence of definite values v(A), v(B) and v(C)

for all three observables (an assumption often referred to as value definiteness).

Then, one would expect (and von Neumann requires) that v(C) = αv(A)+βv(B).

But this is generally impossible: let A = σx, B = σy, and C = 1√
2
(σx + σy), with

σi denoting the familiar Pauli matrices. Then, v(A), v(B) and v(C) may all be

either of ±1. But ±1 6= 1√
2
(±1 + ±1).

However, as Bell explicitly shows, it is possible after all to construct a hidden-

variable description of a two-level quantum system. Thus, von Neumann’s ar-

gument must be in error. In fact, the problem lies with the assumption of the

additivity of expectation values for all observables. While this is a property of

quantum mechanics, there is no reason to require it of the hidden-variable theory,

and Bell’s explicit model possesses it only for commuting observables. Bell levels

the same criticism at a variant of von Neumann’s theorem proposed by Jauch

and Piron in [6].

The question of the possibility for a completion of quantum mechanics received its

most famous (partial) answer in 1964 by, again, Bell [7]. He proved what today is

known simply as Bell’s theorem, to wit, that if such a more complete description

exists, it cannot be local, i.e. dependent only on the events in a system’s past

lightcone, and agree with quantum mechanics in all instances. To this day, this

result forms the paradigm example of a ‘no-go’ theorem.

Bell’s argument proceeds from the Bohm-Aharonov version ([3]) of the EPR
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2.1 The Completeness of Quantum Theory

paradox. Consider two two-level quantum systems, for concreteness to be thought

of as two spin-1
2

particles whose spin σ is measured along some direction n. If the

system is prepared in the singlet state |Ψ−〉 = 1√
2
(|↑I ↓II〉 − |↓I ↑II〉, then, if the

spin of particle i is measured along the direction n, measurement of ii along the

same direction will yield the opposite value, i.e. measurement of σI ·n yielding 1

implies measurement of σII · n yielding −1. This corresponds to the framework

of EPR’s original argument [2].

Any more complete description, provided by hidden variables collectively denoted

λ ∈ Λ, must then match this behaviour. Take two observers, A and B, each in

possession of one of the two particles comprising the EPR pair. Each measures

the spin of their particle along some direction, denoted a and b. Thus, the

outcome of each experiment must then be determined by a and λ, respectively

b and λ, i.e. A = A(a, λ) ∈ [−1, 1] and B = B(b, λ) ∈ [−1, 1]. If now p(λ) is

the probability distribution of the hidden variables, we can write the expectation

value of their product as

〈AB〉 HV
=

∫
Λ

dλp(λ)A(a, λ)B(b, λ), (2.1)

which must equal the quantum prediction

〈AB〉 QM
= −a · b. (2.2)

From these preliminary considerations, Bell then derives an inequality that all

models of this kind (collectively denoted local realistic) have to obey. This original

‘Bell inequality’ is

1 + 〈BC〉 ≥ |〈AB〉 − 〈AC〉| (2.3)

The great importance of Bell’s theorem then derives from the fact that utilizing

such an inequality, the question of the completion of quantum mechanics by (lo-

cal) hidden variables becomes accessible to experiment: local realism necessitates

a deviation from quantum mechanical predictions in certain situations.

However, Bell’s original inequality is not well suited to experiment, since it does

not apply in the presence of possible non-detections (i.e. measurements which

yield neither +1 nor −1). To this end, Clauser, Horne, Shimony and Holt in 1969

proposed an alternative version, known after their initials as the CHSH-inequality
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2.2 The Kochen-Specker Theorem

[8]:

〈χCHSH〉 = 〈AB〉 + 〈BC〉 + 〈CD〉 − 〈DA〉 ≤ 2 (2.4)

This inequality, like Bell’s original one, holds for all local realistic models. But if

the EPR pair is in the state

|Φ+〉 =
1√
2

(|00〉 + |11〉), (2.5)

then, choosing the observables A = σx ⊗ 11, B = − 1√
2
11 ⊗ (σz + σx), C = σz ⊗ 11

and D = 1√
2
11⊗(σz−σx)) (where 11 is the 2×2 unit matrix) yields 〈χCHSH〉 = 2

√
2

(which value is indeed the maximum attainable for quantum mechanics, known

as Tsirelson’s bound [9]).

With this framework in hand, the first experimental test of a Bell inequality

was carried out by Freedman and Clauser in 1972 [10]. Today, the quantum

mechanical violation of Bell inequalities is widely accepted, thanks to experiments

performed by Aspect and collaborators in 1981-82 [11, 12, 13], and to the 1998

experiment by the group of Zeilinger [14], thus establishing the consensus that

local realistic completions of quantum mechanics are indeed ruled out.

2.2 The Kochen-Specker Theorem

It is instructive to inquire into the reason why quantum mechanics violates Bell in-

equalities. A necessary requirement for Bell-inequality violation is entanglement :

only states that cannot be written as a tensor product of (pure) subsystem states,

i.e. |ψent〉 6= |ψ1〉 ⊗ |ψ2〉, may exceed classical bounds. But this is not sufficient:

there exist entangled states2 which nevertheless do not violate any Bell inequality

[15, 16]. Thus, non-locality is a property of certain states only. But entanglement

is a phenomenon seemingly remote from everyday existence, and therefore one

might be tempted to ‘shrug off’ the implication of Bell’s theorem, maintaining

that it is of little consequence for most practical purposes. Hence, it would be

interesting to investigate whether quantum mechanics as a whole, rather than

just some quantum-mechanical states, deviates from classical predictions.

2However, these states have to be mixed—all pure entangled states violate a Bell inequality

[17, 18].
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2.2 The Kochen-Specker Theorem

The first step towards just such a result was established by Gleason in 1957 [19].

He proved that on any Hilbert space of dimension greater than three, the only

suitable probability measures are given by the density matrices, i.e. that if Πi

is some projector, µ(Πi) = Tr(Πiρ), where Tr denotes the trace operation. This

is of course nothing else but Born’s rule. That in this work lies the germ of an

exceptionally strong no-go theorem was first realized by Bell in 1966 [5], who

proposed it as a stronger replacement of von Neumann’s result consequent on his

critique thereof. Earlier, in 1960, Specker had considered similar ideas [20].

As Bell argues, the important feature of Gleason’s work with respect to the

hidden-variable program is that, since the probability measure provided by den-

sity matrices is continuous, any assignment of probabilities to properties of some

quantum system (represented by projection operators Πi) must be continuous.

However, in a hidden-variable description, only two distinct values, correspond-

ing to the projectors’ eigenvalues 0 and 1, which may be interpreted as truth

values indicating whether a system possesses a certain property, can occur. Thus,

the hidden-variable mapping necessarily contains discontinuities (cf. [21]), and

as Bell showed, this entails that two states receiving different values cannot be

arbitrarily close together. More explicitly, together with the nonexistence of

dispersion-free states3, Gleason’s theorem may be used to demonstrate the nonex-

istence of a lattice homomorphism between P(H), the lattice of closed linear

subspaces of Hilbert space, and the two-element Boolean algebra B2 ([22]).

Bell then proceeds to subject his theorem to the same sort of criticism he had

previously levelled at von Neumann’s and Piron and Jauch’s argument. His

crucial conclusion:

It was tacitly assumed that measurement of an observable must

yield the same value independently of what other measurements may

be made simultaneously. ([5], p. 451)

The same spirit is present in [20], where Specker considers ‘non-simultaneously

decidable propositions’. This assumption is nowadays generally referred to as

non-contextuality : the requirement that the question of whether a system has

a certain property can objectively be decided without taking into account what

3A dispersion-free state is a state ρ such that the dispersion σ(O) = 〈O2〉 − 〈O〉2 vanishes

for all operators O.
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2.2 The Kochen-Specker Theorem

other questions are asked (i.e. measurements are performed) simultaneously.

Like locality, which it supplants in the present formulation, this seems a sensible

requirement, and it is certainly fulfilled for all familiar, macroscopic objects.

The theorem Bell considered in his 1966 paper was given an independent and more

definite formulation in 1967 by Kochen and Specker [23]. Their presentation relies

on the same crucial insight as Bell’s: that rays in Hilbert space having different

assignments of the truth values 0 and 1 cannot be arbitrarily close to each other.

However, the virtue of their argumentation lies in the explicit construction of

a set of rays which, if arranged into a graph such that vertexes corresponding

to orthogonal rays are joined by an edge, is not true-false colorable, i.e. for

which there does not exist a consistent simultaneous assignment of truth values.

Basically, while Bell shows that the quantum-mechanical relation S2
x +S2

y +S2
z =

2 · 11, where the Si are the spin observables of a spin-1 particle, cannot always be

satisfied using non-contextual hidden variables, Kochen and Specker exhibit an

explicit—and most importantly, finite—set of vectors, such that not all of them

can fulfill this relation simultaneously.

Before presenting the proof of the theorem, let us first briefly consider its rela-

tionship to Bell’s 1964 one. Roughly, the Kochen-Specker theorem replaces Bell’s

assumption of locality with an assumption of non-contextuality. It is easy to show

that in certain instances, non-contextuality implies locality [24]: if some observ-

able A can be measured in conjunction with compatible observables B,C, . . . as

well as L,M, . . ., and this can be implemented in such a way that the system may

be partinioned into subsystems such that only local manipulations are necessary

to implement measurement of either context on either part of the system, then we

have the notion of locality as used in Bell’s theorem. Furthermore, any Bell in-

equality can be turned into a Kochen-Specker inequality [25]. Non-contextuality

then may be viewed as being more general, and local realistic theories are a

subset of non-contextual ones [26]. Also, as will be shown, proofs of the con-

textuality of quantum theory can be given that do not rely on any specific state

being prepared, and thus, are said to be ‘state-independent’. In particular, no

entanglement is necessary to violate non-contextuality4.

4In fact, in their original paper ([23]), Kochen and Specker consider a single-particle real-

ization of their argument.
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2.2 The Kochen-Specker Theorem

2.2.1 Kochen and Specker’s Original Proof

We will begin by briefly discussing the original proof by Kochen and Specker

of their eponymous theorem. This proof, while more involved than more recent

examples, is instructive in the sense that it is the original example of the ‘coloring

game’ type of proof of the Kochen-Specker theorem. We will here mainly follow

the presentation in [27].

Figure 2.1: G1: Ten propositions ai, where simultaneously nonsatisfiable ones are

linked by an edge.

Consider first the graph G1 in Figure 2.1. For the moment, we will consider it as

simply having at its vertices certain classical propositions ai, which are linked by

an edge {i, j} if ai and aj are mutually exclusive, i.e. cannot be both true at the

same time. Thus, every edge represents again a proposition:

bi,j = ¬(ai ∧ aj), (2.6)

where ¬ stands for negation, and the wedge ∧ represents the logical and. Thus,

this proposition is true exactly if at least one of ai and aj is false. Similarly, the

three triangles in the graph again represent new propositions:

cijk = ai ∨ aj ∨ ak, (2.7)

where ∨ denotes the logical or. These propositions are evidently true whenever

at least one of ai, aj, or ak is true. Call E1 the set of all pairs {i, j} such that

12



2.2 The Kochen-Specker Theorem

ai and aj are linked by an edge, and similarly T1 the set of all triples {i, j, k}
such that ai, aj and ak form a triangle in G1. Now consider that the whole graph

represents the following proposition, which is merely the conjunction of all edge

and triangle propositions:

g1 = b1,2 ∧ b1,3 ∧ b1,9 ∧ b2,4 ∧ b2,6 ∧ b3,5 ∧ b3,7 ∧ b4,6 ∧ b4,8 ∧ b5,7 ∧ b5,8
∧b6,7 ∧ b8,9 ∧ b8,10 ∧ b9,10 ∧ c2,4,6 ∧ c3,5,7 ∧ c8,9,10 (2.8)

≡
∧

{i,j}∈E1

bij ∧
∧

{i,j,k}∈T1

cijk

It is now not difficult to see that the truth of g1, i.e. g1 = 1, together with the

truth of a1, implies the truth of a10: if we assume to the contrary that g1 = a1 = 1,

but a10 = 0, the truth of b1,2, b1,3, b1,9 and b8,10 imply that a2 = a3 = a9 = 0,

and thus, a8 = 1, since c8,9,10 = 1. But this implies a4 = a5 = 0 (because

b4,8 = b5,8 = 1), and hence, a6 = a7 = 1, since c2,4,6 = c3,5,7 = 1 (and we have

shown that a2 = a3 = a4 = a5 = 0). But this obviously contradicts b6,7 = 1; see

also the coloring in Figure 2.1.

Figure 2.2: G2: Graph of 117 propositions, where two propositions are again

linked by an edge if they cannot be simultaneously satisfied. Note the identifica-

tions p = a1, q = a9, and r = a41

13



2.2 The Kochen-Specker Theorem

Consider now the graph G2 in Figure 2.2, composed of 15 copies of G1. From G2,

we can construct a proposition g2 analogous to the way g1 was constructed from

G1:

g2 =
∧

{i,j}∈E2

bij ∧
∧

{i,j,k}∈T2

cijk, (2.9)

where E2 and T2 are respectively the edge- and triangle-set of G2. Using the prior

result that a0 = 1 implies a9 = 1 (and similarly, a17 = 1 and so on), it is not

hard to show that g2 is always false. Consider the triangle {a1, a9, a41} in Fig.

2.2. Since c1,9,41 = 1, at least one of them must be true. Suppose thus a1 = 1.

Then, a10 = 1, a18 = 1, a26 = 1, a34 = 1, and finally, a41 = 1. However, this

contradicts b1,41 = 1. Thus, since we can perform the same construction starting

from a9 or a41, the proposition g2 is never satisfiable; alternatively, one says that

the graph G2 is not true/false colorable, i.e. there is no consistent attribution of

truth values to the vertices.

The crux of the proof is now this: it is possible to find propositions referring

to the state of some quantum system such that g2 is satisfied. Essentially, this

means that it is not possible to specify for a quantum system simultaneously all

of its properties: we can read the propositions ai as ‘has property ai’, and, as

was just discussed, no assignment of truth values to the propositions exists that

makes g2 true.

We will only sketch here how such a set of propositions can be found. First,

consider the spin-observables of a spin-1 system:

Sx =
1√
2

0 1 0

1 0 1

0 1 0

 , Sy =
1√
2

0 −i 0

i 0 −i
0 i 0

 , Sz =

1 0 0

0 0 0

0 0 1

 (2.10)

The observables built from the squares of these operators, i.e. S2
x, S2

y and S2
z ,

pairwise commute and fulfil S2
x + S2

y + S2
z = 2 · 11. Thus, they are co-measurable

for a specific set of directions x, y, z in space, and exactly two will have eigenvalue

1. Now it is possible to map the propositions ai to directions in space xi such

that g2 = 1; this then constitues the proof of the Kochen-Specker theorem.

In particular, the directions are chosen such that xi, xj correspond to an edge of

G2 if they are orthogonal directions in space; then, since only one of S2
xi

and S2
xj

can have eigenvalue zero, it follows that every bij necessarily is true. Similarly,
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2.2 The Kochen-Specker Theorem

because for two out of three orthogonal directions, the square of the angular

momentum must be one, every cijk must also be true; but then, g2 is true, despite

being classically false.

The problem of finding such directions can be considered as the problem of ‘color-

ing the sphere’: assigning truth values obeying the rules for the S2
xi

to directions

as points on the unit sphere. Using the orthogonality relations of G1, it can be

shown that the maximum angle between x1 and x10 equals arcsin
(
1
3

)
≈ 19.5◦.

This means that between any two directions separated by an angle of not more

than arcsin
(
1
3

)
, a graph like G2 can be constructed, meaning that all directions

within this angle of one another must receive the same color.

Figure 2.3: The 15 spatial directions used in the proof of the Kochen-Specker

theorem.

Let us now consider the sphere octant shown in Figure 2.3. With the construction

as shown, we can prove that a1, a9 and a41 must be colored the same, as was

already discussed above: five copies of G2 divide each right angle into parts of 18.

If we thus start at a1, we find that a10 must receive the same color, as must a18,

15



2.2 The Kochen-Specker Theorem

and so on. However, since x1, x9 and x41 are orthogonal spatial directions, out of

S2
x1

, S2
x9

and S2
x41

, two must be colored true, while one must be colored false. This

then establishes the contradiction: there exists no consistent true/false coloring

for the 117 directions xi, and thus, no consistent assignment of values to the

observables S2
xi

. Hence, for a spin-1 quantum system ρ, not all properties of the

form ‘ρ has angular momentum squared 1 in the direction xi’ can simultaneously

be fixed.

2.2.2 The Peres-Mermin Square

Another, conceptually slightly different, proof of the Kochen-Specker theorem

can be given on the basis of the Peres-Mermin square [29, 30]. This is an array

of nine observables on a four-level quantum system, arranged as in Table 2.1.

A = σx ⊗ 11 B = 11 ⊗ σx C = σx ⊗ σx

a = 11 ⊗ σy b = σy ⊗ 11 c = σy ⊗ σy

α = σx ⊗ σy β = σy ⊗ σx γ = σz ⊗ σz

Table 2.1: The Peres-Mermin square.

As one readily verifies, the observables in each row and column commute, and

the product of the observables in each row equals 11 (here, the 4 × 4 identity

matrix), as do the products of the first two colums. However, in the last column,

Ccγ = −11. Thus, it is not consistently possible to assign the values ±1 to the

observables, as a non-contextual hidden variable theory would demand: the row

products necessitate an even number of −1s, while the column products require

an odd number, thus producing a contradiction similar to that in the previous

section. It is important to note that this proof is wholly independent of the

state of the quantum system: as we have only ever talked about observables, the

conclusion must hold for any quantum state, even, for instance, the maximally
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2.3 Testing the Kochen-Specker Theorem

mixed one ρ = 11
Tr(11)

.

An important, but somewhat subtle requirement in this proof is that of compati-

bility : in order to be able to make meaningful assertions about their simultaneous

values, the observables in each row and column must be co-measurable, i.e. it

must be possible to obtain perfect information about all their values simultane-

ously. Without this requirement, it would be nonsensical to talk about the value

of the product of observables, since their values would not all be definite at once.

2.3 Testing the Kochen-Specker Theorem

As we have already discussed, one of the main virtues of Bell’s theorem is that

it makes the question of the completion of quantum mechanics by hidden vari-

ables accessible to experiment5. It would certainly be desirable to claim the

same success for the Kochen-Specker theorem; however, as will be discussed, its

experimental testing faces even greater challenges and controversies.

Let us first consider Kochen and Specker’s original proposal to implement their

scheme using measurements of a spin-1 particle. They consider measuring the

squared spin components S2
x, S

2
y and S2

z of an orthohelium atom placed in an

electric field of appropriate (rhombic) symmetry. In this context, there exists

a single observable, the perturbation Hamiltonian Hs, measurement of which

reveals the values of S2
x, S

2
y and S2

z . Since S2
x +S2

y +S2
z = 2 ·11, two of these values

must be 1, while one is 0.

However, this does not work as a direct test of non-contextuality: only one or-

thogonal triplet, i.e. one context, is considered at any given time, and thus, we

cannot say anything about the value of an observable in distinct contexts. The

same reservation applies to the direct testing of the observables of the Peres-

Mermin square: the observable A cannot be tested in the contexts ABC and

Aaα simultaneously, since non-compatible observables cannot be measured on

the same physical system; a disagreement between these tests might then reveal

nothing more than a difference in the measurement procedure.

5As reported in [31], nobel laureate E. M. Purcell, in a lecture delivered at Harvard Univer-

sity, “expressed his delight at having lived long enough to see a philosophical problem settled

in the laboratory”.
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2.4 Non-Contextuality Inequalities

To resolve this difficulty, Cabello and Garćıa-Alcaine [32] proposed a scheme in

which non-contextual theories make predictions contrary to quantum mechanics

for every single system, independently of its quantum state. In their original

formulation, the system was considered to be two spin-1
2

particles; a version

considering spin- and path-degrees of freedom of a single particle was proposed

by Simon et al. [33], and experimentally realized by Huang et al. in 2002 [34].

The results were in strong agreement with quantum mechanics; nevertheless, for

reasons to be discussed in sections 2.5 and 2.6, there is to date no unanimous

agreement on the decisiveness of this and similar tests.

2.4 Non-Contextuality Inequalities

A different route to the testability of the Kochen-Specker theorem is provided

by deriving inequalities, conceptually similar to those used in Bell tests. Early

work on the subject of testing the KS-theorem using inequalities was performed

by Roy and Singh in 1993 [35], who introduced the notion of ‘stochastic’ non-

contextuality in order to apply an inequality of the CHSH form (2.4); in a similar

vein, Basu et al. in [36] consider applying the CHSH inequality to the spin- and

path-degrees of freedom of a single spin-1
2

particle.

The first inequalities specifically applicable to the Kochen-Specker theorem were

suggested by Simon, Brukner and Zeilinger [37] and Larsson [38], who indepen-

dently considered Kochen and Specker’s original proposal, extending it for the

case of imprecisely specified measurements (s. a. sect. 2.5). Non- contextuality

inequalities in full analogy to Bell inequalities were proposed by Cabello et al.

[26], as well as by Klyachko, Can, Binicioğlu, and Shumovsky [39]. Finally, the

first state-independent non-contextuality inequalities were derived by Cabello in

2008 [40].

An important novelty in the inequality-based approach to the Kochen-Specker

theorem is the realization that quantum theory gives predictions different from

those of noncontextual hidden-variable theories even for sequential measurements,

as long as they are compatible [44]; thus, an expression such as 〈ABC〉 can be

regarded as simply an instruction to measure the observables in order on a system,

and form the product of the observed values.
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2.4 Non-Contextuality Inequalities

In the following, we will be mainly concerned with two inequalities: one is the

already familiar CHSH inequality, interpreted as a non-contextuality inequality,

and the other is a state-independent inequality first proposed in [40].

2.4.1 The CHSH-Inequality

It is easy to see that the CHSH inequality 2.4 is applicable to non-contextual as

well as local realistic theories ([46]). Consider the CHSH-operator:

χCHSH = AB +BC + CD −DA (2.11)

The CHSH-inequality 〈χCHSH〉 ≤ 2 can be violated only if ||χCHSH|| > 2, where

|| · || denotes the operator norm. Since χCHSH is a self-adjoint operator, ||χCHSH||2

= ||χ2
CHSH||. Thus, a sufficient condition for violating the inequality is ||χ2

CHSH|| >
4. The square of the CHSH-operator evaluates to

χ2
CHSH = 4 + (AC − CA)(BD −DB) = 4 + [A,C][B,D], (2.12)

where we have used the fact that since they are ±1-valued, the observables square

to 1. Clearly, now, if all observables are considered to be simple random variables,

and thus, non-contextual, they necessarily commute. Hence, the assumption of

non-contextuality implies the CHSH-inequality.

2.4.2 An Inequality from the Peres-Mermin Square

A drawback of the inequality discussed in the previous section is its state-depen-

dence: only for certain quantum states is χCHSH in fact greater than 2 in quan-

tum mechanics. However, the proof of the Kochen-Specker theorem presented

in subsection 2.2.2 yields a testable inequality almost directly. Recall that in

the Peres-Mermin square (2.1), it was impossible to simultaneously satisfy the

constraints imposed by the products of the observables along the rows as well as

along the columns. This impossibility may be considered to arise from the final

column, where the product of all measurements necessarily yields −1. Thus, we

can simply collect the rows and columns into a single expression [40]:

〈χPM〉 = 〈ABC〉 + 〈abc〉 + 〈αβγ〉 + 〈Aaα〉 + 〈Bbβ〉 − 〈Ccγ〉 (2.13)
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2.5 The Finite-Precision Problem

For any non-contextual theory, this value is bounded by four: 〈χPM〉 ≤ 4. How-

ever, quantum mechanics predicts 〈χPM〉 = 6, irrespective of the quantum state.

2.5 The Finite-Precision Problem

The inequalities discussed in the previous section were, at least in part, proposed

to answer a specific criticism levelled at the possibility of experimentally testing

the Kochen-Specker theorem. This criticism is known as the finite precision

problem: basically, since every real measurement is specified only up to a certain

finite precision, it is impossible to be absolutely certain that the observable one

set out to measure is in fact the observable that is being measured. But if such

an uncertainty exists, it is always possible to find a subset of directions such that

its observables are colourable in the Kochen-Specker sense [47, 48, 49].

2.5.1 MKC Models

An early argument proposing that any Kochen-Specker set of uncolourable vectors

may be arbitrarily closely approximated by a colourable set, which thus is not

distinguishable from the former by measurement, is due to Pitowsky [50, 51].

However, his analysis relied on the axiom of choice and the continuum hypothesis,

and may be considered questionable on these grounds. Later on, building on work

by Godsil and Zaks ([52]), Meyer [47] proposed that a 2-colourable set of rational

unit vectors may be used for such an approximation in the setting orginally

considered by Kochen and Specker; this result was generalized to arbitrary Hilbert

spaces by Kent [48]. Subsequently, Clifton and Kent constructed an explicit

model to reproduce the quantum-mechanical predictions using non-contextual

hidden variables [49]. Such models have since come to be known MKC-models

after their originators.

2.5.2 Answers to the Finite-Precision Problem

The MKC models have provoked a substantial amount of interesting discussion,

of which only a brief outline can be given here. Roughly, the proposed rejoinders
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2.5 The Finite-Precision Problem

may be grouped into three different strategies: (1) denying the physical plausi-

bility of the MKC sets, (2) rejecting MKC’s conclusion, and (3) extending the

Kochen-Specker theorem to encompass also scenarios with imprecisely specified

measurements.

The first strategy is followed by Cabello ([53]), who argues that the theorem ap-

plies to measured values rather than possessed ones, and points out that a model

taking the rational unit sphere as its physical state space has the curious prop-

erty that, for instance, not all theoretically allowed superpositions of states are

physically possible. Similarly, Havlicek et al. ([54]) consider the non-closedness

of the rational sphere to be problematic: certain operations, such as for instance

the logical nor, may then in certain cases yield results not physically allowed.

Following the second line of argument, Appleby ([55]) has argued that the MKC-

models themselves are, actually, contextual, but in a peculiar way: not the value

of a given observable depends on the context, but its very existence. Also, Mer-

min ([56]) has argued that the continuity of probability (see the discussion of

Gleason’s theorem in sect. 2.2) spoils the argumentation of Meyer, Kent, and

Clifton: effects due to the finite precision of measurement simply wash out over

large enough measurement numbers. On the other hand, Cabello ([57]) has ar-

gued that MKC’s colourable sets in fact lead to predictions that differ observably

from those of quantum mechanics. Finally, Cabello and Larsson ([58]) have con-

structed an explicit example of a set of rational vectors that violate the inequality

derived in [39].

The third route of investigation seems to be the most promising one. Largely,

it consists of attempts to find a version of the Kochen-Specker theorem that ap-

plies to imprecisely specified observables, possibly in a stochastic sense. One such

attempt is made by Breuer ([59]), who uses POVMs (positive operator-valued

measures [60]) in order to define finite-precision observables; unfortunately, his

proposal does not apply to the MKC-models directly, since it depends on a rota-

tional symmetry that those models do not possess. Following a different approach,

Larsson ([38]) and Simon et al. ([37]), as has already been mentioned, derive

inequalities whose violation indicates a violation of non-contextuality. The at-

tractiveness of their scheme is that it is framed in operational terms: basically,

their framework amounts to a setting in which the experimenter has access to a

black box, which has three knobs, corresponding to the observables S2
x, S2

y and
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S2
z , that can be set to various orientations. Based on the setting of these knobs,

the box produces a certain result, in the form of three numbers, each assigned to

one of the knobs. If this result can be understood in such a way that the outcome

for a given knob always only depends on its position, and is therefore independent

of the positions of the other knobs, the theory is non-contextual; otherwise, non-

contextuality is violated. Note that no reference to either quantum mechanics or

the precision of measurement was made in this definition. A similar approach is

taken by Basu et al. ([36]), who derive the CHSH inequality (2.4) from the as-

sumption of non-contextuality alone6. In figure 2.4, an operational CHSH-setup

is depicted.

Figure 2.4: An operational setup for testing noncontextuality via the CHSH-

inequality. If the outcome of either box is independent of the setting of the other,

its behaviour can be explained by noncontextual hidden variables; contrariwise,

the impossibility to do so establishes contextuality without reference to Kochen-

Specker colorability.

Against this, in [61], Barrett and Kent have levelled the objection that

there is nothing specifically non-classical about a black box that

is behaving SBZ-contextually. One could easily construct such a box

out of cog-wheels and springs. Thus with no knowledge of or assump-

6Similarly, the derivation presented above also does not assume any part of the quantum

formalism.
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tions about the internal workings of the box, one could not use it to

distinguish classical from quantum behaviour.

This is certainly true. However, the same objection can be raised against any

quantum experiment, since it is always possible to simulate local quantum effects

classically, if perhaps only at the cost of exponential inefficiency. Furthermore,

this does not change the fact that the behaviour of the black box is contextual;

whether this contextuality is implemented quantum-mechanically or by some so-

phisticated, but essentially classical machinery is a question of interpretation

(and that one can always find an interpretation that is classical in the sense of

assigning definite values to observables is proven by the example of Bohmian me-

chanics [62]). Indeed, the above quote may be paraphrased as “a hidden-variable

(‘cog-wheels and springs’) theory reproducing the behaviour of the SBZ-Larsson

box must be contextual”—which is of course nothing but the Kochen-Specker

theorem.

Additionally, recent research has shown that there exist sets of vectors that are

not Kochen-Specker sets—i.e. that are true-false colourable—, and which nev-

ertheless can be used to derive inequalities that are obeyed by noncontextual

theories, yet violated by quantum mechanics [63, 64, 65].

2.6 The Problem of Compatibility

According to the discussion of the previous section, inequalities such as 2.4 ap-

pear to be the most promising route to a definite test of the Kochen-Specker

theorem. However, there is another problem which seems to block the way to-

wards such a test that has to be discussed. This problem is known as the problem

of compatibility, and it has its roots in the fact that contextuality is only defined

for perfectly compatible, and thus, co-measurable, observables [44, 66], as has

already been stressed.

For present purposes, the notion of compatibility is best defined in operational

terms: call a set of observables {A,B,C, . . .} compatible if, in any sequence of

measurements of observables from this set, the value of every observable re-

mains constant; alternatively, the value of an observable, say A, is not dis-

turbed if any of the other observables are measured. More explicitly, two ob-
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servables A and B can be called compatible if for any measurement sequence

SAB ∈ {A,B,AA,AB,BA,BB,AAA,AAB, ...} the values of A and B agree,

no matter in which position within the sequence the observable is measured,

i.e. v(Ai|SAB) = v(Aj|SAB) and v(Bi|SAB) = v(Bj|SAB) for all positions i, j

and sequences SAB. Compatibility for multiple observables is defined in a fully

analogous way.

It is now plain to see where the problem of compatibility lies: in any real experi-

ment, noise introduced either via interactions with the environment, interactions

of separate qubits with each other, or imperfectly implemented unitary trans-

formations, will typically cause a violation of compatibility to some small, but

non-zero degree, i.e. it can in general not be guaranteed that in some sequence of

measurements ABAC . . . A the first and last measurement of A will agree, even

though all measured observables are in principle compatible.

2.6.1 A Kochen-Specker Test on Separated Qutrits

One reply to the problem of compatibility was proposed by Cabello and Terra

Cunha ([66]). They propose to utilize a system of spatially separated qutrits,

on which measurement of a Kochen-Specker inequality is performed. Measure-

ments within one context are carried out on different qubits, in order to ensure

their compatibility. However, one could imagine several objections that might be

raised against this scheme. First, even if we assume that the measurements are

perfectly isolated and hence cannot possibly influence one another, interactions

with the environment still might lead to violations of compatibility, in the sense

that measurements of AB and BA do not necessarily agree. Furthermore, both

measurements can, in principle, influence one another even if both systems are

spatially separated, if the influence is mediated non-locally; so even though the

authors argue that their inequalities should not be viewed as Bell inequalities, one

could maintain that only local realistic theories are excluded by their proposed

experiment—there may in principle exist a non-local noncontextual theory that

accounts for all measurement outcomes.
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2.6.2 Extended KS Inequalities

Another approach was taken by Gühne et al. ([44]). They propose extended

Kochen-Specker inequalities, in which additional ‘error’ terms are introduced to

compensate for possible incompatibilities. First, they show that, for any two

observables AB, 〈AB〉 ≤ 〈A1B2〉 + 2pflip[AB], where pflip[AB] denotes the prob-

ability that the measurement of A disturbs the observable B, i.e. flips it from a

predetermined value to its opposite. Thus,

pflip[AB] = p[(B+
1 |B1) and (B−

2 |A1B2)] + p[(B−
1 |B1) and (B+

2 |A1B2)]. (2.14)

Here, the numerical indices refer to the position of the measurement of some

observable within a sequence of such measurements, which sequence is denoted

as the condition, while the signs indicate the outcome of the measurement. So,

for instance, p[(B−
2 |A1B2B3)] indicates the probability that the outcome of the

measurement of the observable B is −1, given that this measurement was the

second in the sequence ABB (n. b. that in a setting where compatibility is

violated, the probability for obtaining −1 for the third measurement may well be

different!). This makes it possible to obtain an extended CHSH inequality that

is valid even in the presence of compatibility violations:

〈χCHSH〉 ≤ 2(1 + pflip[AB] + pflip[BC] + pflip[CD] + pflip[DA]) (2.15)

Unfortunately, however, the probabilities p[(B+
1 |B1) and (B−

2 |A1B2)] are not ex-

perimentally accessible, since one can measure B either first, or second, but not

both. In order to include only measurable quantities, they then derive an upper

bound to the flip-probabilities; to do so, they make the following assumption:

Assumption 2.1. (Cumulative noise.) Additional measurements only increase

the amount of disturbance suffered by the system. Thus:

p[(B+
1 |B1) and (B−

2 |A1B2)] ≤ p[(B+
1 |B1) and (B+

1 , B
−
3 |B1A2B3)] (2.16)

≡ p[(B+
1 , B

−
3 |B1A2B3)]

The reasoning behind this assumption is the following: if measuring one observ-

able, A1, disturbs the state such that measuring B2 produces a different outcome

than measuring B1 would have, then it stands to reason that more measurements

25



2.6 The Problem of Compatibility

only increase the disturbance, such that measuring B3 in the sequence B1A2B3

has an even greater probability from differing from B1. This assumption will be

further examined, and counterexamples considered, in chapter 4.

This term now is accessible to experiment: one can simply measure the se-

quence B1A2B3 enough times to obtain an estimate for the probability that B3

differs from B1. If one then defines error terms of the form perr[B1A2B3] =

p[(B+
1 , B

−
3 |B1A2B3)] + p[(B−

1 , B
+
3 |B1A2B3)], a measurable extended CHSH in-

equality can be formulated:

〈χCHSH〉 ≤ 2(1 + perr[B1A2B3] + perr[C1B2C3] + perr[D1C2D3] + perr[A1D2A3])

(2.17)

If the above assumption 2.1 holds, then the violation of this inequality implies a

violation of noncontextuality even if the observables are not perfectly compatible,

i.e. under realistic experimental conditions.
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Chapter 3

Noise-Robustness of

Kochen-Specker Tests

In order to understand the details of experimental tests of the Kochen-Specker

theorem, we will first perform an analysis of the noise-robustness of certain tests

that have been performed. To do so, we will break down the measurement process

into a series of discrete steps, and allow the system to perform a noisy evolution,

according to certain well-known models for experiment-induced noise (see sects.

3.3-3.6). This will allow us to provide bounds on the minimum quality needed for

an experiment in order to conclusively establish a violation of non-contextuality.

3.1 The Measurement Process

Let us first consider how the introduction of noise into the measurement process

may lead to violations of compatibility. Recall that we had defined compatibility

in an operational way as the repeatability of individual measurements within

measurement sequences, see section 2.6.

However, experimental imperfections imply that the above ideal situation can

never be achieved in practice. Ambiguities in state preparation/detection, im-

perfectly implemented unitary transformations, and interactions with the envi-

ronment, to name a few examples, generally spoil perfect compatibility. One may

consider this to be due to noise influences acting on the state between measure-
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3.2 Noise Models and Quantum Operations

ments. This situation is schematically illustrated in Figure 3.1.

Figure 3.1: Noise-induced violations of compatibility.

3.2 Noise Models and Quantum Operations

As it is depicted in Figure 3.1, the disturbance of a system by measurement-

(or, more generally, environment-)induced noise may be modelled by sending the

system through a noisy channel, effecting the transformation ρ → E(ρ), if the

system was originally in the state ρ [60].

In order to develop this model, consider first the dynamics of a closed quantum

system, i.e. some arbitrary state ρS evolving unitarily:

ρS → ρ′S = UρSU
†. (3.1)

If, now, the system is not closed, but is part of a larger system together with some

environment ρE, then in general the evolution of the total system, restricted to

the system of interest by tracing out the environmental part, will no longer be

unitary. For the combined system, the evolution then is

ρS ⊗ ρE → U(ρS ⊗ ρE)U †; (3.2)
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3.2 Noise Models and Quantum Operations

the evolution of the system under consideration on its own is then given by

E(ρS) : ρS → ρ′S = trE
[
U(ρS ⊗ ρE)U †] , (3.3)

which defines the quantum operations E , and where trE denotes the partial trace

with respect to the environment ρE. Quantum operations, especially those used

to model noisy evolution of a quantum system, are also sometimes referred to

as (noisy) quantum channels, because of their formal similarity to classical noisy

information channels ([60]).

This representation, while intuitive, is somewhat inconvenient to work with math-

ematically. Thus, it is useful to introduce the so-called operator-sum representa-

tion, using the quantum channel’s Kraus operators [67]. For this, we first assume

that the environment can be considered to be in a pure state, ρE = |e0〉〈e0|. This

we can always do, since even if the environment is actually in a mixed state,

we can purify using a (ficticious) additional system, which does not change the

dynamics of the system under consideration [60]. Thus, equation 3.3 can be

written as

ρ′S = trE
[
U(ρS ⊗ |e0〉〈e0|)U †] . (3.4)

If we now introduce a basis {|ei〉} for the environment, we can compute the partial

trace, yielding

ρ′S =
∑
i

〈ei|
[
U(ρS ⊗ |e0〉〈e0|)U †] |ei〉

≡
∑
i

EiρSE
†
i , (3.5)

where in the last step we have introduced the operator-sum representation by

means of the Kraus operators {Ei = 〈ei|U |e0〉}. From the condition

Tr (E(ρ)) = 1, (3.6)

we immediately obtain the relation∑
i

EiE
†
i = 11. (3.7)

In order to apply this formalism to the problem at hand, we need to develop it

a little further. We are concerned mainly with expectation values of sequences
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3.2 Noise Models and Quantum Operations

of measurements of the form 〈ABC . . .〉, with the property that subsequent mea-

surements are performed on the system after it has been sent through a noisy

channel. The expectation value of one measurement on a state after it has been

sent through a noisy channel E can be readily evaluated:

〈A〉 = Tr(AE(ρ)) (3.8)

However, in case of a sequence 〈AB〉, where A is measured on the original state,

whilst measurement of B takes place on the state after it has been subject to

noise effects, a little more work is needed. First, we must find the state after

the first measurement. If we have obtained, say, the outcome +1, the state after

measurement is

ρA− =
Π−

AρΠ−
A

Tr(Π−
Aρ)

, (3.9)

where Π−
A denotes the projector onto the eigenspace of A to the eigenvalue −1.

The probability of finding, say, B = +1 after having found A = −1 then is

p(B = +1|A = −1) = Tr

(
Π+

B

Π−
AρΠ−

A

Tr(Π−
Aρ)

)
. (3.10)

This post-measurement state is then sent through the noisy channel E . The

expectation value can be written:

〈AB〉 = pA+B+ − pA+B− − pA−B+ + pA−B− , (3.11)

where for instance pA+B+ = p(B = +1, A = +1) is shorthand for ‘the probability

of obtaining the outcomes A = +1, B = +1’, etc. With eq. 3.10, we get then

〈AB〉 = p(A+)Tr

(
Π+

BE
{

Π+
AρΠ+

A

Tr(Π+
Aρ)

})
− p(A+)Tr

(
Π−

BE
{

Π+
AρΠ+

A

Tr(Π+
Aρ)

})
−p(A−)Tr

(
Π+

BE
{

Π−
AρΠ−

A

Tr(Π−
Aρ)

})
+ p(A−)Tr

(
Π+

BE
{

Π−
AρΠ−

A

Tr(Π−
Aρ)

})
(3.12)

Now, we can use that, for instance, p(A−) = Tr(Π−
Aρ), which because of the

linearity of E and the trace cancels with the normalization factor:

〈AB〉 = Tr
(
Π+

BE
{

Π+
AρΠ+

A

})
− Tr

(
Π−

BE
{

Π+
AρΠ+

A

})
−Tr

(
Π+

BE
{

Π−
AρΠ−

A

})
+ Tr

(
Π−

BE
{

Π−
AρΠ−

A

})
(3.13)
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3.2 Noise Models and Quantum Operations

The expectation value of a longer measurement sequence then is analogously

〈ABC〉 = Tr
[
CE
{

Π+
BE(Π+

AρΠ+
A − Π−

AρΠ−
A)Π+

B − Π−
BE(Π+

AρΠ+
A − Π−

AρΠ−
A)Π−

B

}]
(3.14)

Thus, we now have the machinery to compute the expectation values of arbitrary

measurement sequences subject to different kinds of noises.

However, we will also want to compute the effect of noisy measurements on the

error terms introduced in section 2.6.2. In order to do so, we must first analyze

their form. An error term such as

perr[B1A2B3] = p[(B+
1 , B

−
3 |B1A2B3)] + p[(B−

1 , B
+
3 |B1A2B3)] (3.15)

quantifies the probability of the observable B flipping its value due to a mea-

surement of A. Evidently, this is the sum of the probability for obtaining the

outcome −1 for the second measurement of B, after having obtained +1 as the

result of the first measurement, and the probability for obtaining +1 for the sec-

ond measurement of B, where the first measurement yielded −1. Let us thus

focus on just the term p[(B−
1 , B

+
3 |B1A2B3)], which we abbreviate as pB−AB+ .

Evidently, pB−AB+ = pB−A+B+ + pB−A+B+ . To calculate now, say, pB−A+B+ , first

recall that the probability of observing B = −1 in the state ρ is

pB− = Tr(Π−
Bρ), (3.16)

which measurement outcome leaves the system in the state ρB− =
Π−

BρΠ−
B

Tr(Π−
Bρ)

. Thus,

the probability of observing first B = −1, and then A = +1 is

pB−A+ = pA+|B−pB− = Tr(Π+
AE(ρB−))Tr(Π−

Bρ), (3.17)

analogously to 3.10, 3.12. After this measurement, the system is in the state

ρB−A+ =
Π+

AE(ρB− )Π+
A

Tr(Π+
AE(ρB− ))

Consequently, the probability of observing the sequence

B = −1, A = +1, B = +1, works out to:

pB−A+B+ = pB+|A+B−pB−A+ = Tr(Π+
BE(ρB−A+))Tr(Π+

AE(ρB−))Tr(Π−
Bρ), (3.18)

and analogously for pB−A−B+ .
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3.3 Depolarizing Noise

3.3 Depolarizing Noise

A special, very general type of quantum noise is the depolarizing channel [60].

Essentially, it corresponds to a process by which the quantum system is, with a

certain probability p, replaced by the completely mixed state 11
Tr(11)

, while it is left

invariant with probability 1 − p. Thus, the system’s evolution is

E(ρ) = p
11

Tr(11)
+ (1 − p)ρ (3.19)

If we restrict our attention to a single qubit as object system, the channel can be

written as

E(ρ) =
p

4
(σxρσx + σyρσy + σzρσz) + (1 − 3p

4
)ρ, (3.20)

where the σi are the Pauli matrices. From this, we can directly read off the Kraus

operators:

E0 =

√
1 − 3p

4
11

E1 =

√
p

4
σx

E2 =

√
p

4
σy (3.21)

E3 =

√
p

4
σz

This channel acts on a two-qubit system as follows:

Edep(ρ) = (E1
dep ⊗ E1

dep)(ρ) =
3∑

i,j=0

(Ei ⊗ Ej)ρ(Ei ⊗ Ej)
†, (3.22)

where E1
dep denotes the single-qubit depolarizing channel. Thus, the Kraus oper-

ators of the two-qubit depolarizing channel are simply

Eij = Ei ⊗ Ej, (3.23)

In this form, we can now apply the depolarizing channel to several Kochen-

Specker -inequalities and investigate their behaviour under noisy measurements.
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Figure 3.2: The CHSH inequality subject to depolarizing noise. The shaded

region shows where an exclusion of noncontextuality is possible.

3.3.1 The CHSH-Inequality

Under the effect of depolarizing noise, the value of 〈χCHSH〉 experiences a linear

correction:

〈χCHSH〉Dep = 2
√

2 − 2
√

2p (3.24)

Thus, as is shown in Figure 3.2, at a certain point the noise effects will make

the detection of a quantum violation of the CHSH inequality impossible. We can

interpret this as a restriction on the minimum quality of the experiment needed

to detect such a violation; in this case, the depolarisation probability must fulfil

the condition

pDep <

(
1 − 1√

2

)
≈ 0.293. (3.25)

3.3.2 The Extended CHSH-Inequality

In extending the above analysis to the CHSH inequality extended with error

terms, 2.17, as was noted above, we have to take into account the dependency

of these error terms on the amount of added noise. This yields much more

stringent constraints on the required experimental quality. In the present case,

the extended CHSH inequality takes the form

〈χCHSH〉Dep ≤ 2 +

(
8 − 1√

2

)
p+

(
1√
2
− 4

)
p2 (3.26)
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Figure 3.3: The CHSH inequality subject to depolarizing noise, together with the

error terms. Again, the shaded region shows where an exclusion of noncontextu-

ality is possible.

meaning that the depolarization probability must fulfil

pDep <
16 + 3

√
2 −

√
434 − 48

√
2

2
√

2 − 16
≈ 0.084 (3.27)

in order to still detect a violation. This is shown in Figure 3.3.

3.3.3 The Peres-Mermin Inequality
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Figure 3.4: The Peres-Mermin inequality subject to depolarizing noise. The

shaded region shows where an exclusion of noncontextuality is possible.
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The same methods may be applied to studying the noise-robustness of the Peres-

Mermin inequality (2.13). Due to the double application of the depolarizing

channel, the correction here is quadratic in the probability:

〈χPM〉Dep = 6(p− 1)2 (3.28)

This is shown in Figure 3.4. To detect violations of noncontextuality, the depo-

larization probability must obey

pDep <
1

3
(3 −

√
(6)) ≈ 0.184. (3.29)

3.4 Bit-Flipping

A simple type of error that may be introduced during the evolution of a quantum

state is the bit flip [60]. As the name implies, this corresponds simply to the

flipping of a state to an orthogonal one with a certain probability p. The action

of this channel on the pure states |1〉〈1| and |0〉〈0| is therefore:

EBF (|1〉〈1|) = (1 − p)|1〉〈1| + p|0〉〈0|
EBF (|0〉〈0|) = (1 − p)|0〉〈0| + p|1〉〈1| (3.30)

This can be achieved using the following Kraus operators:

E0 =
√

1 − p

(
1 0

0 1

)
=
√

1 − p11

E1 =
√
p

(
0 1

1 0

)
=

√
pσx (3.31)

3.4.1 The CHSH-Inequality

Applied to the CHSH-inequality, the bit-flip channel produces a correction of the

form

〈χCHSH〉BF = 2
√

2 − 2
√

2p. (3.32)

Thus, as is also shown in Figure 3.5, no violation of noncontextuality can be

observed unless the bit-flip probability obeys

pBF < 1 − 1√
2
≈ 0.293. (3.33)
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Figure 3.5: The CHSH inequality subject to bit-flipping noise.

Remarkably, for the CHSH inequality, bit-flip errors thus induce the same kind

of behaviour as depolarizing noise does. However, differences exist with respect

to the extended CHSH and Peres-Mermin inequalities, as will be discussed in the

next two sections.

3.4.2 The Extended CHSH-Inequality
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Figure 3.6: The CHSH inequality with error terms subject to bit-flipping noise.

In Figure 3.6, the effect of bit-flipping noise on the error terms is included. Under

this type of noise, the extended CHSH-inequality takes the form

〈χCHSH〉BF ≤ 2 − 2(
√

2 − 4)p+ (5
√

2 − 8)p2 − 3
√

2p3. (3.34)
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3.5 Amplitude Damping

This yields a bound on the bit-flipping probability of

pBF . 0.105. (3.35)

3.4.3 The Peres-Mermin Inequality
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Figure 3.7: The Peres-Mermin inequality subject to bit-flipping noise.

The correction suffered by the Peres-Mermin inequality under the influence of

noise of the bit-flipping type is the following:

〈χPM〉BF = 6 − 28p+ 56p2 − 48p3 + 16p4 (3.36)

Thus, in order to observe a violation of noncontextuality, we need for

pBF < 0.085 (3.37)

to hold (no simple closed form seems to exist). This is shown in Figure 3.7.

3.5 Amplitude Damping

The amplitude damping channel is a type of noise that characterizes the effect of

energy dissipation on a system. This models processes such as the spontaneous

emission of a photon, or the attenuation of light in an optical cavity [60].
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3.5 Amplitude Damping

This channel takes an excited state, |1〉〈1|, to a deexcited one, |0〉〈0|, with a

certain probability p. Thus, one of its Kraus operators ought to be

E0 =

(
0

√
p

0 0

)
, (3.38)

since

E0|1〉〈1|E†
0 = p|0〉〈0|. (3.39)

From the requirement ∑
i

EiE
†
i = 11, (3.40)

we then get that

E1 =

(
1 0

0
√

1 − p

)
. (3.41)

Thus, we see that the application of this channel to the state |1〉〈1| results in

EAD(|1〉〈1|) = E0|1〉〈1|E†
0 + E1|1〉〈1|E†

1 = p|0〉〈0| + (1 − p)|1〉〈1|, (3.42)

while applied to the state |0〉〈0|, we simply get

EAD(|0〉〈0|) = |0〉〈0|, (3.43)

i.e. an excited state is deexcited with probability p, while a non-excited state is

left invariant.

Again, applied to a system of two qubits, the action of the channel is:

EAD(ρ) = (E1
AD ⊗ E1

AD)(ρ) =
1∑

j,i=0

(Ei ⊗ Ej)ρ(Ei ⊗ Ej)
†, (3.44)
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yielding the Kraus operators

E00 = E0 ⊗ E0 =


0 0 0 p

0 0 0 0

0 0 0 0

0 0 0 0



E01 = E0 ⊗ E1 =


0 0

√
p 0

0 0 0
√
p
√

1 − p

0 0 0 0

0 0 0 0



E10 = E1 ⊗ E0 =


0

√
p 0 0

0 0 0 0

0 0 0
√
p
√

1 − p

0 0 0 0

 (3.45)

E11 = E1 ⊗ E1 =


1 0 0 0

0
√

1 − p 0 0

0 0
√

1 − p 0

0 0 0 1 − p



3.5.1 The CHSH-Inequality
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Figure 3.8: The CHSH inequality subject to amplitude-damping noise.

Under amplitude damping noise, the CHSH inequality receives the correction

〈χCHSH〉AD =
√

2(1 − p+
√

1 − p). (3.46)

39



3.5 Amplitude Damping

Accordingly, as shown in Figure 3.8, the amplitude damping probability (i.e. the

probability of energy losses to the environment) must obey

pAD <
1

2

(
1 − 2

√
2 +

√
1 + 4

√
2

)
≈ 0.376. (3.47)

3.5.2 The Extended CHSH-Inequality
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Figure 3.9: The CHSH inequality with error terms subject to amplitude-damping

noise.

Taking the error terms into account, the extended CHSH inequality becomes

〈χCHSH〉AD ≤ 1

8
(16 + (44 − 11

√
2 −

√
2 − 2p− 4

√
1 − p)p

−(4 − 30
√

2 −
√

2 − 2p− 2
√

1 − p)p2 − (4 + 11
√

2)p3);

(3.48)

consequently, in order to observe violations of noncontextuality,

pAD . 0.143 (3.49)

must hold.

3.5.3 The Peres-Mermin Inequality

For the Peres-Mermin inequality, amplitude damping induces the correction

〈χPM〉AD = (1 − p)(2 + 4
√

1 − p− (4 + 3
√

1 − p)p− 6p2 + 2p3).
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Figure 3.10: The Peres-Mermin inequality subject to amplitude-damping noise.

Thus, the amplitude damping probability must obey

pAD < 0.151 (3.50)

in order for a violation of noncontextuality to be experimentally observable, as

depicted in Figure 3.10.

3.6 Phase Damping

The quantum channel known as phase damping models a noise effect that is

uniquely quantum-mechanical in nature: the loss of phase information incurred

via, for instance, random scattering of a photon within a waveguide [60]. Thus,

this channel provides a simple model for decoherence: the off-diagonal entries in

the density matrix decay away, indicating the ‘leaking’ of quantum information

into the environment, while the diagonal entries are left invariant.

The action of this channel on a quantum state ρ thus is:

EPD(ρ) =

(
ρ00 (1 − p)ρ01

(1 − p)ρ10 ρ11

)
, (3.51)
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3.6 Phase Damping

which may be realized by the Kraus operators

E0 =

√
p

2

(
1 0

0 −1

)
=

√
p

2
σz

E1 =

√
1 − p

2

(
1 0

0 1

)
=

√
1 − p

2
11. (3.52)

3.6.1 The CHSH-Inequality
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Figure 3.11: The CHSH inequality subject to phase-damping noise.

Under phase damping noise or decoherence, the CHSH inequality receives a cor-

rection of the form

〈χCHSH〉PhD =
p4 − 2p3 +

(√
1 − p+ 3

)
p2 −

(√
1 − p+ 2

)
p+ 2

(√
1 − p+ 1

)
√

2
,

(3.53)

and thus, the decoherence probability must obey

pPhD < 0.478. (3.54)

This is depicted in Figure 3.11.
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Figure 3.12: The CHSH inequality with error terms subject to phase-damping

noise.

3.6.2 The Extended CHSH-Inequality

In the case of decoherence, the extended CHSH inequality becomes:

〈χCHSH〉PhD ≤ 1

32
((10 − 3

√
2)p8 + 4(3

√
2 − 10)p7

+(
√

2 − 2p− 30
√

2 + 108)p6

+(−3
√

2 − 2p+ 42
√

2 − 164)p5

+(7
√

2 − 2p− 41
√

2 + 202)p4 (3.55)

+(−7
√

2 − 2p+ 22
√

2 − 148)p3

+6(
√

2 − 2p−
√

2 + 16)p2 + 64),

meaning that in order to observe a violation of noncontextuality, we need for

pPhD . 0.306, (3.56)

as can also be gleaned from Figure 3.12.
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Figure 3.13: The Peres-Mermin inequality subject to phase-damping noise.

3.6.3 The Peres-Mermin Inequality

Finally, for the Peres-Mermin inequality subject to decoherence, we get the cor-

rection

〈χPM〉PhD =
1

2
(4 + 8

√
1 − p− 4(2 + 3

√
1 − p)p+ (15 + 16

√
1 − p)p2

−(21 + 16
√

1 − p)p3 + 2(11 + 6
√

1 − p)p4 (3.57)

−(17 + 6
√

1 − p)p5 + 2(5 +
√

1 − p)p6 − 4p7 + p8

This amounts to the following condition on the decoherence probability:

pPhD < 0.226 (3.58)

This is shown in Figure 3.13.

3.7 Summary

As we have seen, under a wide variety of noise models, the quantum violation

of Kochen-Specker inequalities is strictly decreasing. Thus, certain requirements

on experimental quality must be met in order to observe a violation of noncon-

textuality; however, in no case do these requirements seem unmeetably strong.
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Figure 3.14: The CHSH inequality subject to different kinds of noise.

In Figure 3.14, the dependence of the violation of the CHSH-inequality on a

noise-parameter p for certain kinds of noises is shown. For two kinds of noises,

depolarization and bit-flipping errors, the dependence is simply linear, acting to

destroy all correlations. This is readily appreciable: for depolarizing noise, in the

case of total depolarization, the state is simply replaced by the completely mixed

one ρ = 11
Tr(11)

, on which the measurements yield random results. For the bit-flip

channel, it is easy to show that the state ρ = |Φ+〉〈Φ+| is invariant under the

action

ρ→ (σx ⊗ σx)ρ(σx ⊗ σx). (3.59)

But for p = 1, this is just the action of the bit-flipping channel (all other Kraus

operators vanish). But then, the second measurement is just independently ran-

dom from the first.

The behaviour of the nonlinear channels, amplitude and phase damping, is also

not hard to understand. For amplitude damping, once the noise parameter

reaches 1, the state is effectively lost to the environment. The behaviour in

the case of phase damping, for p = 1, any state ρ is replaced by a completely
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decohered one, i.e.

EPhD(ρ) =

(
ρ00 0

0 ρ11

)
. (3.60)

But this does not imply that the correlations have to vanish; and indeed, in the

present case, it is easy to verify that, while 〈AB〉 = 〈DA〉 = 0, 〈BC〉 = 〈CD〉 =
1√
2
, and thus, 〈χCHSH〉PhDp=1 =

√
2, as can also be seen in Figure 3.14.
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Figure 3.15: The extended CHSH-inequality under different noise models.

The dependence of the bound for the extended CHSH inequality on the noise

parameter for different kinds of noise is shown in Figure 3.15. It is interesting

that for maximum noise parameter, the error terms vanish for the bit-flip channel,

since, again, for p = 1, we just get the original state back. For the depolarizing

channel, each error probability is equal to 1
2

for maximum noise parameter. This

is also not surprising: after all, for maximum depolarization, we are left with the

completely mixed state in the end, and thus, the final measurement is simply

random, and has thus an even chance of agreeing with the first.

Lastly, in Figure 3.16, we see the behaviour of the Peres-Mermin inequality

subject to the different kinds of noises discussed in this chapter. Broadly, the

dependence on the noise parameter is qualitatively similar for all noise models as
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Figure 3.16: The Peres-Mermin inequality subject to different noise models.

in the case of the CHSH-inequality, though the induced constraints are consid-

erably more severe. We have collected the constraints for all inequalities and all

kinds of noises studied in Table 3.1.

As can clearly be seen in the direct comparison, the constraints placed on ex-

perimental quality provided by the error-term extended inequalities are the most

strict ones for depolarizazion and amplitude damping, while for the bit-flip and

phase damping channels, the noise influence is strongest for the Peres-Mermin

inequality. In the case of the bit-flip channel, it is interesting to note that for the

Peres-Mermin inequality, the constraint is nearly twice as strong as for any other

kind of noise.

Depolarization Bit-Flip Ampl. Damping Phase Damping

CHSH 0.293 0.293 0.376 0.478

CHSH ext. 0.084 0.105 0.143 0.306

Peres-Mermin 0.184 0.085 0.158 0.226

Table 3.1: Maximum values for the noise parameter in order to still be able to

detect a violation of noncontextuality.
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Chapter 4

Statistical Models for Noisy

Measurements

In the previous chapter, we have seen how quantum noise may influence the

experimental tests of Kochen-Specker inequalities. The aim of this chapter is

to consider the measurement process from the perspective of an explicit model

acting on the space of possible hidden variables, in order to see how this af-

fects measurement results. In particular, we will model the influence of noise on

the measurement process using a purely stochastic—and hence, explicitly non-

contextual—process, acting on the states of the hidden variables.

4.1 Conceptual Model of the Measurement Pro-

cess

In this chapter, we will aim to provide a suitable model of the influence of noise

on the hidden-variable state, and thus, the measurement results. In order to

maintain the non-contextuality of the model, it is necessary that it does not

depend on the choices of previous measurements, i.e. that it has no ‘memory’.

This will be achieved by simply considering our hidden-variable state to be a

probability distribution over possible measurement outcomes, which is updated

in a random way after each measurement. This simple model will turn out to be

surprisingly powerful: as will be shown, despite being arguably non-contextual,
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4.1 Conceptual Model of the Measurement Process

it can lead to violations of Kochen-Specker inequalities that can be seen to be

due to the incompatibilities induced by the model, which parallel those present

in every real experiment.

4.1.1 Ontic State Space

The first notion we will need is that of an ontic state. An ontic state may be

considered to be a state of the hidden variables that uniquely determines the value

of measurable observables, i.e. that characterises the properties of the system in

an unambiguous way [68]. Due to this uniqueness, it is possible to characterise

the state by simply listing all its properties, or at least all those of interest in

some given experiment.

Since we are exclusively interested in cases in which the properties of interest are

given by the values of dichotomic observables, we can thus represent any ontic

state by an ordered list of these values, symbolized by + and −, i.e. any given

state λ ∈ Λ is of the form (+ + − + −− · · · ), denoting the values of observables

A,B,C,D, . . . in sequence. In order to streamline notation, it is useful to interpret

each such list as a binary number, and use its decimal value as an index referring

to the state, such that, for instance, the state (++−+) may be uniquely referred

to as λ2.

This essentially provides us with a partition of the ontic state space: any given λi

refers to the set (or equivalence class) of hidden variable states yielding the same

outcome i for a set of observables. Evidently, different hidden variables described

by the same λi cannot be experimentally distinguished. This takes heed of the

fact that the observables we measure may be, in fact, coarse-grained rather than

truly microscopic properties of the system.

Another way to view these ontic states which will be useful later is offered by

considering the following basis:

(+) =

(
1

0

)
, (−) =

(
0

1

)
(4.1)

Then, any given state λi can be considered the tensor product of these basis

states, e.g.:

λ9 = (− + + −) = (−) ⊗ (+) ⊗ (+) ⊗ (−) (4.2)
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4.1.2 Violations of Compatibility

Given the possibility of a hidden-variable description underlying quantum the-

ory, we must take into account our ignorance of the hidden-variable dynamics; in

particular, it is possible that interactions during measurement may lead to un-

controllable, and therefore essentially random, changes in the state of the hidden

variables. For instance, during measurement, the act of measuring may disturb

a system in the state λi, causing it to transition to some other state λj. This, of

course, entails a possible violation of compatibility, as an observable previously

measured as + may, upon repeated measurement within some sequence of mea-

surements, now yield − (cf. the definition of compatibility in section 2.6). This

is schematically represented in Figure 4.1 for a system in which we are interested

in two observables, A and B, and can thus partition the hidden-variable space

into the four sets λ0 = (++), λ1 = (+−), λ2 = (−+), and λ3 = (−−), where the

values of A and B are indicated in sequence.

Figure 4.1: Schematic representation of a sequence of measurements, together

with the evolution of the hidden variables. The transition from λ1 to λ3 causes

the second measurement of A to disagree with the first, and thus, violates com-

patibility. Time runs downward throughout.

The evolution of the hidden-variable state depicted in Figure 4.1 is clearly deter-

ministic; however, due to our ignorance of the detailed dynamics and kinematics

of the hidden variables, it is clear that we must consider more general cases. For
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4.1 Conceptual Model of the Measurement Process

instance, two states leading to the same measurement results for all observables

may nevertheless evolve differently during a sequence of measurements; thus, we

must allow for probabilistic splitting of the evolution. Also, we do not necessarily

have complete control over the hidden-variable state we prepare. Therefore, we

will in general only be able to initialize the system with a certain probability

distribution p(λ) over the hidden variables. An example of such a more general

evolution is given in figure 4.2.

Figure 4.2: A more general evolution: starting from a state that may be either

λ1 or λ0, all of the depicted transitions are possible. Thus, during repeated runs

of the same sequence of measurements, the values of the observables need not

agree, and their expectation values will generally differ from ±1.

Let us use the concrete evolution in figure 4.2 to calculate the expectation value

〈ABA〉 of the measurement sequence. To do this, we need to assign probabilities

to all possible evolutions of the system. There are five of these:

λ1 → λ1 → λ1

λ1 → λ0 → λ3

λ0 → λ1 → λ1

λ0 → λ0 → λ3

λ0 → λ2 → λ1
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4.1 Conceptual Model of the Measurement Process

For simplicity, let us assume that all these are equally probable, i.e. p111 =

p103 = p011 = p003 = p021 = 1
5
. The value of ABA for each evolution is simply the

product of the value of each observable in the respective state, i.e. A1B0A3 =

(+1)(+1)(−1) = −1, where the notation Ai means ‘the value of A in the state

λi. Thus, the expected value is

〈ABA〉 =
∑
ijk

pijkAiBjAk = −3

5
. (4.3)

It may seem odd that we have elected to assign probabilities to entire evolutions in

toto, rather than simply giving probabilities to each branch, or, more accurately,

specifying a conditional distribution over the λi at each measurement. The rea-

son is that this would impose an unwarranted restriction on the hidden-variable

dynamics, effectively assuming that the distribution over possible evolutions is

always factorizable, i.e. that (in the present case) 〈ABA〉 = 〈A〉〈B〉〈A〉.

The model as discussed so far is clearly not sufficient, in the sense that it cannot

capture all quantum-mechanical predictions. Most seriously, it will typically be

at variance when it comes to the case of explicitly non-compatible observables:

in general, if [A,B] 6= 0, for a measurement sequence like ABA, the outcome

of the B-measurement as well as the second measurement of A will be random

according to quantum mechanics, while the outcome for the final measurement

of A in a sequence like ABAA will always be deterministic. But the model

clearly cannot guarantee that: either there will be some probability to change the

hidden variable state after the measurement of A—then, the second measurement

of A will not be deterministic. Or, there is no such possibility—but then, the

measurement of B will not be random.

This problem can be remedied, however, by noting that in the case of explicit

incompatibility between two observables, there is no good reason to assume non-

contextuality (cf. Bell’s objection to von Neumann’s no-go theorem in sect. 2.1).

Thus, since there always exists a possible evolution for the system compatible

with the quantum predictions, we can simply introduce an additional selection

rule which picks out such an evolution in the case of measurements of explicitly

noncompatible observables. This selection rule will be strongly contextual, and in

fact, depend on the entire sequence of measurements that is performed; but this

is not at variance with the implications of the Kochen-Specker theorem, which

requires noncontextuality only in the case of compatible observables. Thus, we
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can use a two-tiered dynamics to bring the model into account with experimental

observations: in the case of compatible measurements, the model simulates the

effects of experimental imperfections; the probabilities for state changes can al-

ways be chosen such that they are in agreement with observation. If one measures

incompatible observables instead, then an evolution is chosen that is in complete

agreement with the expected results.

Furthermore, note that we have introduced, in sect. 2.5.2, an operational frame-

work for contextuality tests in order to evade the finite-precision problem. In

this sense, we should imagine that we are provided with a box, which produces

certain outputs from certain input settings. The question of contextuality is then

simply the question of whether the behaviour of the box can be explained in

terms of a noncontextual theory or not—i.e. whether its outputs depend on its

inputs individually, or can only be explained by considering all inputs together.

In this framework, since it is in principle independent of the details of quantum

mechanics, the notion of incompatible observables does not strictly apply, and the

model discussed above is adequate to represent a certain class of noncontextual

theories that might be put forward to explain the box’s behaviour.

4.2 Markov Models

In this section, we aim to present a more explicit model that corresponds to a

specific sub-class of the models discussed above. In particular, we will demon-

strate that, using this model, a violation of both the usual CHSH inequality (2.4)

and the extended one (2.17) is possible, despite its noncontextuality—recall that

the hidden-variable state transition is effected independently of the context.

The model will be implemented by considering the hidden-variable states λi as the

states of a Markov chain, that is, as the states in a process such that a memoryless,

probabilistic transition is implemented between them. Here, the memorylessness

guarantees noncontextuality: transitions depend only on the state the system is

currently in. These transitions are effected by stochastic matrices [69]. A (left-)

stochastic matrix is an n× n matrix M = (mij) such that

n∑
i

mij = 1. (4.4)
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This condition ensures that for each probability vector p = (pi), for which∑n
i pi = 1, p′ = Mp = (

∑n
j mijpj) again is a probability vector such that∑

i p
′
i = 1. It is the classical equivalent of the normalization condition 3.6 for

quantum channels.

In this setup, each observable A can be represented by a vector A, such that

〈A〉 = A · p =
∑

iAipi. After a measurement, the probability distribution is

evolved to p′ according to the above rule, and the expectation value of A changes

to 〈A〉 = A · p′ = A ·Mp =
∑

ij Aimijpj. This is the most clear-cut way in

order to model random influences leading to compatibility violations due to the

measurement.

The expectation value of a product of observables then straightforwardly evalu-

ates to 〈AB〉 =
∑

ij AiBjpij, where pij is the joint probability distribution of the

observables. The extension to a product of three or more observables proceeds

in an obvious way, i.e. 〈ABC〉 =
∑

ijk AiBjCkpijk.

4.2.1 Violating KS Inequalities with Probabilistic Evolu-

tions

In order to study the behaviour of the CHSH-inequality under random hidden-

variable state changes, it is useful to introduce the quantity Kij = AiBj +BiCj +

CiDj − DiAj, where Ai denotes the value of the observable A given the hidden

variable state λi. Thus, any Kij just gives the value of χCHSH given that the

hidden-variable evolution was λi → λj. For this quantity, the following holds:

Proposition 4.1. For any Kochen-Specker inequality, there exists K = (Ki1i2...in)

such that 〈χKS〉 ≤ Kmax.

Proof. Consider that each expectation value 〈AB〉 can be written as
∑

ij AiBjpij,

and thus

〈χCHSH〉 =
∑
ij

Kijpij ≤ Kmax
∑
ij

pij = Kmax. (4.5)

This generalizes immediately to cases with more observables.

All possible values for Kij in the case of the CHSH-inequality are shown in A.1.
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This shows straightforwardly that a simple, deterministic evolution suffices to

maximally violate the CHSH inequality: K0,8 = 4, since λ0 = (+ + + +) and

λ8 = (− + + +), and thus, 〈AB〉 = 〈BC〉 = 〈CD〉 = +1, while 〈DA〉 = −1.

Via probabilistic mixtures of such evolutions, it is possible to equal any value

between 2 and 4; for instance, if p0,0 = 2 −
√

2 and p0,8 =
√

2 − 1, i.e. if the

initially prepared state λ0 remains undisturbed with a probability of ca. 58.6%,

and flips to λ8 with a probability of 41.4%, then the expected value 〈χCHSH〉
equals the Tsirelson bound, 2

√
2. This already demonstrates well the spirit of

the model: despite being explicitly noncontextual, a contextuality test would

yield a positive result simply because of the compatibility violation effected by

the hidden variable state transition.

Let us now investigate how models of the presented kind manage to produce vio-

lations of Kochen-Specker inequalities. First, consider the case in which we have

perfect control over the hidden-variable state we prepare. Then, the distribution

over the hidden variables is pi = 1 for some i, i.e. we are with certainty in the

state λi. We can then prove the following:

Proposition 4.2. For any hidden-variable state λj, there exists a deterministic

evolution such that 〈χCHSH〉 = 4.

Proof. Let λj be the state of the hidden variables. Then, for any observable

X, 〈X〉 =
∑

iXipi. Since Xipi = 0 for all i 6= j and pj = 1, 〈X〉 = Xj.

Any deterministic channel now takes the distribution p to some p′ with the

property that p′k = 1 for some k, i.e. afterwards, the system is definitely in the

hidden-variable state λk. Hence, the expectation value of a product is equal to

〈XY 〉 = XjYk. In order to maximally violate the CHSH inequality, we now only

need for all of AjBk, BjCk, and CjDk to equal 1, while DjAk must equal −1. But

such a state can always be found: it is uniquely the state λk for which Bk = Aj,

Ck = Bj, Dk = Cj and Ak 6= Dj.

Another important consideration is what happens in the case of a channel that

only leads to very weak compatibility violations, i.e. in which the state is only

changed with a certain, small, probability p; this models the realistic case of small

measurement-induced disturbances. In this case, we have:

Proposition 4.3. For any hidden-variable state λj, there exists a Markov chan-

nel inducing probabilistic state changes such that the CHSH-inequality is violated
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for arbitrarily small transition probabilities.

Proof. As before, since we start out in a definite state, 〈X〉 = Xj for the observ-

able measured first in a sequence. As was shown above, there exists always a

state λk such that 〈χCHSH〉 is maximal for any λj. Thus, we shall assume that

the system always either transitions to this state with probability p, or remains

in the same state with probability 1 − p. Then, any expectation value of a se-

quence of two observables can be written as 〈XY 〉 = Xj(pYj +(1−p)Yk). For the

sequences AB, BC, and CD, this does not change anything, since AjBj = AjBk,

BjCj = BjCk, and CjDj = CjDk. However, for the sequence DA, we get

〈DA〉 = p(−1) + (1− p)(+1) = 1− 2p, since DjAj = −DjAk. Thus, the value of

〈χCHSH〉 evaluates to

〈χCHSH〉 = 〈AB〉 + 〈BC〉 + 〈CD〉 − 〈DA〉 = 2 + 2p, (4.6)

i.e. 〈χCHSH〉 > 2 for all p > 0.

Alternatively, this follows immediately from the fact that there always exists a

deterministic evolution maximally violating the CHSH inequality (see 4.2), and

an evolution yielding 〈χCHSH〉 = 2, the convex combination of which then leads

to 〈χCHSH〉 = 2 + 2p.

The noncontextual nature of this model can be made more explicit by consider-

ing the representation 4.2 of the hidden-variable states. Take, for instance, the

hidden- variable state λ0 = (+ + + +). Then, in the notation introduced in 4.2,

the Markov channel can be written as:

M =

(
1 − p p

p 1 − p

)
⊗

(
1 0

0 1

)⊗3

(4.7)

In this representation, it is obvious that the channel acts exclusively on the ob-

servable A, flipping its value with probabilitiy p, regardless of the other observ-

ables (whose values it leaves invariant).

Thus, the CHSH inequality can be violated by a model such as the above for

arbitrarily small violations of compatibility, which are unavoidable in any real

experiment.
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Now, turn to the other extreme: if we assume absolute uncertainty about the

preparation of the hidden variables, i.e. pi = 1
16

for all i, we obtain:

Proposition 4.4. In the case of absolute preparation uncertainty, i.e. p(λi) = 1
16

for all λi, there exists a unique evolution such that 〈χCHSH〉 = 4.

Proof. This result follows straightforwardly from proposition 4.2, which asserts

that there always is a maximally CHSH-violating evolution for any state. It then

suffices to take the convex combination of all these evolutions, i.e. choose pij such

that pij = 1
16

if Kij = 4 and pij = 0 otherwise.

This directly entails that for all possible initial probability distributions, one can

always find evolutions such that the CHSH inequality is violated to any desired

degree.

4.2.2 Violating Extended KS-Inequalities

Recall that it was proven in [44] that for each hidden-variable dynamics obeying

Assumption 2.1 (cumulative noise), the extended CHSH inequality

〈χCHSH〉 − 2perr[B1A2B3] − 2perr[C1B2C3] − 2perr[D1C2D3] − 2perr[A1D2A3] ≤ 2

(4.8)

holds. In order to evaluate this in the present context, we first show the following:

Proposition 4.5. Assumption 2.1 does not hold for random evolutions in gen-

eral.

In order to prove this, we first establish the following lemma:

Lemma 4.6. Any Markov matrix M such that mij = mji, and mij = 1 for

exactly one value of j, i.e. which is both symmetric and deterministic, squares to

the unit matrix.

Proof. The elements of the square of M , M2
ij =

∑
kmikmkj, are non-vanishing if,

and only if, i = j, since mik = mki by symmetry, and mkj = 0 for all j 6= i because

of the Markovianicity condition 4.4 and the channel’s determinism. Because of

the latter, every non-zero value also must be equal to 1, and thus, M2 = 11.
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With this, we can now prove the theorem:

Proof. Consider a symmetric, deterministic Markov matrix Msym. By lemma

4.6, M2
sym = 11. Thus, evolving the original probability distribution twice re-

turns it to its original state. But this means that p[(B+
1 , B

−
3 |B1A2B3)] = 0,

while p[(B+
1 |B1) and (B−

2 |A1B2)] is arbitrary (equal to 1, for instance, if the

state is changed after every measurement); thus, p[(B+
1 |B1) and (B−

2 |A1B2)] �
p[(B+

1 , B
−
3 |B1A2B3)], meaning that the disturbance is not cumulative.

Thus, not all possible dynamics for the hidden variables obey assumption 2.1.

Therefore, the extension of Kochen-Specker inequalities by error terms does not

necessarily completely solve the problem of compatibility: if some evolution exists

such that the disturbance is non-cumulative, inequalities such as 2.17 or 4.8 may

be violated by non-contextual models. Indeed, we can establish the following:

Proposition 4.7. For any hidden-variable state λj, there exists a deterministic

evolution maximally violating the extended CHSH-inequality and the assumption

of cumulative noise (2.1).

Proof. Proposition 4.2 assures us that we can always find a Markov channel that

violates the CHSH inequality using a deterministic model, and proposition 4.5

establishes that if the model is symmetric, assumption 2.1 is violated, and in

fact, all terms of the form p[(B+
1 , B

−
3 |B1A2B3)], and thus, all error terms, vanish;

thus, it suffices to be able to violate the original CHSH inequality, and it remains

only to be shown that one can do so using a symmetric Markov matrix. But this

is necessarily the case: the model capable of violating the CHSH inequality was

such that it always flipped the hidden-variable according to the rules given in the

proof of proposition 4.2, i.e. for instance from λ3 = (++−−) to λ1 = (+++−);

thus, applying the channel again simply undoes the flip, and restores the original

state.

Therefore, the same simple kind of models that are capable of violating the CHSH

inequalities are also capable of violating the extended inequalities of ref. [44].

However, while they cannot perfectly rule out these models, the extended inequal-

ities can be used to put a bound on the strength of the violation of compatibility

needed:
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Proposition 4.8. For any hidden-variable state λj, if p represents the probabil-

ity that a state transition occurs, a probabilistic Markov model that violates the

extended CHSH inequality needs p to exceed 7
8
.

Proof. The probability that the value of a certain observable changes is equal to

the probability that the state changes, given that the state changes to one in which

the observable has a different value. In order to show a violation of the assump-

tion, it is enough to consider one measurement sequence, e.g. AB; thus, the only

error probabilities are p[(A+
1 |A1) and (A−

2 |D1A2)] = p[(A−
1 |A1) and (A+

2 |D1A2)] =

p. In order to violate assumption 2.1, we need that, for instance,

p[(A+
1 |A1) and (A−

2 |D1A2)] > p[(A+
1 , A

−
3 |A1D2A3)]. (4.9)

Since we need the symmetry of the transition matrix in order to violate the as-

sumption at all, we know that this probability must be equal to the probability

of remaining in the state λk after the second transition, i.e. of not transitioning

back to the original state λj. Since the transition λj → λk occurs with a proba-

bility of p, and the system then remains in the state λk with probability (1 − p),

the probability for the evolution λj → λk → λk is equal to p− p2. Thus, in order

to violate assumption 2.1, it is necessary that

p > p− p2. (4.10)

This is of course the case for all p > 0. Thus, any symmetric probabilistic Markov

model violates assumption 2.1.

It now remains to establish when such a model violates equation 2.17. As was

shown in the proof of proposition 4.3, for a probabilistic evolution, 〈χCHSH〉 =

2 + 2p. In order to establish a lower bound for the probability, we need to

examine the worst case, in which all observables change their value. This is the

case, for instance, for the evolution (−+−+) → (+−+−). Then, all error terms

contribute, and perr[B1A2B3] = perr[C1B2C3] = perr[D1C2D3] = perr[A1D2A3] =

2(p− p2). Thus, the necessary condition for this violation is

2 + 2p > 2 + 16(p− p2), (4.11)

which yields p > 7
8
.
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We have seen in this section that simple, random evolutions of the hidden vari-

ables can lead to violations of Kochen-Specker inequalities even if they are per-

fectly noncontextual: the measurement context does not factor into the Markov

channel, as it is applied uniformly after each measurement. This surprising fea-

ture has its origin in the fact that violations of compatibility, which is an essential

assumption in the Kochen-Specker theorem but hard to guarantee in reality, may

reinforce one another in a conspiratorial way to lead to experimental results that

are seemingly at variance with classical predictions. Past attempts to explic-

itly address this issue have been shown to be not fully adequate, though able to

significantly reduce the range of possible models.

One may, of course, call into question the reasonability of the models used here.

It is clear that the simplest versions can, in principle, be detected and excluded

easily: a model that deterministically changes the value of one observable upon

measurement may be defeated by simply measuring the same observable twice

and noting the consistent discrepancy; many models that introduce a random

evolution, such as the one presented above to obtain the Tsirelson bound, still

produce far higher error rates than experimentally observed. However, these ad-

mittedly crude models can be refined and made more realistic in various ways:

uncertainty about the prepared state together with probabilistic state changes

may conspire to make the compatibility violations significantly harder to detect,

and as has been shown above, models exist that can foil methods proposed pre-

viously to correct for just such deviations.

Furthermore, the problem is not so much one of practice as it is one of princi-

ple: though they may appear increasingly baroque, models can be found that

agree with any measurement record and which nevertheless ought not be called

contextual. To remedy this situation would certainly be of great interest.

60



Chapter 5

Noncontextual Evolution

The last chapter showed, with explicit models, that it is possible to violate

Kochen-Specker inequalities using noncontextual dynamics. This seems to once

more dampen the hopes of a definitive experimental test of the Kochen-Specker

theorem. Nevertheless, as we aim to show in this chapter, the contextuality

of quantum mechanics runs deeper still, and indeed deeper than the original

Kochen-Specker theorem establishes. Thus, we extend the notion of contextu-

ality to apply not merely to the state, but to the entire evolution of a system,

i.e. the succession of hidden variable states λi → λj → λk → . . . it traverses.

This notion of noncontextual evolution does not require the strict compatibility

of jointly measured observables. Then, we show that existing Kochen-Specker

inequalities may be reformulated such that their violation translates to a vio-

lation of noncontextual evolution, and thus, excludes a class of hidden-variable

theories containing both the usual noncontextual ones (in the limit where the

hidden-variable state does not undergo any evolution) and those given by the

models of the previous chapter.

5.1 Noncontextually Evolving Systems

In order to make precise the notion of noncontextual evolution, we first state the

following assumptions:

I. All of a system’s observables have definite values at any given time (value
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5.1 Noncontextually Evolving Systems

definiteness (VD)).

II. It is possible to uniquely attribute to each system a sequence of (hidden-

variable) states λi → λj → λk → . . . that is independent of the measure-

ments performed on the system (noncontextual evolution (NCE)).

These are clearly weaker assumptions than those made in the Kochen-Specker

definition of noncontextuality, as there exist models that obey both I. and II., yet

nevertheless violate a Kochen-Specker inequality (see theorem 4.2). However, the

notion of contextuality arrived at using these assumptions includes the Kochen-

Specker notion: if we choose the evolution such that the hidden-variable state

never changes, we get the usual formulation of noncontextuality. Thus, any

experimental refutation of noncontextual evolution entails a verification of the

Kochen-Specker theorem.

Furthermore, the notion arrived at in this way does not make explicit mention of

the measurement context of compatible observables, and is thus not vulnerable

to the problem of compatibility; there is no requirement that in a sequence of

measurements ABAC . . . A the first and last measurements of A necessarily agree

(recall our discussion of compatibility in sect. 2.6). Indeed, in general, this will

not be the case for a noncontextual evolution. The only thing that is required in

this case is that there is a fixed sequence of values that can be attributed to any

observables, corresponding to a fixed series of (hidden-variable) states traversed

by the system.

The notion of noncontextual evolution is appropriate for modeling systems with

unknown, but essentially classical, dynamics. The motivation for the models

discussed so far is the notion that during measurement, random influences may

change the ontic state, thus giving rise to incompatibilities between observables

assumed to be compatible. However, we are not fixed on this interpretation.

Another possible view would be that the system, as characterized by its hidden-

variable state, simply evolves on its own according to rules unknown and/or inac-

cessible to us. Measurement in this case could be construed essentially classical:

the objective value of some physical property is registered, with none or only

negligible interaction between measurement device and system. The outward ef-

fect of both would be the same: states assumed ‘in between’ measurements are

simply not registered, and thus, one can ignore them, studying instead only the
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5.1 Noncontextually Evolving Systems

‘reduced’ or ‘coarse-grained’ evolution as depicted in figure 5.1. In this view, the

probabilistic nature of the evolution may be thought of as arising simply from

differences in the timing of measurements: the same sequence of measurements

finds the system in different states due to its internal dynamics, even though they

are essentially deterministic.

Figure 5.1: a) Measuring a system that undergoes a deterministic, but unknown

and uncontrollable evolution: measurements executed at different times during

different runs of the experiment (full resp. broken circles) may yield different

results, while states of the system in between measurements have no observa-

tional consequences. b) The same system as in a), however, the evolution is now

understood as a probabilistic superposition of two possible evolutions, leading to

the same observations.

Thus, we see that the notion of a noncontextually evolving theory is a quite

general one, independent of the microscopic details of a possible hidden-variable

theory in the sense that only observed quantities matter, not the dynamics of
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how the system evolves from one state to another.

5.2 Inequalities Valid for All Noncontextually

Evolving Systems

From proposition 4.1, we know that the value of a Kochen-Specker inequality

is upper bounded by the quantity Kmax. As a brief reminder, for the CHSH-

inequality, this is the maximum of Kij = AiBj +BiCj +CiDj−DiAj, i.e. 4. This

is the highest value that can be reached by models undergoing noncontextual

evolution—and, as the discussion in the previous chapter shows, this limit is

actually attainable.

Can an inequality be found, such that the quantum value exceeds the value at-

tainable by noncontextual evolution? If so, experimentally verifying this violation

would amount to both a conclusive test of the Kochen-Specker theorem, since ob-

servables in this scenario may exhibit arbitrary violations of compatibility, and

exclude an actually even larger class of hidden variable theories, namely those

exhibiting noncontextual evolution.

The strategy is thus clear: if we can find an inequality such that Kmax is smaller

than the quantum value, its experimental violation would establish that quantum

mechanics cannot be explained in terms of a noncontextually evolving hidden vari-

able theory and, by restriction to the case in which all observables are compatible,

that it thus cannot be explained in terms of a (Kochen-Specker) noncontextual

realistic theory. Remarkably, such inequalities can indeed be found, and are given

by slight modifications of already familiar Kochen-Specker inequalities.

5.2.1 Generalizing the CHSH-Inequality

We shall start our investigations with the CHSH-inequality. Let us look first at

its general form:

〈χ〉 = 〈X(1)Y (1)〉 + 〈X(2)Y (2)〉 + 〈X(3)Y (3)〉 − 〈X(4)Y (4)〉 (5.1)

From this, the form 2.4 follows by the identifications X(1) = Y (4) = A, Y (1) =

X(2) = B, Y (2) = X(3) = C, and Y (3) = X(4) = D. The value of Kij is computed

64



5.2 Inequalities Valid for All Noncontextually Evolving Systems

as before:

Kij = X
(1)
i Y

(1)
j +X

(2)
i Y

(2)
j +X

(3)
i Y

(3)
j −X

(4)
i Y

(4)
j (5.2)

We can establish certain conditions that must hold for this expression to be

maximized, i.e. equal to 4. Keeping in mind that each of X
(k)
i = Y

(k)
i = ±1,

these are:

X
(1)
i = Y

(1)
j (5.3)

X
(2)
i = Y

(2)
j

X
(3)
i = Y

(3)
j

X
(4)
i 6= Y

(4)
j

Clearly, with the above assignment of observables leading to the form 2.4, these

conditions can be met, since in general, for instance, Ai 6= Aj. Thus, the original

form of the CHSH inequality is not an inequality capable of ruling out non-

contextually evolving hidden variables, as indeed was explicitly demonstrated in

the previous chapter. If, however, we could find an assignment such that not

all conditions can be satisfied simultaneously, then Kmax would necessarily be

constrained to a lower value.

One way to do this is to ensure that the truth of the first three conditions in 5.3

implies the falsity of the fourth. We make the following choice:

X
(1)
i = X

(4)
i (5.4)

Y
(1)
j = Y

(2)
j

X
(2)
i = X

(3)
i

Y
(3)
j = Y

(4)
j

This directly leads to the following:

Proposition 5.1. The following version of the CHSH inequality, which we call

simply CHSH∗, given by

〈χCHSH∗〉 = 〈AB〉 + 〈CB〉 + 〈CD〉 − 〈AD〉 ≤ 2 (5.5)

holds for all noncontextually evolving systems, but is violated by quantum me-

chanics.
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Proof. The proof follows straightforwardly by checking the conditions 5.3. Recall

that, for CHSH∗,

Kij = AiBj + CiBj + CiDj − AiDj. (5.6)

Evaluating the conditions 5.3, Ai = Bj and Ci = Bj, and thus, Ai = Ci. But

then, since Ci = Dj, Ai = Dj, violating the fourth condition. Thus, Kij ≤ 2.

In order to show the quantum violation, it suffices to exhibit a set of observables

and a state that yield a value of 〈χCHSH∗〉 > 2. We again choose a pair of

qubits in the state |ψ〉 = 1√
2
(|00〉 + |11〉), and the observables A = σx ⊗ 11,

B = − 1√
2
11 ⊗ (σz + σx), C = σz ⊗ 11 and D = 1√

2
11 ⊗ (σz − σx)), thus ensuring

〈χCHSH∗〉 = 2
√

2. However, there is a slight additional hitch that needs to be

addressed: the value of 2
√

2 implicitly assumes perfect compatibility, i.e. the state

does not change between measurements. This, as has already been discussed,

is unrealistic, and moreover would reintroduce the dependence on compatible

observables into the scenario.

Luckily, we can here take advantage of the discussion in chapter 3, where it was

shown that, under very general models for the noise introduced at the quantum

level into the measurement, the value of 〈χCHSH∗〉 only decreases (until eventually

no violation is observable anymore). Thus, in order to demonstrate a violation

of noncontextual evolution, a necessary and sufficient condition is

2 < 〈χCHSH∗〉 ≤ 2
√

2. (5.7)

The values of Kij for the CHSH∗ inequality are collected in A.2.

That this simple variation on the CHSH inequality should have such far-reaching

consequences deserves some further discussion. Let us consider what happens

during a measurement sequence. We start out with a probability distribution

p(λ), from which the first observable’s value is drawn; then, the probability dis-

tribution is evolved, and the second observable’s value is drawn from the evolved

distribution. Since the evolution is noncontextual, it will be the same regard-

less of which observable is measured first; thus, whenever an observable is drawn

second, it will be drawn from the same distribution. This then yields some in-

tuition as to why noncontextually evolving systems cannot violate the inequality
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5.5: since each observable always appears in the same place in each measurement

sequence, its value is always drawn from the same probability distribution.

This intuitive argument applies only in the case of a product distribution, how-

ever; nevertheless, the result applies to non-product distributions as well.

5.2.2 Generalizing the Peres-Mermin Inequality

Taking a hint from the previous discussion, we immediately state the following:

Proposition 5.2. The version of the Peres-Mermin inequality given by

〈χPM∗〉 = 〈ABC〉 + 〈cab〉 + 〈βγα〉 + 〈Aaα〉 + 〈βBb〉 − 〈cγC〉 ≤ 4 (5.8)

holds for all noncontextually evolving theories, but is violated by quantum me-

chanics.

Proof. Again, we must check the value of Kmax. Let us first analyze the condition

that must be met in order for a term such as 〈ABC〉 to be maximal. Interpreting

the outcomes of measurements of the observables as truth values, i.e. considering

the Ai,Bj and Ck to be propositions of the form ‘the value of A, given the hidden

variable state λi, is 1’, and thus, to be represented by Boolean variables, the

maximality of 〈ABC〉 is equivalent to the truth of the proposition:

Pmax = (Ai∧Bj∧Ck)∨(Ai∧¬Bj∧¬Ck)∨(¬Ai∧Bj∧¬Ck)∨(¬Ai∧¬Bj∧Ck), (5.9)

where ∧ denotes the logical and, ∨ denotes or, and ¬ stands for negation. This

means nothing else than that either all three or only one of the outcomes must

be +1 in order to have 〈ABC〉 = 1. Using the rules of Boolean algebra, this

proposition can be reduced to Ai ⊕ Bj ⊕ Ck, where ⊕ denotes the exclusive or

or xor (i.e. addition modulo 2). We can thus compactly write the condition of

maximality for the whole inequality, taking note of the fact that ¬(x⊕ y ⊕ z) =

x⊕ y ⊕ z ⊕ 1:

(Ai ⊕Bj ⊕ Ck) ∧ (ci ⊕ aj ⊕ bk) ∧ (βi ⊕ γj ⊕ αk)

∧ (Ai ⊕ aj ⊕ αk) ∧ (βi ⊕Bj ⊕ bk) ∧ (ci ⊕ γj ⊕ Ck ⊕ 1) = 1 (5.10)
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But this proposition cannot be fulfilled. To see this, consider that ci⊕aj⊕bk = 1

implies that ci = aj⊕bk⊕1, and similarly, γk = βi⊕αk⊕1 and Ck = Ai⊕Bj⊕1.

Substituting these into the condition for the maximality of the final, negative

term in the inequality 5.8, which is

ci ⊕ γj ⊕ Ck ⊕ 1 = 1, (5.11)

we get
ci︷ ︸︸ ︷

aj ⊕ bk ⊕ 1⊕
γk︷ ︸︸ ︷

βi ⊕ αk ⊕ 1⊕
Ck︷ ︸︸ ︷

Ai ⊕Bj ⊕ 1
!

= 1. (5.12)

Using 1 ⊕ 1 = 0, we can rearrange the above to

βi ⊕Bj ⊕ bk ⊕ Ai ⊕ aj ⊕ αk
!

= 1. (5.13)

However, βi ⊕ Bj ⊕ bk = 1 and Ai ⊕ aj ⊕ αk = 1 are just the conditions for the

maximality of 〈βBb〉 and 〈Aaα〉, respectively.

But then, it immediately follows that 5.13 is a contradiction, and thus, 〈βBb〉,
〈Aaα〉, and −〈cγC〉 cannot simultaneously equal +1. Hence, Kmax is constrained

to remain below 4 for all noncontextually evolving theories.

The quantum violation of 5.8 follows from the same considerations as in the case

of 5.5: again, any quantum noise induced tends only to drive the value of 〈χPM∗〉
down; additionally, the quantum violation saturates the algebraic maximum of

the inequality. Thus, a necessary and sufficient condition to prove a violation of

noncontextual evolution is

4 < 〈χPM∗〉 ≤ 6. (5.14)

In this formulation, we can take full advantage of the fact that the proof of

the Peres-Mermin inequality, as given in 2.2.2, is state-independent; thus, not

only contextuality, but also the contextuality of evolution is a state-independent

property of quantum mechanics—as it of course must be, since it includes the

former notion.
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5.3 An Extension of the KS-Theorem

In the previous section, we have arrived at inequalities valid for noncontextual

evolutions (NCE-inequalities), which are:

I. obeyed by any theory in which systems evolve noncontextually, i.e. which

obey both VD and NCE as defined in section 5.1,

II. violated by quantum mechanics,

III. independent of the notion of compatible observables,

IV. due to their operationally-definable nature, immune to the finite-precision

problem, and

V. a generalization of Kochen-Specker inequalities, in the sense that, if com-

patibility holds between the different measurements, their violation implies

the Kochen-Specker theorem.

These properties furthermore entail the following:

1. Quantum mechanics cannot be completed by a theory in which the hidden

variable state evolves noncontextually.

2. The impossibility of completing quantum mechanics with noncontextually

evolving hidden variables can be tested experimentally.

3. Experimental verification of this impossibility implies a verification of the

Kochen-Specker theorem.

The truth of 1 follows straightforwardly from I and II. For 2, as was discussed

in chapter 2, the main obstacles to experimentally testing the Kochen-Specker

theorem are the finite-precision problem (2.5) and the problem of compatibility

(2.6). The second problem does not apply, since the notion of noncontextual

evolution is independent of the notion of compatibility (III). Furthermore, as

was also explicitly shown, the models implementing violations of compatibility

as discussed in chapter 4 are incapable of violating inequalities 5.5 and 5.8. As

argued in chapter 2, the finite-precision problem does not apply to inequalities
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which may be arrived at via an operational definition free of references to quantum

theory (see sect. 2.5.2). Finally, 3 follows directly from the fact that the set of

all noncontextual evolutions includes the trivial evolution, i.e. that in which the

hidden variable state never changes.

This result deserves some further comments. First, we note that the notion

of noncontextually evolving systems is a very intuitive one and applies to all

classical systems: a thrown baseball, for instance, follows its parabolic trajectory

independent of measurements of its height, position, or momentum (in so far as

such measurements may be obtained without exercising significant influence on

the ball, such as, for instance, optically, i.e. via video or photography).

Thus, noncontextual evolution formalizes the intuitive idea that in a classical

theory, measurement is exclusively about ascertaining the value of a possessed

property of a system, and it does so in a way that is weaker than the original

Kochen-Specker notion: Kochen-Specker noncontextuality asserts that there is

a definite association of properties to a system in a given state; noncontextual

evolution merely asserts that there exists a set of states that the system may

assume such that we can validly assert propositions of the form ‘in the state λi,

the value of the observable A is Ai’. This extends the notion of contextuality

from one applicable within a given state, and thus, within a set of compatible

measurements (as incompatible measurements will change the state according to

the projection postulate), from one applicable to the set of possible states as a

whole.

A somewhat related concept, similarly establishing the impossibility of mimick-

ing the time evolution of quantum systems classically, was introduced by A. J.

Leggett and A. Garg in their 1985 article “Quantum Mechanics versus Macro-

scopic Realism: Is the Flux There when Nobody Looks?”. They define a notion

of macroscopic realism by means of the following two postulates:

I. A macroscopic system with two or more macroscopically distinct states

available to it will at all times be in one or the other of these states (macro-

scopic realism (MR)).

II. It is possible, in principle, to determine the state of the system with ar-

bitrarily small perturbation on its subsequent dynamics (noninvasive mea-

surement (NM)).
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From these notions, they derive inequalities that any theory obeying MR and NM

must satisfy, but which are violated in quantum mechanics. One such inequality

is the following:

C12 + C23 + C34 − C14 ≤ 2 (5.15)

Here, a symbol like Cij denotes the correlation between measurements on a system

undertaken at times ti and tj. The similarity to the CHSH∗ inequality is obvious

if we identify C12 = 〈A1B2〉, C23 = 〈C3B2〉, C34 = 〈C3D4〉 and C14 = 〈A1D4〉,
where the symbol B2 for instance denotes the observable B measured at time t2.

Despite this similarity, however, there are important differences. The most ob-

vious one lies with the fact that Leggett and Garg consider only a single mea-

surement, repeated at different times: if the system then does not undergo any

dynamics in between measurements—i.e. if its state stays the same—, then quan-

tum mechanics predicts just a repetition of the same outcome with each new

measurement, and thus, perfect correlation. But then, C12 +C23 +C34−C14 ≡ 2.

This contrasts with the fact that for 5.5, 〈χCHSH∗〉 = 2
√

2 in the case of no state

changes, due to our choice of observables. But this fact is necessary in order to

conclude a violation of noncontextuality from an experimental violation of 5.5;

thus, inequalities like 5.15—which after all were not derived with a focus towards

contextuality—cannot be used for this purpose.

Furthermore, with their postulate II., they insist on the noninvasiveness of mea-

surement, while the motivating assumption of the present work, to a large extent,

was precisely the fact that measurements tend to be invasive in the sense that

in realistic implementations, noise effects and environmental couplings tend to

induce spontaneous state changes. Thus, while one can argue that the notions

coincide in the case of what we have called deterministic evolutions (as we have

indeed done, see Figure 5.1 and surrounding text), it seems more problematic to

incorporate the notion of probabilistic mixtures of evolutions into their approach.

Additionally, we have not been concerned with any notion of macrocopicity.

Nevertheless, the similarity of both results is certainly striking, and the new

connection to contextuality and the Kochen-Specker theorem seems well worth

pursuing. One straightforward consequence of this connection is the possibility

to view the Peres-Mermin inequality in the form 5.8 as a kind of Leggett-Garg

inequality involving the correlations between measurements at three different
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moments in time:

C123 + C456 + C789 + C159 + C726 − C483 ≤ 4, (5.16)

using the identifications C123 = 〈A1B2C3〉, C456 = 〈c4a5b6〉, C789 = 〈β7γ8α9〉, and

so on.

5.3.1 Contextually Evolving Hidden Variables

In order to fully grasp the notion of noncontextual evolution, it is instructive to

consider systems that evolve contextually, and thus, are capable of violating the

NCE-inequalities despite all observables having definite values at all times. Such

models have, for instance, been proposed in the investigation of the memory cost

of classically simulating contextuality [71], or in Larsson’s proposal to formulate

a contextual extension [72] of Spekkens’ toy theory [73].

The model of ref. [71] is defined as an automaton, i.e. as a system with a

finite number of states and fixed rules according to which it transitions between

them, which can capture all the predictions of the Peres-Mermin square (see sect.

2.2.2). The particular automaton they choose has four distinct states:

S1 =

+ + (+, 2)

+ + (+, 3)

+ + +

 (5.17)

S2 =

 + + (+, 2)

− + −
(−, 4) (+, 3) +

 (5.18)

S3 =

 + − −
+ + +

(+, 1) (−, 4) +

 (5.19)

S4 =

+ − (−, 3)

− + (−, 3)

− − +

 (5.20)
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The notation for these states includes the transition rules between them: if,

for instance, the third observable in the first row of the Peres-Mermin square

(corresponding to the observable C) is measured while the system is in state S1,

it outputs the value +1 and then transitions to the state S2.

Let us investigate how the model violates the NCE-inequality 5.8. We will assume

that for every sequence of measurements, the automaton is initialized in the

state S1. We will denote the state before and after measurement as subscripts,

and the measurement outcome as superscript on the symbol for the observable

measured, in the form S1
C+

S2
, meaning that the automaton was in the state S1

before measurement, the measuring of C produced the outcome +1 and caused

the automaton to transition to the state S2. Thus, an expectation value such as

〈ABC〉 evaluates to S1
A+

S1
B+

S1
C+

S2
= 1. Then, we can calculate 〈χPM∗〉 as follows:

〈χPM∗〉 = S1
A+

S1
B+

S1
C+

S2︸ ︷︷ ︸
1

+ S1
c+S2
a+S2

b+S2︸ ︷︷ ︸
1

+ S1
β+
S1
γ+S1

α+
S1︸ ︷︷ ︸

1

(5.21)

+ S1
A+

S1
a+S1

α+
S1︸ ︷︷ ︸

1

+ S1
β+
S1
B+

S1
b+S1︸ ︷︷ ︸

1

− S1
c+S3
γ+S3

C−
S1︸ ︷︷ ︸

−1

= 6

Thus, the automaton correctly reproduces the quantum value 〈χPM∗〉 = 6. This

means that the automaton evolves in a contextual way, as can also be seen by

the fact that its evolution cannot be depicted by a diagram of the form of 4.2;

the branching does not occur in a probabilistic way, but rather, deterministically

based on the measurements performed on the system. Two example evolutions

are given in Figure 5.2.

Thus, systems of this kind may, in principle at least, underly the dynamics of

contextually evolving systems. However, the transition rules 5.17–5.20 are rather

ad hoc and unnatural (of course, it was not the purpose of ref. [71] to find a

natural or realistic model). Hence, it would be interesting to consider a model

whose rules might be more well-motivated.

Such models are given by close ‘cousins’ of the models discussed in chapter 4.

Again, we will focus only on their capacity to violate NCE-inequalities, neglecting

for the moment the question of how to fashion them into realistic models for

quantum mechanics as a whole.

The key to these models is to restrict attention to only the part of the state

relevant to a given measurement; i.e. if the state is λ4 = (+ − + +), and we
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Figure 5.2: Two evolutions of the automaton from ref. [71]; the state change

after the measurement of C in the first evolution is not indicated.

are considering the measurement sequence AB, the relevant part is simply the

tuple (+−), which we name, in analogy with the naming convention we used for

the λi, µi. Thus, if we consider the CHSH∗ inequality, the relevant state space

is {µ0, µ1, µ2, µ3} = {(++), (+−), (−+), (−−)}. On this reduced state space,

we let the same Markovian dynamics act that defined the models in chapter 4.

This has the effect that, since different reduced states evolve differently, and the

same full state reduces in different ways depending on the measurement being

carried out, the state transformation depends on the measurement—and is thus

explicitly contextual.

To give an example, let the full state be λ4, and consider the measurement se-

quence AB. As defined above, the reduced state is then µ1 = (+−). However,

if we consider the measurement sequence CD, the reduced state is µ0 = (++).

If now the Markov channel is such that the states µ1 and µ0 get mapped to dif-

ferent states, this means that implicitly the state λ4 evolves in a different way if

the measurement sequence is AB than if it is CD; we thus have a contextually

evolving system.

We can now show the following:

Proposition 5.3. There exist models of the above-discussed kind capable of vio-

lating NCE-inequalities.

74



5.3 An Extension of the KS-Theorem

Proof. The proof follows by exhibiting a concrete example: the model imple-

mented by the Markov matrix

Mµ =


1 0 0 1

0 0 1 0

0 1 0 0

0 0 0 0

 (5.22)

violates the CHSH∗ inequality 5.5 maximally if the hidden variables start out

in the state λ9 = (− + + −). The proof follows by direct calculation of the

expectation value 〈χCHSH∗〉. As a reminder, the CHSH∗ inequality is

〈χCHSH∗〉 = 〈AB〉 + 〈CB〉 + 〈CD〉 − 〈AD〉 ≤ 2. (5.23)

Since the hidden variable state in the beginning is λ9, the reduced states relevant

for the calculation are, in order:

• µ2 = (−+) for the measurement of AB,

• µ0 = (++) for the measurement of CB,

• µ1 = (+−) for the measurement of CD, and

• µ3 = (−−) for the measurement of AD.

The stochastic matrix 5.22 tells us how the state is changed during each mea-

surement: a one in the position i, j indicates that the state µi is always changed

to µj after the first observable is measured. Using notation analogous to 5.21,

we get the expectation values:

〈χCHSH∗〉 = µ2
A−

µ1
B−

µ3︸ ︷︷ ︸
1

+ µ0
C+

µ0
B+

µ0︸ ︷︷ ︸
1

+ µ1
C+

µ3
D+

µ0︸ ︷︷ ︸
1

− µ3
A−

µ0
D+

µ0︸ ︷︷ ︸
−1

= 4 (5.24)

The model thus violates the CHSH∗ inequality maximally, yielding 〈χCHSH∗〉 =

4.

This model has some peculiar properties that are worth investigating. First, let

us generalize to a case in which the state transition only occurs probabilistically,
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5.3 An Extension of the KS-Theorem

i.e. to a model given by the Markov matrix Mµ(p):

Mµ(p) =


1 0 0 p

0 1 − p p 0

0 p 1 − p 0

0 0 0 1 − p

 (5.25)

Here, p is the probability that a given state is changed, and thus, 1 − p is the

probability that it remains unchanged.

We can immediately establish an analogous result to proposition 4.3:

Proposition 5.4. The model implemented by the stochastic matrix 5.25 violates

the CHSH∗-inequality for any value of p > 2
3
.

Proof. The proof follows via direct calculation. The expectation value of a prod-

uct of two observables, say, A and B can be written as 〈AB〉 = p
(
µ2
A−

µ1
B−) +

(1 − p)
(
µ2
A−

µ2
B+
)

= p(+1) + (1 − p)(−1) = −1 + 2p; similarly, 〈CB〉 = 1,

〈CD〉 = −1 + 2p and 〈AD〉 = 1 − 2p. Hence,

〈χCHSH∗〉 = 〈AB〉 + 〈CB〉 + 〈CD〉 − 〈AD〉 = −2 + 6p (5.26)

Thus, 〈χCHSH∗〉 > 2 requires p > 2
3
.

This might seem to immediately disqualify such a model due to unacceptably

large violations of compatibility. However, the most immediate, naive test of

compatibility, checking the requirement that [X, Y ] = 0 for all observables X

and Y in the same context, will not work as expected:

Proposition 5.5. Despite its obvious violations of compatibility, the model as

given by 5.25 is pseudo-compatible, i.e. 〈[X,Y ]〉 = 0 for all observables within

a context.

Proof. We will establish this by explicitly checking the commutators. For this, it

suffices to check whether 〈BA〉, 〈BC〉, 〈DC〉 and 〈DA〉 agree with their counter-

parts calculated in the proof of theorem 5.4. This yields 〈BA〉 = p
(
µ1
B+

µ2
A+
)

+

(1− p)
(
µ1
B+

µ1
A−) = p(+1) + (1− p)(−1) = −1 + 2p, 〈BC〉 = 1, 〈DC〉 = −1 + 2p

and 〈DA〉 = 1−2p. Hence, the expectation value of all commutators vanishes.
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5.3 An Extension of the KS-Theorem

This shows that, in order to establish compatibility, it is not enough to require the

commutator to vanish, contrary to what is sometimes claimed in the literature

(e.g. [32, 49]).
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Chapter 6

Conclusion

In this thesis, we have examined the experimental testability of the Kochen-

Specker theorem, with a focus towards the problem of compatibility. The ap-

proach we have taken towards the Kochen-Specker theorem, and to no-go theo-

rems in general, was motivated by the debate about the possibility of a completion

of quantum mechanics by hidden variables, such that the resulting theory yields

definite and unambiguous predictions for all observable quantities.

As has already been remarked upon, it is not possible to rule out hidden variable

theories in general: a perfectly adequate hidden variable theory can, for instance,

always be given by the observed probability distributions in any experiment them-

selves. Thus, the best one can do is to put limits on possible completions, and

then consider whether what is left really can give rise to a theory whose impli-

cations are any less radical than those of quantum mechanics. To this end, it is

important to collect experimental evidence for the validity of no-go theorems1, as

has been already done with great success in the case of Bell’s theorem, in order

to establish which of a pair (or set) of mutually exclusive possibilities is in fact

realized in nature.

Thus, in chapter 3, we have first undertaken an investigation into the behaviour

of certain noncontextuality inequalities under noisy measurements, in order to

1Of course, there is not really a way to test a theorem experimentally; in as much as it is

a piece of pure mathematics, it is exactly as good and valid as the assumptions and reasoning

that went into its derivation. Rather, it is the experimental consequences of a theorem that are

being tested, and language of the kind used above should be understood as shorthand for this.
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quantify the degree of violation to be expected in real experiments.

Under a wide variety of noise models (depolarizing noise (3.3), bit-flip errors

(3.4), amplitude damping (3.5), and phase damping (3.6)), it was found that

the quantum violation decreased steadily, but not too fast in order to expect

to be able to observe violations of noncontextuality of quantum mechanic origin

in real experiments. Furthermore, we analyzed the extended Kochen-Specker

inequalities of ref. [44], for which the bounds were found to be significantly

tighter, but still not unmatchable.

Then, in chapter 4, we introduced classical models designed to produce violations

of compatibility in order to give the appearance of violations of noncontextual-

ity. The operational motivation of these models was rooted in the measurement

process: since we have no control over any possible hidden-variable state un-

derlying the quantum state of a system, interactions between the measurement

device and the measured system may cause unpredictable and effectively random

hidden-variable state transitions. Such transitions then show up in the form of

violations of compatibility. As was shown in proposition 4.2, for any possible

hidden-variable state, there exists an evolution such that the CHSH inequality is

maximally violated, despite this evolution being independent of the measurement

context and thus in this sense noncontextual.

Furthermore, we have subjected the extended CHSH inequality of ref. [44] to

the same analysis, and found that, while it is not as easily violated as the regular

CHSH inequality, it—and, by extension, similar extensions of other inequalities—

nevertheless cannot exclude these models.

Finally, chapter 5 saw the formulation of a first attempt to overcome the problem

of compatibility. To this end, we formulated a notion of noncontextuality which

we termed noncontextual evolution 5.1, defined by two postulates:

I. All of a system’s observables have definite values at any given time (value

definiteness (VD)).

II. It is possible to uniquely attribute to each system a sequence of (hidden-

variable) states λi → λj → λk → . . . that is independent of the measure-

ments performed on the system (noncontextual evolution (NCE)).

As shown in chapter 4, systems obeying I. and II. may exhibit violations of
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Kochen-Specker inequalities. However, the notion of noncontextual evolutions

led us to new inequalities—actually, reformulations of inequalities 2.4 and 2.13

in which attention was paid to the ordering of observables—, that were shown to

be obeyed by all noncontextually evolving systems, yet are nevertheless violated

by quantum mechanics, the contextuality of which thus was shown to run even

deeper than the Kochen-Specker notion.

The advantage of noncontextual evolution is that it does not depend on the notion

of compatibility: while it is not possible to derive inequalities such as 2.4 and

2.13 without assuming the co-measurability (and hence, compatibility) of the

observables, and thus, the experimental violation of these inequalities does not

say anything about the Kochen-Specker notion of contextuality, inequalities like

the one we called CHSH∗, given by

〈χCHSH∗〉 = 〈AB〉 + 〈CB〉 + 〈CD〉 − 〈AD〉
HV

≤ 2, (6.1)

hold even if there is no perfect compatibility between the observables. The only

requirement is for there to be a definite evolution (or probabilistic combination of

such evolutions) λi → λj → . . . that applies independently of the measurements

being carried out on the system, i.e. the context. Thus, experimental obser-

vation of the violation of these inequalities does unambiguously indicate that

quantum mechanics cannot be replaced by a noncontextually evolving theory,

since, due to the investigations of chapter 3, we know that even under imper-

fect measurements, quantum mechanics violates such inequalities. Additionally,

since any system for which the Kochen-Specker notion of noncontextuality ap-

plies is a noncontextually evolving system—its evolution being the trivial one

in which the hidden variable state never changes—, this experimental violation

also implies that quantum mechanics cannot be supplanted by Kochen-Specker

noncontextual hidden variables.

An interesting side result to this discussion has been the realization of a con-

nection between our NCE-inequalities and Leggett-Garg inequalities, and thus,

between noncontextuality and macroscopic realism. In a sense, an inequality such

as 6.1 above may be considered as both a Leggett-Garg and Kochen-Specker in-

equality: it rules out macroscopic realism for nontrivial evolutions in between

measuremens, and noncontextuality in the case of no state changes (which the

usual Leggett-Garg inequalities do not). Thus, the notion of noncontextual evo-
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lution may be considered to provide a unified background to both.

We then seem to have arrived at a possible answer to the problem of compati-

bility, and thus, at a route towards subjecting the Kochen-Specker theorem to

the same rigorous empirical testing that Bell’s theorem already has withstood so

magnificently.

We hope that this present work will thus aid in the program to put the Kochen-

Specker theorem on the same firm experimental footing that Bell’s theorem al-

ready rests upon, possibly opening up ways for quantum contextuality to play

a role in the foundations and applications of quantum mechanics similarly to

that enjoyed by nonlocality. Some first steps in this direction have already been

undertaken: contextuality has been implicated to play a role in measurement-

based quantum computation 2.1, it has been used to guarantee the security of

quantum key distribution protocols [75, 76], and its role in axiomatizations of

physical theories has been investigated [25].
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Appendix A

Some Tables of Values
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A.1 Possible Values for the CHSH-Inequality

A.1 Possible Values for the CHSH-Inequality

For the CHSH-inequality, the quantity Kij = AiBj +BiCj +CiDj −DiAj, for all

combinations, evaluates to:

KCHSH =



2 0 0 0 4 −2 −2 2 −2 2 2 −4 0 0 0 −2

4 2 2 2 2 0 0 0 0 0 0 −2 −2 −2 −2 −4

0 2 −2 −2 2 0 0 4 −4 0 0 −2 2 2 −2 0

0 −2 2 −2 2 0 −4 0 0 4 0 −2 2 −2 2 0

0 −2 −2 2 2 −4 0 0 0 0 4 −2 −2 2 2 0

2 4 0 0 0 2 2 2 −2 −2 −2 0 0 0 −4 −2

2 0 4 0 0 2 −2 −2 2 2 −2 0 0 −4 0 −2

2 0 0 4 0 −2 2 −2 2 −2 2 0 −4 0 0 −2

−2 0 0 −4 0 2 −2 2 −2 2 −2 0 4 0 0 2

−2 0 −4 0 0 −2 2 2 −2 −2 2 0 0 4 0 2

−2 −4 0 0 0 −2 −2 −2 2 2 2 0 0 0 4 2

0 2 2 −2 −2 4 0 0 0 0 −4 2 2 −2 −2 0

0 2 −2 2 −2 0 4 0 0 −4 0 2 −2 2 −2 0

0 −2 2 2 −2 0 0 −4 4 0 0 2 −2 −2 2 0

−4 −2 −2 −2 −2 0 0 0 0 0 0 2 2 2 2 4

−2 0 0 0 −4 2 2 −2 2 −2 −2 4 0 0 0 2


(A.1)
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A.2 Possible Values for the CHSH*-Inequality

A.2 Possible Values for the CHSH*-Inequality

Analogous to the CHSH-inequality, the values of Kij = AiBj+CiBj+CiDj−AiDj

for the CHSH∗-inequality are:

KCHSH∗ =



2 2 2 −2 2 2 −2 2 −2 2 −2 −2 2 −2 −2 −2

2 2 2 −2 2 2 −2 2 −2 2 −2 −2 2 −2 −2 −2

−2 2 −2 −2 −2 2 2 2 −2 −2 −2 2 2 2 −2 2

2 2 2 −2 2 2 −2 2 −2 2 −2 −2 2 −2 −2 −2

2 −2 2 2 2 −2 −2 −2 2 2 2 −2 −2 −2 2 −2

−2 2 −2 −2 −2 2 2 2 −2 −2 −2 2 2 2 −2 2

2 2 2 −2 2 2 −2 2 −2 2 −2 −2 2 −2 −2 −2

2 −2 2 2 2 −2 −2 −2 2 2 2 −2 −2 −2 2 −2

−2 2 −2 −2 −2 2 2 2 −2 −2 −2 2 2 2 −2 2

−2 −2 −2 2 −2 −2 2 −2 2 −2 2 2 −2 2 2 2

2 −2 2 2 2 −2 −2 −2 2 2 2 −2 −2 −2 2 −2

−2 2 −2 −2 −2 2 2 2 −2 −2 −2 2 2 2 −2 2

−2 −2 −2 2 −2 −2 2 −2 2 −2 2 2 −2 2 2 2

2 −2 2 2 2 −2 −2 −2 2 2 2 −2 −2 −2 2 −2

−2 −2 −2 2 −2 −2 2 −2 2 −2 2 2 −2 2 2 2

−2 −2 −2 2 −2 −2 2 −2 2 −2 2 2 −2 2 2 2


(A.2)
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[32] A. Cabello and G. Garćıa-Alcaine, Proposed Experimental Test of the Bell-

Kochen-Specker Theorem, Phys. Rev. Lett. 80, 1797 (1998)

[33] C. Simon, M. Zukowski, H. Weinfurter and A. Zeilinger, A Feasible ’Kochen-

Specker’ Experiment with Single Particles, Phys. Rev. Lett. 85, 1783 (2002)

[34] Y.-F. Huang, C.-F. Li, Y.-S. Zhang, J.-W. Pan and G.-C. Guo, Realization of

All-or-nothing-type Kochen-Specker Experiment with Single Photons, Phys.

Rev. Lett. 90, 250401 (2003)

[35] S. M. Roy, V. Singh, Quantum Violation of Stochastic Non-Contextual Hid-

den Variable Theories, Phys. Rev. A 49, 3379 (1993)

87



BIBLIOGRAPHY

[36] S. Basu, S. Bandyopadhyay, G. Kar, D. Home, Bells inequality for a single

spin-1
2
particle and quantum contextuality, Phys. Lett. A 279, 281 (2001)

[37] C. Simon, C. Brukner and A. Zeilinger, Hidden-variable theorems for real

experiments, Phys. Rev. Lett. 86, 4427 (2001)
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und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, sowie

Zitate und Ergebnisse Anderer kenntlich gemacht habe.

(Ort) (Datum) (Unterschrift)

92


