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Abstract

One of the most prominent features of quantum mechanics is the incom-

patibility of measurements. This feature, not present in classical physics,

captures the fact that when performing observations on quantum systems

we find that, in general, the results of the subsequent measurement of

different (and classically uncorrelated) properties depend on the order on

which the measurements are carried out.

In this work, measurement incompatibility is regarded as an useful prop-

erty of experimental setups, for example, recent results [1] have shown that

incompatibility of measurements is needed for the task of quantum steer-

ing. After an introduction to selected notions of quantum theory needed

in the rest of the discussion (chapter 1), chapter 2 formalizes the notion of

measurement incompatibility for various objects used to describe measure-

ment procedures. Chapter 3 offers an introduction to quantum steering

and presents steering quantifiers often used in the literature. Chapter 4

explores the connection between the steerability of a setup and the com-

patibility of observables, and presents original results on the steerability

of broadcast quantum channels. Finally, in chapter 5 a formal resource

theory for incompatibility is developed, joining partial results present in

the literature.





Chapter 1

Introduction

The aim of this chapter is to provide a brief introduction to the math-

ematical notions and formalism used in the rest of this work, as well as

giving physical reasons for the need of such formalism.

1.1 Basic notions

1.1.1 Quantum mechanics as a probabilistic theory

Physical theories are formal devices used to predict the result of a measure-

ment procedure on a physical system. Such procedure usually consists of

a preparation stage in which the system undergoes a controlled evolution

and a subsequent interaction with a measurement device, which outputs

one of the possible outcomes of the experiment. This setup is depicted in

figure:
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2 1.1. Basic notions

ρ E

x1
x2
...
xn

preparation measurement outcome

A probabilistic theory makes predictions in the form of probabilities; i.e., it

assigns probabilities p(xi|ρ,E) to each experimental outcome xi, given the

preparation procedure ρ and the measurement E. Quantum mechanics is

a probabilistic theory built on Hilbert spaces, that is, operators on Hilbert

spaces are used to construct the ’phase space’ of the theory.

1.1.2 States as density operators

Preparation procedures (that is, ’states’ of the system) are formalized by

the use of unit trace, positive1 operators acting on a Hilbert space H.

Those operators are called density operators. We will denote the space of

density operators on a Hilbert space H with S(H).

This definition of states differs from the textbook notion in which states

are vectors in H; the main reason to introduce such operators is to be able

to unify the formal treatment of pure states and ensambles of states, as

will be clear in the next section. With this definition, the notion of pure

states can be recovered as extremal states in the convex2 space S(H), that

is, the density operator for a pure state |ψ〉, given by ρ = |ψ〉 〈ψ|, cannot

be written as a convex combination of two other operators. Note that,

since |ψ〉 〈ψ| is a projector, we have ρ2 = ρ.

For statistical mixtures of states, the density operator is defined as ρ =

1An operator V is said to be positive if 〈ψ|V |ψ〉 ≥ 0 ∀ |ψ〉 ∈ H
2The convexity of S(H) is trivial: any convex combination of positive, unit-trace

operators is also positive and self-adjoint. The trace condition is also trivially satisfied.
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∑
i pi |ψi〉 〈ψi|, where pi is the probability for the system to be in the state

|ψi〉. Since
∑

i pi = 1, the condition tr[ρ] = 1 is satisfied. However, it’s

easy to check that the relation ρ2 = ρ holds only if ρ describes a pure

state.

1.1.3 Multipartite systems

In the following discussion, we will often need to formalize the notion

of multipartite state, that is, the state of a large system composed of

multiple subsystems. We denote the Hilbert space of each subsystem with

H1,H2, . . .HN , and describe the larger system as the tensor product

H = H1 ⊗ H2 ⊗ . . . ⊗ HN . A basis for H can be obtained as {|ϕ1,i〉 ⊗
|ϕ2,j〉 ⊗ · · · ⊗ |ϕN,l〉}, where {|ϕ1,i〉} is a basis for H1, and so on.

Restricting ourselves to only two subsystems, in order to ease the notation,

we see that a general vector can be decomposed on this basis as:

|ψ〉 =
∑
i,j

αi,j |ϕ1,i〉 ⊗ |ϕ2,j〉 (1.1)

Therefore, density operators on H take the form:

ρ =
∑
i,j,k,l

αi,jαk,l |ϕ1|i〉 〈ϕ1|k| ⊗ |ϕ2|j〉 〈ϕ2|l| (1.2)

Theorem 1.1. (Schmidt decomposition) Let H1 and H2 be Hilbert spaces

of dimension n and m respectively; w.l.o.g we can assume m ≤ n. For

any vector |ψ〉 ∈ H1 ⊗H2 there exists orthonormal basis {|ϕ1,i〉}, {|ϕ2,i〉}
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for H1 and H2 and non-negative reals αi such that:

|ψ〉 =

m∑
i

αi |ϕ1,i〉 ⊗ |ϕ2,i〉 (1.3)

The number of non-zero coefficients αi is known as the Schmidt rank of

|ψ〉

Proof. The proof of this fact can be found in [2].

Definition 1.2. Given a multipartite state |ψ〉 ∈ H1 ⊗ H2, we say that

the state is entangled if its Schmidt rank is bigger than 1. Otherwise we

say that the state is separable.

Using the density operator notation for states, we have that if the total

larger system has a density matrix ρ12, the marginal density matrix for

one subsystem can be obtained by taking a partial trace over the other

subsystem. That is:

ρ1 = tr2[ρ12] =
∑
i

〈ϕ2,i| ρ12 |ϕ2,i〉 (1.4)

Proposition 1.3. If a bipartite state ρAB has a pure marginal state ρA,

then the state ρAB is separable.

Proof. If the bipartite state is pure, the density matrix ρAB can always be

written as:

ρAB = |ψ〉 〈ψ| =
∑
i,j

αiαj |ϕA,i〉 〈ϕA,j | ⊗ |ϕB,i〉 〈ϕB,j | (1.5)
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where αi are the Schmidt coefficient of |ψ〉 as in Theorem 1.1.

We can now write:

ρA = trB[ρAB] =
∑
l

〈ϕB,l|ψ〉 〈ψ|ϕB,l〉 =

=
∑
l,i,j

αiαj |ϕA,i〉 〈ϕA,j | ⊗ 〈ϕB,l|ϕB,i〉 〈ϕB,j |ϕB,l〉 =

=
∑
l,i,j

αiαj |ϕA,i〉 〈ϕA,j | δliδlj =

=
∑
l

α2
l |ϕA,l〉 〈ϕA,l|

(1.6)

If ρA is pure at most one of the αl can be non-zero, therefore he have that

the Schmidt rank of |ψ〉 is one, and that the state is separable.

In the case of mixed states, it’s easy to see that a mixed state can have

a pure marginal only if it is separable; that is, only if the total state is a

tensor product of a pure state with a mixed one.

1.1.4 Qubits

Throughout this work, we will often use the notion of qubits in proof and

examples. A qubit is any physical quantum system that can be described

by a 2-dimensional Hilbert space; the simplest example of a qubit is a

spin-1
2 particle.

The states are represented as two component vectors, represented in co-

ordinates with respect to the standard basis |0〉 = ( 1
0 ) and |1〉 = ( 0

1 ). It

is customary to extend the notion of Pauli matrices, usually used for spin
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systems, to any kind of two-level system, defining the operators:

σz =

(
1 0

0 −1

)
σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
(1.7)

The vectors |0〉 and |1〉 are eigenvectors of σz, while the eigenvectors of σx

and σy are respectively |±〉 = |0〉 ± |1〉 and |�〉 = |0〉 ± i |1〉.

Bloch sphere representation

An arbitrary density operator ρ representing the state of a qubit system

is any positive operator such that tr[ρ] = 1. We can parametrize this class

of operators by the following relation[2]:

ρ =
1

2
(1 + λn̂ · ~σ) (1.8)

where n̂ is a unit vector in R3, λ ∈ [0, 1] and ~σ = (σx, σy, σz). With

this in mind, we can represent all qubit states as the vectors ~v = λn̂

contained in a unit sphere; this representation is known as the Bloch

sphere representation. Note that the points on the surface of the sphere

(i.e. points for which λ = 1) are projectors, and therefore correspond to

pure states; points inside the sphere are mapped to statistical mixtures.

1.2 Measurements in Quantum Mechanics

In the standard presentation of quantum mechanics, measurable quanti-

ties correspond to self-adjoint operators Ô acting on a Hilbert space H.

The possible outcomes of the measurement process are the eigenvalues
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λi of the operator, while the probability of obtaining the outcome λi is

given by | 〈ψ|ϕi〉 |2, with Ôϕi = λiϕi, given that the state of the system is

|ψ〉 〈ψ|.
After the measurement the system is left in the state defined by the pro-

jection of |ψ〉 〈ψ| on the eigenspace corresponding to the measurement

outcome.

The expectation value of a measurement is then obtained as:

〈Ô〉 =

d∑
i=0

λipi =

d∑
i=0

λi| 〈ψ|ϕi〉 |2

=
d∑
i=0

〈ψ|λi|ϕi〉 〈ϕi|ψ〉 = 〈ψ|Ô|ψ〉 = tr[Ôρψ]

(1.9)

where ρψ = |ψ〉 〈ψ| is the density operator corresponding to the pure state

|ψ〉.

Relation (1.9) can be extended to act also on density matrices that corre-

spond to mixed states, taking ρ = p |ψ〉 〈ψ|+ (1− p) |ψ′〉 〈ψ′| we find:

〈Ô〉 = tr[Ôρ] = p tr[Ô |ψ〉 〈ψ|] + (1− p) tr[Ô |ψ′〉 〈ψ′|] (1.10)

which is indeed the correct expression for the expectation value of Ô on

the mixed state.

Such kind of measurements are commonly referred to as Projection-Valued

Measures (PVMs), as they can be defined by the set of orthonormal pro-

jectors {|ϕi〉 〈ϕi|} that make up the corresponding observable. Each ele-

ment of the set matches one of the possible outcomes of the measurement

process.
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1.2.1 Limitations of PVMs

PVMs, as we will see, are not the most general form of quantum mea-

surement one can devise. Although they are usually presented as the

standard formalization of measurement, there are many procedures that

extract information about a quantum system that cannot be formalized

by PVMs.

Example 1.1. A measurement device on a qubit acts as follows: A clas-

sical ’coin flip’ experiment is used to decide the fate of the qubit. In one

case, a projective measurement along the z axis will take place, and in the

other case the qubit will be measured along the x axis. The outcome of

the process is just the outcome of the chosen measurement, but no infor-

mation about which PVM has been performed is available. The setup is

summarized in figure:

ρ
p =

0.5 σz

p =
0.5 σx

+
−

+
−

+

−

Figure 1.1

Defining3 E+ = 1
2(P0 +P+) and E− = 1

2(P1 +P−), and calling ρ the state

of the input qubit one can easily check that the outcome probabilities for

this set up are given by:

p± = tr[E±ρ] (1.11)

Unfortunately E2
± 6= E± and therefore the set {E±} is not a PVM. A

closer look at the definitions of E± reveals that the above procedure can be

thought as a statistical mixture of the two PVMs {P0, P1} and {P+, P−}.
3Pi = |i〉 〈i| ; i = 0, 1,+,−.
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Example 1.2. Consider the following measurement procedure: the sys-

tem being measured is entangled with another auxiliary quantum system

which has been prepared in a known state, and a projective measurement

is then performed on the auxiliary system. As we will see in detail in the

next section, this kind of measurement can give information about the

system that can not be obtained by performing a standard PVM on the

initial system alone (e.g. a 3 outcome measurement on a 2 dimensional

system).

1.2.2 Positive Operator Valued Measures (POVMs)

The more general description of a measurement is given by the probabil-

ities of obtaining a certain outcome when measuring a (pure or mixed)

state ρ. With this in mind, we can associate to each outcome i a function

εi : H → [0, 1] such that εi(ρ) is the probability of obtaining the outcome

i when measuring the state ρ. We will call such functions effects[2].

Effects can be represented as positive operators E acting on H as follows:

ε(ρ) = tr[Eρ], with 0̂ ≤ E ≤ 1
4. The name effect will be used to refer

both to the function ε and to the corresponding operator E.

Definition 1.4. A Positive Operator Valued Measure (POVM) is a set of

effects {Ei}ni=1 such that
∑n

i=1Ei = 1.

Confronting this with a standard PVM (i.e., a set of projectors summing

up to the identity) we can see that the only difference is the additional

requirement for the elements of PVMs to be orthonormal5. Therefore, all

PVMs are also POVMs.

4With the notation 0̂ ≤ E ≤ 1 it is meant that 0 ≤ ε(ρ) ≤ 1 ∀ρ ∈ S(H).
5Formally, for a PVM {Pi} we require PiPj = δijPi
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With this new definition of measurement, we can overcome the limitations

presented in the previous section:

Example 1.3. Referring to the setup presented in example 1.1, we can

check that the set of operators {E±} introduced there constitute a POVM:

they are positive (they are defined as sum of positive operators) and:

∑
i=±

Ei =
1

2
(P0 + P1 + P+ + P−) =

1

2
(1 + 1) = 1 (1.12)

Example 1.4. The process described in example 1.2 can be formalized

as follows: the input state ρs is coupled to the ancillary system giving a

total state ρsa = ρs ⊗ ρa. A general interaction between the systems can

be described with a unitary transformation U :

ρsa → UρsaU
† (1.13)

Performing a standard projective measurement {Pi} on the ancilla gives

the following probabilities for the outcomes:

pi = tr[(1⊗ Pi) (Uρs ⊗ ρaU †)] (1.14)

Using the cyclic property of the trace and rearranging, we can rewrite:

pi = tr[U †(1⊗ Pi)U (ρs ⊗ ρa)] = trS

[
ρs trA[U †(1⊗ Pi)U(1⊗ ρA)]

]
(1.15)

Defining now Ei = trA[U †(1 ⊗ Pi)U(1 ⊗ ρA)], we find that the outcomes

probabilities can be obtained from an expression involving only states and

operators acting on the input system side:

pi = tr[ρsEi] (1.16)
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We will now show that the set {Ei} defined as above is indeed a POVM.

The positivity condition is guaranteed by pi being probabilities (and from

the fact that we made no assumption on the form of ρs), while

∑
i

Ei = trA[U †(1⊗
∑
i

Pi)U(1⊗ρA)] = trA[U †U(1⊗ρA)] = 1·trA[ρA] = 1

(1.17)

These two examples show how POVMs can be used to describe measure-

ment procedures which are not formalizable by using only PVMs.

Theorem 1.5. A POVM {Ei}Ni=1, on a d-dimensional system H can be

realized as a PVM in an N -dimensional extension of H, Hext = H⊕HA

Proof. Without loss of generality we can restrict ourselves to the case

where all effects are rank-1 operators, as any POVM can be decomposed

as a set pure effects {Ei = |ψi〉 〈ψi|}, where |ψi〉 are subnormalized states.

We will also assume N > d, as the case N ≤ d is completely trivial.

The conclusion is equivalent to finding a set of N orthogonal projectors

M = {Pi} on Hext (i.e. a PVM) such that the effects composing the

POVM can be obtained projecting the set M in the subspace H of Hext,
formally:

tr[ρEi] = tr[ρΠPiΠ] = tr[ΠρΠPi] = tr[ρextPi] (1.18)

where Π is the operator projecting Hext on H.

We can chose the projectors Pi as the projectors on the states:

|φi〉 = |ψi〉+
N∑

s=d+1

cis |ϕs〉 (1.19)
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where |ϕs〉 are N − d vectors orthogonal to each other and to all |φi〉 and

cis are coefficients to be determined.

It is now sufficient to prove that it is always possible to choose the coef-

ficients cis in such a way that the |φi〉 form an orthonormal basis. To do

this, choose a basis for H and denote with aik, k = 1...d the coefficients of

the expansion of the |ψi〉 on this basis. Consider now the following matrix:
a1,1 . . . a1,d c1,d+1 . . . c1,N

...
...

...
...

aN,1 . . . aN,d cN,d+1 . . . cN,N

 (1.20)

The rows of this matrix are just the representation of the |φi〉 on some

basis. Since
∑
|ψi〉 〈ψi| = 1, we have δij =

∑N
l a
∗
ilalj , hence, the first d

columns of the matrix are orthonormal. There are now infinitely many

ways to choose the cij for all the columns (and therefore the rows) to be

orthonormal.

In general, this way of realizing a POVM will not have a direct physical

interpretation, since not all systems’ Hilbert spaces can be extended as

required in the theorem. However:

Proposition 1.6. Acting with a POVM {Ei}Ni=1 on a system S is equiv-

alent to acting with a PVM on a larger system of which S is a subsystem.

A constructive proof of this can be found in Ref. [3]. A more general proof

of this fact will be given later in the discussion.
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1.2.3 Quantum Channels

Let us pause our discussion about measurements and focus on a step

that usually precedes the measurement in most experimental schemes: the

system, before being measured, undergoes some transformation that alter

its state. In textbook quantum theory, these kind of state transformation

are represented by a unitary operator U acting on the state, that is: ρ′ =

UρU †. The operator U is usually implemented as a time evolution of the

system, driven by a carefully chosen Hamiltonian so that U = eiHt. This

kind of formalization is however, not sufficient to describe the full set of

transformation a system can udergo.

Example 1.5. Consider a photon travelling in an optical fiber: due to

the interaction with the fiber, the quantum state of the photon will couple

with the fiber in which it is travelling, causing decoherence in the photon

state. While the action on the total system (fiber + photon) is unitary,

the state transformation that the photon undergoes can not be described

by a unitary operation: we need a more general formal device to describe

such scenarios.

The most general operator on S(H) that can describe a state transfor-

mation has to be - in order to preserve probabilities - linear, completely

positive and trace preserving. The only non obvious requirement is com-

plete positivity: Consider the map VA acting on a subsystem A. We can

extend its action to a larger space, for instance:

(VA ⊗ 1B)(ρA ⊗ ρB) = VA(ρa)⊗ ρB (1.21)

The positivity of VA is not enough to ensure the positivity of VA ⊗ 1B,

which has to be required in order to avoid negative probabilities arising in
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the extended space HA ⊗HB. Therefore, we require that VA ⊗ 1B to be

positive for any extension B; this requirement is called complete positivity.

Example 1.6. An example of a positive but not completely positive op-

erator is the partial transposition.

Consider a Hilbert space H and a basis {ϕi}Ni=1 over it. The transpose

operator can be defined on this basis as: τ(|ϕi〉 〈ϕj |) = |ϕj〉 〈ϕi|. Since

transposing an operator does not change its eigenvalues, τ is a positive

operator.

Consider now the extended operator τA⊗1B acting on the density operator

|ψ〉 〈ψ| = 1
N

∑
i,j |ϕi〉 〈ϕj | ⊗ |ϕi〉 〈ϕj |. The result is:

τA ⊗ 1B |ψ〉 〈ψ| =
1

N

∑
i,j

|ϕj〉 〈ϕi| ⊗ |ϕi〉 〈ϕj | (1.22)

This operator is not positive, as acting on |ψ−〉 = |ϕ1〉⊗ |ϕ2〉− |ϕ2〉⊗ |ϕ1〉
gives: ∑

i,j

|ϕj〉 〈ϕi| ⊗ |ϕi〉 〈ϕj |

 |ψ−〉 = − |ψ−〉 (1.23)

Therefore, we must conclude that transposition is a positive but a not

completely positive operator.

Proposition 1.7. Let S ∈ L(HA) be an operator. The map NS(T ) =

STS† is linear and completely positive.

Proof. The linearity is manifest in the definition. Consider now a positive

operatorO on an extended spaceHA⊗HB. For every vector |ψ〉 ∈ HA⊗HB
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we have:

〈ψ| (NS ⊗ 1B)O |ψ〉 = 〈ψ| (S ⊗ 1B)O(S† ⊗ 1B) |ψ〉

= 〈ψS |O |ψS〉 ≥ 0
(1.24)

since O is positive. Therefore (NS ⊗ 1B) is positive and NS is completely

positive.

With the above considerations in mind, we are now ready to define:

Definition 1.8. A Quantum channel is a map V : S(H) → S(H′) such

that:

• is linear

• is completely positive

• is trace preserving6

We now present a few important results regarding quantum channels that

will become useful later in the discussion.

Theorem 1.9. (Stinespring’s theorem) If τ : S(H)→ S(H) is a channel,

then there exists a Hilbert space HE, a pure state η ∈ HE and a unitary

U on H⊗HE such that:

τ(ρ) = trE [U (ρ⊗ η) U †] ∀ρ ∈ H (1.25)

Proof. The proof can be found in [4, p. 211-216].

The meaning of this result is that the action of any channel on a quantum

system can be physically realized by coupling it to an auxiliary system and

6tr[V (ρ)] = tr[ρ] ∀ρ ∈ S(H)



16 1.2. Measurements in Quantum Mechanics

performing a carefully chosen time evolution on the composite system.

Moreover, since equation (1.25) can be used to define a channel (given

η ∈ HE and U), we have that time evolutions in open quantum systems

can be described using quantum channels.

Theorem 1.10. (Kraus decomposition) A linear map τ : T (H) → T (H)

is a channel if and only if there exists a sequence of bounded operators

A1, A2, A3, ... such that:

τ(T ) =
∑
i

AiTA
†
i

∑
i

A†iAi = 1 (1.26)

Proof. Proposition 1.7 ensures that each map NAk(T ) = AkTA
†
k is linear

and completely positive (and so is τ). We also have:

tr[τ(T )] =
∑
i

tr[AiTA
†
i ] =

∑
i

tr[A†iAiT ] = tr

[(∑
i

A†iAi

)
T

]
= tr[T ]

(1.27)

therefore τ is a channel.

We will now prove the other direction. By theorem 1.9 we have that τ

admits a dilation (HE , U, η). We can always write η = |ϕ1〉 〈ϕ1| with

|ϕ1〉 ∈ HE ; we can also choose a basis {ϕi}di=1 for HE and define the

action of the operators Ak as:

〈ψ|Ak |ψ̃〉 = 〈ψ ⊗ ϕk|U |ψ̃ ⊗ ϕ1〉 ∀ψ, ψ̃ ∈ H (1.28)

Since | 〈ψ|Ak |ψ̃〉 | = | 〈ψ ⊗ ϕk|U |ψ̃ ⊗ ϕ1〉 | ≤ |ψ| |ψ̃| |U | we conclude that

the Ak are bounded operators.
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We also have:

〈ψ| τ(|η〉 〈η|) |ψ̃〉 = 〈ψ| trE
[
U |η〉 〈η| ⊗ |ϕ1〉 〈ϕ1|U †

]
|ψ̃〉

=
∑
k

〈ψ ⊗ ϕk|U |η〉 〈η| ⊗ |ϕ1〉 〈ϕ1|U † |ψ̃ ⊗ ϕk〉

=
∑
k

〈ψ ⊗ ϕk|U |η ⊗ ϕ1〉 〈η ⊗ ϕ1|U † |ψ̃ ⊗ ϕk〉

=
∑
k

〈ψ|Ak |η〉 〈η|A†k |ψ̃〉

(1.29)

and therefore τ(|η〉 〈η|) =
∑

k Ak |η〉 〈η|A
†
k. We also have:

tr[T ] = tr[τ(T )] = tr

[∑
k

A†kAkT

]
∀T ∈ S(H) (1.30)

thus
∑

k A
†
kAk = 1.

Proposition 1.11. Two finite sets {Ai}i= 1n and {Bi}i= 1m of bounded

operators define the same channel if and only if:

Aj =
m∑
k=1

ujkBk (1.31)

where the matrix uik is unitary.

Proof. The proof of this fact can be found in [2, p. 190-191].

Theorem 1.12. (Choi’s theorem) Let τ be a positive linear map on L(H),

with dim(H) = d. The following statements are equivalent:

i) τ is completely positive



18 1.2. Measurements in Quantum Mechanics

ii) 1d ⊗ τ is positive

iii) The matrix ({ϕi}di=1 is any basis for H):

Φτ =
1

d


τ(|ϕ1〉 〈ϕ1|) . . . τ(|ϕ1〉 〈ϕd|)

...
. . .

...

τ(|ϕd〉 〈ϕ1|) . . . τ(|ϕd〉 〈ϕd|)

 (1.32)

is positive.

Proof. From the definition of complete positivity we have (i)⇒ (ii).

Consider now the positive matrix

M =
1

d

∑
jk

|jj〉 〈kk| = |ψ−〉 〈ψ−| ∈ L(H)⊗ L(H) (1.33)

Noting that:

(1d ⊗ τ)M =
1

d

∑
jk

|j〉 〈k| ⊗ τ(|j〉 〈k|) = Φτ (1.34)

and using the positivity of (1d ⊗ τ) and M we have the positivity of Φτ

and therefore (ii)⇒ (iii).

We will now prove (iii) ⇒ (i). Denote with φl ∈ Cd ⊗ Cd l = 1...n the

unnomrmalized eigenvectors of the positive operator Φτ , so that Φτ =∑n
l |φl〉 〈φl|. They are orthogonal and linearly independent. Looking at

Cd⊗Cd as the direct sum Cd⊕· · ·⊕Cd, we can define Pj as the projector

on the jth ’copy’ of Cd. We now have:

τ [|ϕj〉 〈ϕk|] = PjΦτPk =
∑
l

Pj |φl〉 〈φl|Pk (1.35)
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Define now n operators by the relation Vl |ϕj〉 = Pj |φl〉. Thus:

τ [|ϕj〉 〈ϕk|] =
∑
l

Vl |ϕj〉 〈ϕk|V †l (1.36)

We now have τ(T ) =
∑

l VlTV
†
l ∀T ∈ L(H), using Proposition 1.7 we

conclude the proof.

Definition 1.13. Given a completely positive linear map τ : S(H) →
S(H), we define the Heisenberg picture of τ as a map τH such that:

tr[τH(T )ρ] = tr[Tτ(ρ)] ∀ρ ∈ S(H), T ∈ T (H)7 (1.37)

Proposition 1.14. Given a channel τ : S(H) → S(H), its Heisenberg

picture representation τH can be obtained as:

τH(T ) = trE [V †(T ⊗ 1)V ] (1.38)

Where V = U(1 ⊗ √η) is an isometry on HE, with U , η and HE as in

theorem 1.9.

Proof. From the definition of τH we have:

tr[τH(T )ρ] = tr[Tτ(ρ)] ∀ρ ∈ S(H), T ∈ [0,1] (1.39)

7T (H) = {T islinearand tr[
√
T †T ] < +∞}



20 1.2. Measurements in Quantum Mechanics

From theorem 1.9 we have:

tr[τH(T )ρ] = tr
[
T trE [U(ρ⊗ η)U †]

]
= tr

[
(T ⊗ 1) (U(ρ⊗ η)U †)

]
= tr

[
U †(T ⊗ 1)U(ρ⊗ η)

]
= tr

[
trE [U †(T ⊗ 1)U(1⊗ η)] ρ

]
= tr

[
trE [V †(T ⊗ 1)V ]ρ

]
∀ρ ∈ S(H), T ∈ [0,1]

(1.40)

concluding the proof.

1.2.4 Measurement models

When performing a measurement on a system, there are usually many

ways to devise a physical procedure that implements the measurement

and yields the correct outcome probabilities.

A typical way of realizing a measurement has been described in Examples

1.2 and 1.4, with the system under study being coupled with an auxiliary

system -called probe system- and by then using a POVM -called pointer

observable- on the probe. A measurement model is a formal description of

such a procedure:

Definition 1.15. A measurement model is a quadruple (K, χ, V, {Fi})
such that:

• K is the Hilbert space of the probe system.

• χ is the initial state of the probe

• V is a channel from H⊗K to itself, describing the coupling between

the system and the probe.
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• {Fi} is a POVM on the probe (the pointer observable).

Definition 1.16. Given a POVM {Ei} on a system, we say that M =

(K, χ, V, {Fi}) is a measurement model for {Ei} if:

tr[ρEi] = tr[V (ρ⊗ χ)V † (1⊗ Fi)] ∀ρ ∈ S(H) (1.41)

Remark 1.17. Note that the behaviour of the channel V need not to be

specified full; since the probe is always prepared in the state χ, it’s only

necessary to specify the action of the channel on the subspace T (H) ⊗
range(|χ〉 〈χ|).

1.2.5 Instruments

Until now we focused our discussion on the description of the outcome

probabilities for some measurement procedure. We now want to shift our

attention to the state of the measured system after the measurement has

been performed.

In order to derive the after measurement state, we suppose that, after

measuring {Ei} on the state ρ by means of some measurement model M =

(K, χ, V, {Fi}), we measure the observable {Bj} on the system. In this

scenario, the probability of getting the outcome i for the first measurement

and j for the second can be expressed as:

p(i, j) = tr[V (ρ⊗ χ)V † (Bj ⊗ Fi)]

= tr[Bj trK[V (ρ⊗ χ)V † (1⊗ Fi)]]
(1.42)

On the other hand, if we denote with ρ̃Mi the post-measurement state we

get by obtaining outcome i when measuring M , the same probability can
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be written as:

p(i, j) = p(j|i) p(i) = tr[Bj ρ̃
M
i ] p(i) (1.43)

Defining the unnormalized state ρMi = ρ̃Mi p(i), by confronting (1.42) and

(1.43) we obtain:

ρMi = trK[V (ρ⊗ χ)V † (1⊗ Fi)] (1.44)

For each outcome i, equation (1.44) defines a linear mapping IMi (ρ) = ρMi

that maps pre-measurement states into (unnormalized) post-measurement

states. Note that tr[IMi (ρ)] = tr[ρMi ] = p(i).

Definition 1.18. An instrument is a set of maps {Ii} such that:

• Ii is linear and completely positive

• tr[
∑

i Ii(ρ)] = 1 ∀ρ ∈ T (H)

• tr[I∪̇i∈Y (ρ)] =
∑

i∈Y tr[Ii(ρ)], where Y is a set of possible outcomes.

Remark 1.19. Note that, given an instrument {Ii}, the sum of it’s elements∑
i Ii defines a channel.

Definition 1.20. Given a POVM {Ei} on a system and and an instrument

{Ii}, we say that the instrument is E-compatible if:

tr[Ii(ρ)] = tr[Eiρ] (1.45)

That is, if the instrument reproduces the outcome probabilities of the

meausrement described by the POVM.

Proposition 1.21. Given the POVM {Ei}, we will show that the set

{IEi }, where:

IEi (ρ) =
√
Eiρ
√
Ei (1.46)
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is an E-compatible instrument.

Proof. For each i, the map defined in eq. (1.21) is linear and completely

positive (Proposition 1.7). Furthermore, using the cyclic property of the

trace and the fact that
∑

iEi = 1, we easily get that tr[
∑

i Ii(ρ)] = 1. We

also have - for disjoint outcomes i and j - that Ei∪j = Ei +Ej , therefore,

using again the cyclic property of the trace we prove the last condition of

definition 1.18 and that {IEi } is indeed an instrument. Its E-compatibility

follows again from the properties of the trace.

Theorem 1.22. (Ozawa’s Theorem) For every instrument {Ii} there is

a measurement model M = (K, χ, V, {Fi}) such that

trK[V (ρ⊗ χ)V † (1⊗ Fi)] = IMi (ρ) = Ii(ρ) ∀ρ ∈ S(H) (1.47)

where V is a unitary and {Fi} is a PVM.

Proof. Each element of the Instrument Ii admits a Kraus decomposition

Ii(ρ) =
∑

j AjρA
†
j . The sum of all elements in the instrument gives a

decomposition for the channel IΩ =
∑

i Ii; this decomposition contains a

finite number, say N , of operators.

Using theorem 1.9 we find a dilation (HE , η, U) such that IΩ(ρ) = trE [U(ρ⊗
|η〉 〈η|)U †]. Without loss of generality, the dimension of HE can be chosen

to be equal to N , since we can always increase its size by a tensor product

with another Hilbert space. Choosing an orthonormal basis {ϕi} for HE ,

we can define N operators on H by the relation:

〈ψ|Bj |ψ̃〉 = 〈ψ ⊗ ϕj |U |ψ̃ ⊗ η〉 ∀ψ, ψ̃ ∈ H (1.48)
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With this definition for Bj , we have IΩ(ρ) =
∑

j BjρB
†
j . We have therefore

that the two sets {Bj} and {Ai} are decomposition of the same channel,

and by proposition 1.11 they are connected by a unitary uik.

Defining another basis for HE as |ϕ̃i〉 =
∑

k uik |ϕk〉, we determine a PVM

{F̃i = |ϕ̃i〉 〈ϕ̃i|}. We now have that

AjρA
†
j = trE [U(ρ⊗ |η〉 〈η|)U †(1⊗ F̃j)] ∀ρ ∈ S(H) (1.49)

The measurement model M is then composed by the Hilbert space K =

HE , the state χ = η, the channel defined by U through proposition 1.7,

and the PVM {Fi} obtained by opportunely grouping the outcomes of

{F̃i}.

We are now ready to give a proof for proposition 1.6:

Proof. For any POVM {Ei}, using proposition 1.21 we can find an E-

compatible instrument {IEi }. Using Then theorem 1.22 we can find a mea-

surement model that realizes the instrument (and therefore the POVM)

by means of a PVM on a auxiliary system.

Remark 1.23. In our discussion, we have introduced three different ways

to describe a measurement on a quantum system: POVMs, measurement

models and instruments. These three descriptions can be organized in a

hierarchy.

POVMs characterize only the outcome probabilities of a measurement pro-

cedure, but they don’t give any information on the post measurement state

or on the physical procedure used to perform the observation. For each

POVM, we can find many different instruments that produce its given

outcome probability distribution with distinct post measurement states.
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Similarly, a general instrument can by physically realized by means of dif-

ferent measurement models; for example, given a particular measurement

model for an instrument, one could construct another by increasing the

dimension of the probe system and extending the interaction channel to

the ’extra’ dimensions with the identity channel.





Chapter 2

Compatibility of

Measurements

In this chapter we explore compatibility of quantum measurements, ex-

tending the textbook definition (i.e. commutativity) to the generalized

measurements introduced in Chapter 1.

2.1 The usual notion of observable compatibility

In the standard formulation of quantum theory, two observables (PVMs)

are said to be compatible if they are jointly measurable, i.e. if there is a

procedure that can measure both observables on a system without having

the outcome of one spoil the measurement of the other. In general this

does not happen: after a measurement the system is left in an eigenstate of

the measured observable, and therefore a generic subsequent measurement

27
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would be affected by the outcome of the first1. However, if it is possible

to find a basis of common eigenstates for the two observables, we can

determine the value of both on the same state. This is because the post

measurement state will lie completely in one of the eigenspaces of each

observable.

Theorem 2.1. Two observables A and B admit a decomposition on a

common basis of eigenstates {|ϕi〉} if and only if [A,B] = 0.

Proof. Denoting with µi and λi the eigenvalues of A and B respectively,

it’s easy to prove that commutativity follows form the existence of {|ϕi〉}:

AB |ψ〉 = A
∑
i

λici |ϕi〉 =
∑
i

λiµici |ϕi〉

= B
∑
i

µici |ϕi〉 = BA |ψ〉
(2.1)

To prove the other direction we note that, if A |v〉 = µi |v〉

AB |v〉 = BA |v〉 = Bµi |v〉 = µiB |v〉 (2.2)

And therefore that B preserves the eigenspaces of A. Now, restricting

B to the eigenspace of each eigenvalue µi and diagonalizing B in each

restriction, we find a basis of eigenstates of B wich are also eigenstates of

A.

With the above result in mind, we conclude that two PVMs are compatible

(or jointly measurable) if their corresponding observables commute. A a

set of PVMs is said to be compatible if each pair is.

1Think about position and momentum: the measurement of one destroys all infor-
mation about the probability distribution of the other
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2.2 Compatibility for generalized measurements

2.2.1 POVMs

We now wish to find a notion of compatibility applicable to POVMs. We

will again use the idea of joint measurability.

Definition 2.2. A set of POVMs {Ei|λ}2, is said to be jointly measurable

or compatible if there is a POVM {Gk} from which the effects Ei|λ can be

attained as:

Ei|λ =
∑
k

pk(i|λ)Gk (2.3)

where pk(i|λ) are positive constants with
∑

i pk(i|λ) = 1.

In practice, this means that the set {Ei|λ} is jointly measurable if we

can obtain the outcome probabilites for each POVM in the set by post-

processing the outcome distribution of {Gk}.

Proposition 2.3. A set of POVMs {Ei1|1}...{EiN |N} is jointly measurable

if and only if there exist a marginal POVM {Gi1...iN }, such that:

Eiλ|λ =
∑

i1...iλ−1,iλ+1...iN

Gi1...iN (2.4)

Proof. The ’if’ implication is trivial, as equation (2.4) is a particular type

of post-processing, as required in the definition of joint measurability. We

will prove the other implication for a set of two POVM, the generalization

to any finite number is then straightforward.

2λ indexes the POVMs in the set, i the effects for each POVM. That is
∑
iEi|λ =

1 ∀λ
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Consider the jointly measurable generalized measurements {Ei|1} and {Ej|2}.
From the definition of joint measurability we have that there exists a

POVM {G̃k} such that:

Ei|1 =
∑
k

p̃k(i|1)G̃k Ei|2 =
∑
k

p̃k(i|2)G̃k (2.5)

Define now pk(i, j) = p̃k(i|1) · p̃k(j|2). It’s easy to see that 0 < pk(i, j) < 1

and
∑

i,j pk(i, j) = 1.

Choosing now:

Gi,j =
∑
k

pk(i, j)G̃k (2.6)

completes the proof.

Example 2.1. Consider the generalized measurements Sx and Sz, defined

by the effects S±|x = 1
2(1± 1√

2
σx) and S±|z = 1

2(1± 1√
2
σz). They repre-

sent a ’smeared’ spin measurement (they can be regarded as a mixture of

an actual measurement and a coin flip) from which we still obtain some

information about the spin state of the system, but not all the available

information is extracted.

If we consider the generalized measurement:

Gi,j =
1

4
(1 +

i√
2
σx +

j√
2
σz) i, j ∈ {−1,+1} (2.7)

it is easy to see that we can recover the original effects as S±|x =
∑

iGi,±

and S±|z =
∑

j G±,j .

Remark 2.4. Notice that the effects S±|x and S±|z introduced in Example

2.1 do not commute with each other, but the corresponding POVMs stat-

isfy the condition to be jointly measurable. We therefore conclude that
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the commutativity criterion for joint measurability introduced for PVMs

does not hold for generalized measurements.

Example 2.2. Consider now two general spin measurements defined by

{E+ = E, E− = 1− E} and {F+ = F, F− = 1− F}, with:

E =
1

2
(1 + λ~n · ~σ) F =

1

2
(1 + λ~m · ~σ) (2.8)

We see that E and F are positive - and therefore define valid POVMs -

for 0 < λ < 1. We want to find for which values of the parameter λ the

joint measurability of the two POVMs is spoiled.

If we assume that the two measurements are compatible, by proposition

2.3 we have that there exists a four outcome measurement {G++, G+−,

G−+, G−−} such that E = G++ + G+− and F = G++ + G−+. Denoting

G++ as G, from the positivity of effects we find the following relations:

0 ≤G

0 ≤G+− = E −G

0 ≤G−+ = F −G

(2.9)

And lastly:

E + F = G+G+− +G−+ +G−−

= 1−G−− +G

≤ 1 +G

(2.10)
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Without loss of generality we can parametrize G as G = 1
2(γ1 + ~g · ~σ).

With this parametrization the inequalities (2.9) and (2.10) become:

‖~g‖ ≤ γ (2.11)

‖λ~n− ~g‖ ≤ 1− γ (2.12)

‖λ~m− ~g‖ ≤ 1− γ (2.13)

‖λ~n+ λ~m− ~g‖ ≤ γ (2.14)

Using the triangle inequality for pairs (2.11), (2.14) and (2.13), (2.12) we

get:

‖λ~n+ λ~m‖ ≤ 2γ ‖λ~n− λ~m‖ ≤ 2− 2γ (2.15)

Adding them together gives a necessary condition for the two POVMs to

be jointly measurable:

λ‖~n+ ~m‖+ λ‖~n− ~m‖ ≤ 2 (2.16)

By taking ~g = 1
2(λ~n+ λ~m) and γ = ‖~g‖ we see that this condition is also

sufficient.

We conclude that the two generalized measurement are compatible if and

only if:

λ ≤ 2

‖~n+ ~m‖+ ‖~n− ~m‖
=

1√
1 + sin(θ)

(2.17)

Where 0 < θ < π is the angle between ~n and ~m. For orthogonal spin

measurement, the requirement becomes λ ≤ 1√
2
.
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2.2.2 Instruments

Following the same path we adopted for POVMs, we will call two instru-

ment compatible if they satisfy the following criterion:

Definition 2.5. A set of instruments {Ii|λ}3, is said to be jointly mea-

surable or compatible if there exists a general instrument {Gk} from which

the maps Ii|λ can be attained as:

Ii|λ =
∑
k

pk(i|λ)Gk (2.18)

Where pk(i|λ) are positive constants with
∑

i pk(i|λ) = 1.

However, for instruments it’s possible to give another - weaker - definition

of compatibility:

Definition 2.6. A set of instruments {Ii|λ} is said to be weakly compatible

if the sum of the elements for each instrument gives the same channel.

That is: ∑
i

Ii|λ = Λ ∀λ (2.19)

for some channel Λ.

Proposition 2.7. Every set of compatible instruments {Ii|λ} is also weakly

compatible.

Proof. ∑
i

Ii|λ =
∑
i,k

pk(i|λ)Gk =
∑
k

Gk = Λ (2.20)

3As before, λ indexes the instruments in the set, i the elements in each instrument.
That is tr[

∑
i Ii|λ(ρ)] = 1 ∀ λ, ρ
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where we used the fact that
∑

i pk(i|λ) = 1 when summing over i. The final

result does not depend on λ, and therefore all instruments of a compatible

set sum up to the same channel.

Definition 2.8. An instrument {Ii} is compatible with a channel Λ if∑
i Ii = Λ.

Proposition 2.9. Let Λ be a channel on H with a minimal4 dilation (see

proposition 1.14):

ΛH(T ) = trE [V †(T ⊗ 1)V ] (2.21)

An instrument {IHi } 5 is compatible with the channel ΛH if and only if

there is is a POVM {Ai} such that:

IHi (T ) = trE [V †(T ⊗Ai)V ] (2.22)

If such POVM exists, then it is unique.

Proof. A proof of this fact can be found in [5].

Corollary 2.10. Given an instrument {IHi } in the Heisenberg picture,

as in eq (2.22), the Schrödinger picture can be written as:

Ii(ρ) = trE [(1⊗Ai)V (ρ⊗ 1)V †] ∀ρ ∈ S(H), T ∈ T (H) (2.23)

4Minimal dilations are realized taking the ancillary space HE to have minimal di-
mension

5We are using the Heisenberg representation of the instrument, as defined in defini-
tion 1.13
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Proof.

tr[T Ii(ρ)] = tr[IHi (T )ρ] = tr
[
trE [V †(T ⊗Ai)V ] ρ

]
= tr

[
V †(T ⊗Ai)V (ρ⊗ 1)

]
= tr

[
(T ⊗Ai) V (ρ⊗ 1)V †

]
= tr

[
(T ⊗ 1) (1⊗Ai)V (ρ⊗ 1)V †)

]
= tr

[
T trE [(1⊗Ai)V (ρ⊗ 1)V †]

]
∀ρ ∈ S(H), T ∈ T (H)

(2.24)





Chapter 3

Steering

3.1 State steering

The concept of state steering was introduced by Schrödinger as a response

to the celebrated Einstein-Pdolsky-Rosen (EPR) paper. In an EPR setup,

two parties - usually denoted by Alice and Bob - share a couple of entan-

gled particles. Steering refers to the ability of one party, say Alice, to

remotely affect the other party’s - say Bob’s - state by performing lo-

cal measurements on her side and sending the measurement settings and

outcome to Bob. This reflects the fact that, for some shared states, the

outcome probabilities of Bob’s measurements cannot be explained by con-

sidering only classical correlations between the marginal states possessed

by Bob and Alice (a practical illustration of a steerable scenario will be

given in example 3.1).

37
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Definition 3.1. Labeling with {Ai|λ} and {Bj|µ} the generalized mea-

surements on Alice’s and Bob’s sides in a EPR-like setup, where the state

ρAB is shared between the two parties, we say that the scenario is non-

steerable if the probabilities of measurement outcomes can be written as:

P (i, j|λ, µ) = tr[ρAB(Ai|λ ⊗Bj|µ)] =
∑
k

p̃(i|λ, k) p(k) tr[ρkBj|µ] (3.1)

where p and p̃ are probability distributions and ρk ∈ S(HB) ∀k.

If equation 3.1 holds, Bob can just assume to have the marginal states ρk

with probability p(k). The overall probability distribution P (i, j|λ, µ) is

then obtained considering classical correlations between Alice’s and Bob’s

sides, which are encoded in p̃(i|λ, k) (i.e. the probability for Alice to

obtain outcome i given she measures POVM λ when Bob has state k).

Therefore, Alice’s choice of measurement cannot remotely influence Bob’s

state.

Example 3.1. (Steerable scenario) Let us assume that the two parties

share the maximally entangled state |ψ〉 = 1√
2
(|00〉+ |11〉). Depending on

Alice choice of measurement, say σx or σz, Bob’s will find his state to be

either |x±〉 or |z±〉. Bob has access to Alice’s measurement choices and

results, so he can verify that his marginal state is always equal to Alice’s,

and conclude that Alice measurement choice can remotely prepare his

state. We say that Alice can steer Bob. A more detailed discussion of this

scenario is given in example 4.3.

Proposition 3.2. If Alice and Bob share a separable state, the scenario

is unsteerable for any steering attempt from Alice.
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Proof. Every separable state can be written as: ρ =
∑

k pk (ρAk ⊗ ρBk ).

Labeling Alice’s and Bob’s measurements as in definition 3.1 we have:

P (i, j|λ, µ) = tr[ρ (Ai|λ ⊗Bj|µ)]

=
∑
k

pk tr
[
(ρAk ⊗ ρBk ) (Ai|λ ⊗Bj|µ)

]
=
∑
k

pk tr
[
ρAkAi|λ

]
tr
[
ρBk Bj|µ

]
=:
∑
k

pk p(i|λ, k) tr
[
ρBk Bj|µ

]
(3.2)

which is the required expression for non-steerablity.

Example 3.2. (Werner state) Consider that Alice and Bob share the

state Wλ = λ |ψ−〉 〈ψ−| + 1−λ
4 1, where |ψ−〉 = 1√

2
|01〉 − |10〉. It is well

known [6] that this state is separable for λ < 1
3 and entangled other-

wise. Somewhat surprisingly, for λ < 1
2 we have that Wλ gives rise to

local statistics for arbitrary projective measurements. This means that

for 1
3 < λ < 1

2 , the state, albeit being entangled, can not be used for

quantum steering.

3.1.1 State assemblages

A steering scenario is defined by both the bipartite state shared between

the parties and the set of measurement Alice can choose from; the notion

of state assemblage is useful to describe steering scenarios, as it contains

information about both.

Definition 3.3. A state assemblage for a steering scenario is a set of

positive matrices {ρa|λ} (λ labels measurement chosen by Alice and a the
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outcome) such that: ∑
a

ρa|λ = ρ ∀λ (3.3)

where ρ is a unit-trace density matrix.

State assemblages can be used to describe the collection of unormalized

partial states possesed by Bob after Alice’s measurement. The requirement

(3.3) is necessary to avoid signaling, i.e Bob must not be able to determine

which measurement Alice performed.

The elements of the assemblage are obtained as1 2.

ρa|λ = trA

[√
Aa|λ ⊗ 1 ρAB

√
Aa|λ ⊗ 1

]
(3.4)

Definition 3.4. A state assemblage is unsteerable if its elements ρa|λ can

be written as:

ρa|λ =
∑
k

pk(a|λ)ρk (3.5)

where tr [
∑

k ρk] = 1 and the pk(a|λ) are positive constants such that∑
a pk(a|λ) = 1.

3.1.2 One-way steering

In the previous discussion, we saw that a steering scenario is intrinsically

asymmetrical: one of the two parties is untrusted and tries to demon-

strate steering capabilities to the trusted party. Given this fundamental

asymmetry, a natural question arises: are there scenarios which are ony

1ρAB denotes the bipartite sate shared by the parties, {Aa|λ} is the set of measure-
ments Alice can choose from

2The (unnormalized) state shared after Alice measurement is calculated using the
so called Lüders instruments introduced in proposition 1.21
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steerable in one direction? That is, are there scenarios in which Alice can

steer Bob, yet Bob cannot steer Alice?

Example 3.3. Consider the bipartite state3 4:

ρAB = αPψ− +
1− α

5

(
2 |0〉 〈0| ⊗ 1

2
1 +

3

2
1⊗ |1〉 〈1|

)
(3.6)

Similarly to a Werner state, for α < 1
2 a LHS model can be constructed for

steering attempts from Bob with PVMs. Conversely, it is known that the

scenario allows steering from Alice to Bob for α & 0.4983 with specifically

choosen measurements. Here we omit giving the measurements and the

LHS model explicitly, referring the reader to [7]. Hence the state in (3.6)

is one way steerable for 0.4983 . α ≤ 1
2 .

As shown in example 3.3 the answer to the aforementioned question is,

perhaps surprisingly, yes.

3.2 Channel steering

In order to introduce the notion of channel steering we need to introduce

first broadcast channels, i.e. channels with multiple outputs.

Definition 3.5. A broadcast channel ΛC→AB is a channel Λ : S(HC) →
S(HA ⊗HB) whose output space is composed by multiple systems.

3Pψ− is the projector on the singlet state |ψ−〉 = 1√
2
(|01〉 − |10〉)

40 ≤ α ≤ 1
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Definition 3.6. Given a broadcast channel ΛC→AB, we say that the chan-

nel ΓC→B is a reduction of Λ if

ΓC→B = trA ◦ΛC→AB (3.7)

Moreover, if (3.7) holds, we say that ΛC→AB is an extension of ΓC→B.

With these definition in mind, we wish to identify the steerability of the

broadcast channel ΛC→AB as the possibility for Alice to steer Bob by per-

forming measurements on her output of the channel. In such a scenario

the information available to Alice is more than just classical correlations

between Alice’s and Bob’s outputs.

Definition 3.7. We say that ΛC→AB is an incoherent extension of ΛC→B

if there is an ΛC→B-compatible instrument {ΛC→Bi } and a set of states

{ρi} such that:

ΛC→AB(·) =
∑
i

ΛC→Bi (·)⊗ ρi (3.8)

We say that the extension ΛC→AB is coherent if it is not incoherent.

Note that for an incoherent extension the information available to Alice is

at most classical information about which subchannel ΛC→Bi was applied

to the input. In fact, any input ρC will give a separable state ρAB as

output:

ρAB = ΛC→AB(ρC) =
∑
i

ΛC→Bi (ρC)⊗ ρi =
∑
i

piρ
B
i ⊗ ρAi (3.9)

Steering attempts by Alice will be made with the use of measurements;
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each measurement {Ai} on A leads to a reduction ΛC→B of the original

channel through the relation:

ΛC→Bi (·) = trA
[
(Ai ⊗ 1)ΛC→AB(·)

]
(3.10)

Where {ΛC→Bi } is an instrument compatible with the channel ΛC→B.

We are now ready to give the definition of channel steering, the reason for

such a definition will be made clear by Theorem 3.9.

Definition 3.8. We say that the channel extension ΛC→AB is unsteerable

if any set of POVMs {Ai|λ} on A leads to a compatible set of instruments

{ΛC→Bi|λ } via the relation (3.10).

Theorem 3.9. Every incoherent channel extension ΛC→AB is unsteerable.

Conversely, every compatible set of subchannels (instruments) {ΛC→Bi|λ } for

ΛC→B can be obtained through (3.10) from an incoherent channel exten-

sion.

Proof. Following [8], for any measurement {Ai|λ} we can write:

ΛC→Bi|λ (·) = trA
[
Ai|λΛC→AB(·)

]
= trA

[
Ai|λ

∑
k

ΛC→Bk (·)⊗ ρk

]
=
∑
k

ΛC→Bk (·) trA
[
Ai|λρk

]
=
∑
k

pk(i|λ) ΛC→Bk (·)
(3.11)

Which proves that ΛC→AB is unsteerable.

On the other hand, any set {ΛC→Bi|λ =
∑

k pk(i|λ) ΛC→Bk } of compatible

instruments can be obtained applying the set of measurements {Ai|λ =∑
k pk(i|λ) |k〉 〈k|} to the A output of ΛC→AB =

∑
k ΛC→Bk ⊗ |k〉 〈k|. By
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direct calculation we have:

trA
[
Ai|λΛC→AB(·)

]
=trA

[(∑
k

pk(i|λ)|k〉〈k|

)
·

(∑
k′

ΛC→Bk′ (·)⊗ |k′〉〈k′|

)]
=
∑
k,k′

δk,k′pk(i|λ)ΛC→Bk′ (·) =
∑
k

pk(i|λ)ΛC→Bk (·)

=ΛC→Bi|λ

Thus, if Bob can be convinced that Alice can steer his channel, then Alice

must have access to a coherent extension of that channel.

3.2.1 Channel assemblages

In analogy with state assemblages, we can define channel assemblages as:

Definition 3.10. A channel assemblage {ΛC→Bi|λ } is a set of weakly com-

patible instruments. That is, a set of instrument summing up to the same

channel. The elements that compose each instrument are also called sub-

channels.

Requiring the channels to be weakly compatible ensures that the non-

signaling condition (3.3) is met for every input state.

Definition 3.11. A channel assemblage {ΛC→Bi|λ } is said to be unsteerable

if its instrument elements are compatible5. That is, if there is a joint

instrument {Gk} such that ΛC→Bi|λ =
∑

k pk(i|λ)Gk.
A channel assemblage is steerable if it is not unsteerable.

5See definition 2.5
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3.3 Steering quantification

The task of quantum steering requires a quantum resource, namely entan-

glement, to be shared by the two parties. However, as we saw in example

3.2, entanglement alone is not sufficient for steering. We are therefore

led to think about the steerability of a state as a resource in itself, only

partially connected to its entanglement.

This approach prompts us to quantify the amount of steering that can be

carried out using a particular shared state, so that one could define the

’steerability’ of a state independently from how much that state is entan-

gled.

However, deciding the steerability of a particular shared state is in gen-

eral difficult, since one has to consider all possible measurements that Alice

could use to attempt steering. A commonly used approach is to quantify

the steerability of state assemblages. We will find that the task of steering

quantification is easier for a state assemblage than for the corresponding

shared state, as the former contains the information about which mea-

surement strategy Alice is using.

Several steering quantifiers that use this approach have been proposed. In

the following discussion we will present two relevant examples.

3.3.1 Steerable weight

The simplest approach to steering quantification is represented by the

notion of steerable weight, as introduced by [9]. For any assemblage A =

{ρa|λ}, we consider the decomposition:

ρa|λ = µ ρSa|λ + (1− µ) ρUSa|λ ∀ a, λ (3.12)
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where the superscripts denote respectively an unsteerable assemblage and

a steerable one.

Definition 3.12. Given a state assemblage {ρa|λ}, we identify its steerable

weight µ̃ as the minimum value of µ for which the decomposition (3.12)

exists.

Intuitively, this quantifier measures the fraction of steerable assemblages

required to construct A.

Proposition 3.13. The steerable weight of an assemblage A = {ρa|λ} can

be efficiently calculated with an SDP [9]. Denoting µ̃ = 1 − µ∗, we can

obtain µ∗ as:

max tr

[∑
k

ρk

]
s.t. ρa|λ −

∑
k

pk(a|λ)ρk ≥ 0 ∀a, λ

ρk ≥ 0 ∀k

(3.13)

Proof. From the definitions of steerable weight and steerability of state

assemblages we get the following constraints for the maximization of µ∗

(which is equivalent to the minimization of µ):

i) ρa|λ = (1− µ∗) ρSa|λ + µ∗ ρUSa|λ ∀ a, λ

ii) ρUSa|λ =
∑

k pk(a|λ)ρk ∀ a, λ

iii) tr [
∑

k ρk] = 1, ρk ≥ 0 ∀k

iv)
∑

a ρ
S
a|λ = ρ ∀λ

v) ρSa|λ ≥ 0 ∀a, λ
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Using i) and ii) the last constraint can be rewritten as:

ρSa|λ =
1

1− µ∗

(
ρa|λ − µ∗

∑
k

pk(a|λ)ρk

)
≥ 0 (3.14)

This also automatically guarantees that iv) is satisfied, as long as the input

assemblage is valid. Defining the new variables ρ̃k = µ∗ρk, condition iii) is

equivalent to
∑

k ρ̃k = µ∗, ρ̃k ≥ 0 ∀k. This, together with the assumption

0 < µ∗ < 1 allows us to write (3.14) as:

ρa|λ −
∑
k

pk(a|λ)ρ̃k ≥ 0 (3.15)

With the identification ρ̃k → ρk, and remembering that
∑

k ρ̃k = µ∗ we

obtain the required SDP (3.13).

Remark 3.14. This quantifier suffers from the problem that any assem-

blage arising from a shared pure state is always maximally steerable [9],

regardless of the amount of entanglement present in the state.

3.3.2 Steering robustness

The notion of steering robustness was introduced in [10] and can be de-

fined both for states and for assemblages. The idea behind it is to measure

how much noise one needs to add in order to spoil steerability. As in the

case of the steerable weight, it can be shown that the steering robustness

can be calcultated as an SDP [10].
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Definition 3.15. Given an assemblage A = {ρa|λ}, its steering robustness

R(A) is:

R(A) = min

{
t | t ≥ 0,

ρa|λ + t τa|λ

t+ 1
is unsteerable,τa|λ is an assemblage

}
(3.16)

Since state assemblages on Bob’s side can be prepared by Alice by the use

of a certain measurement set {Ai|λ} on the joint state ρAB, the definition

of this quantifier has been extended to the shared state.

Definition 3.16. For a given shared state ρAB, we define its steering

robustness as:

RA→B(ρAB) = sup
A∈Ω

R(A) (3.17)

Where Ω is the set of all Bob’s state assemblages corresponding to any

possible measurement strategy Alice may use.

In the following chapter, we will use these quantifiers to quantify the

incompatibility of a set of generalized measurements.



Chapter 4

Joint Measurability and

Steering

In this chapter we will focus on describing the connections that have been

found between the steerability of a scenario and the incompatibility of

the measurement used to complete the task. We will show that every

steerability problem can be thought as a joint measurability problem and

vice versa.

4.1 The general connection

In the preceeding chapters the notions of joint mesurability (or compat-

ibility) and steering have been introduced. The two concept are how-

ever deeply related. Consider a typical steering scenario where two par-

ties, Alice and Bob, share a bipartite state ρAB. Alice has access to

49
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a set of POVMs on her system {Aa|λ}; she chooses to perform one of

the available measurements (labeled by λ) and obtains an outcome a.

This leaves the state of Bob’s system in the unnormalized partial state

ρa|λ = trA[(Aa|λ ⊗ 1) ρAB], with the non-signaling condition requiring

that
∑

a ρa|λ = ρB ∀λ, where ρB is the total reduces state for Bob.

Following [11], we define ΠB : HB → KB ⊂ HB as the projection on

the subspace of HB spanned by ρB, i.e. KB = range(ρB) and ΠB Π†B =

1KB . Since ρa|λ are positive operators, the non-signaling condition implies

range(ρa|λ) ⊂ range(ρB). We then define the restrictions ρ̃a|λ = ΠBρa|λΠ†B

and ρ̃B = ΠBρBΠ†B, preserving the positivity of the operators.

Using the restricted states we define the so called of Bob’s steering-equivalent

(SE) observables Ba|λ ∈ L(KρB ) as:

Ba|λ = (ρ̃B)−
1
2 ρ̃a|λ (ρ̃B)−

1
2 (4.1)

These operators are positive, and the non-signaling condition ensures that∑
aBa|λ = 1KB ∀λ. Therefore, for each λ, they form a POVM.

Theorem 4.1. The state assemblage1 {ρa|λ} is unsteerable if and only if

the set of POVMs {Ba|λ} is jointly measurable.

Proof. The unsteerability of the assemblage {ρa|λ} is equivalent to the

existence of a LHS for ρa|λ, that is:

ρa|λ =
∑
k

pk(a|λ)ρk (4.2)

If such a model exist, a joint observable for {Ba|λ} can easily be con-

structed through relation (4.1). The same relation can also be used to

1A definition of state assemblage is given in section 3.3
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prove the other direction, going from a joint observable for {Ba|λ} to a

LHS model for {ρa|λ}.

Therefore, every steerability problem can be cast into a joint measurability

problem and vice versa (taking ρB = 1

d ). An explicit example of Bob’s SE

observables is given in example 4.3.

4.1.1 Interpretation of SE observables

A simple interpretation of Bob’s steering-equivalent observables can be

found if the shared state is pure. Let ρ =
∑n

i,j λiλj |ii〉 〈jj|, where {|i〉A}
dA
1

and {|i〉B}
dB
1 are the local bases associated with the Schmidt decompo-

sition of ρ (n ≤ min(dA, db), λi ≥ 0 ∀i and tr[ρ] =
∑

i λ
2
i = 1). In

this basis the reduced states for Alice and Bob can both be written as

ρX =
∑

i λ
2
i |i〉 〈i|X , with X = A,B. Their ranges KA and KB are there-

fore isomorphic with the identification |i〉A ↔ |i〉B. We can now write:

ρa|λ = tr[(Aa|λ ⊗ 1)ρ] =
∑
ij

λiλj trA[(Aa|λ ⊗ 1) |ii〉 〈jj|]

=
∑
ij

λiλj trA
[
Aa|λ |i〉 〈j|

]
|i〉 〈j| =

∑
ij

λiλj 〈j|Aa|λ |i〉 |i〉 〈j|

=
∑
ij

λiλj |i〉 〈i|ATa|λ |j〉 〈j| = ρ
1/2
A ATa|λρ

1/2
A

(4.3)

We find the following form for Bob’s SE observables:

Ba|λ = ρ̃
−1/2
B ρ

1/2
A ATa|λ ρ

1/2
A ρ̃

1/2
B (4.4)
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With the above identification ( |i〉A ↔ |i〉B ) in mind, we have that ρA '
ρB, and therefore:

Ba|λ ' ATa|λ (4.5)

This equivalence relation holds only in the restrictions KA and KB of

HA and HB. In these restrictions, Bob’s SE observables are just (up to

a change of basis) Alice POVMs, and therefore incompatibility of Alice

(restricted) observables is enough to show steering if the shared state is

pure.

Example 4.1. Consider the maximally entangled state ρAB = |ψ+〉 〈ψ+| =
1
d =

∑d
i,j=1 |ii〉 〈jj|. Following [1], we obtain Bob’s assemblage as:

ρa|λ = trA
[
(Aa|λ ⊗ 1) |ψ+〉 〈ψ+|

]
=

1

d
ATa|λ (4.6)

It is now easy to see that the steerability of the assemblage {ρa|λ} is

equivalent to the joint measurability of Alice’s measurements {Aa|λ}, since

a LHV model for {ρa|λ} automatically gives a joint observable for {Aa|λ}
through (4.6).

4.2 Incompatibilty quantifiers

With the above connection between incompatibility and steering in mind,

we can extend the concept of steering quantification to incompatibility.

The notions of steerable weight and steering robustness can then be used

to define quantifiers for incompatibility.
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4.2.1 Incompatibility weight

This quantifier has been introduced in [12], and it extends the steering

quantifier presented in subsection 3.3.1.

Definition 4.2. Given a set of POVMs {Ma|λ}, their incompatibility

weight is the minimum µ such that the following decomposition is ad-

missible:

Ma|λ = µ Oa|λ + (1− µ) Na|λ (4.7)

{Na|λ} and {Oa|λ} are set of POVMs, and the set {Oa|λ} is jointly mea-

surable.

Remark 4.3. This quantifier suffers from a problem relating to the one

outlined in remark 3.14 for steerable weight. That is, when the elements

of the set are rank-1 operators (i.e. the measurements are PVMs) this

quantifier is always maximal. Therefore, pairs of arbitrary close PVMs are

always maximally incompatible according to IW, in the same way as state

assemblages arising from pure bipartite states are maximally steerable

according to SW (even for for arbitrary small entanglement). In the next

section we present a quantifier that solves this problem.

4.2.2 Incompatibility robustness

Following the idea of steering robustness, introduced in subsection 3.3.2,

we now present the notion of incompatibility robustness [11].

Definition 4.4. Given a set of POVMs {Ma|λ}, their incompatibility ro-

bustness is the minimum t such that the set:

{Oa|λ} =

{
Ma|λ + t Na|λ

t+ 1

}
(4.8)
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is jointly measurable ({Na|λ} is a general set of POVMs).

It can be thought as a quantification of the minimal (due to the opti-

mization over {Na|λ}) amount of noise one has to add in order to spoil

incompatibility.

As for the case of steering quantifiers, the aforementioned incompability

quantifiers can be efficiently calculated by the use of SDPs.

4.3 Steering inequalities from incompatibility

In light of theorem 4.1, previously found incompatibility inequalities can

be used to devise steering inequalities for the characterization of steerable

scenarios [11].

Example 4.2. Consider the qubit assemblage {ρa|λ}, with a = ± and

λ ∈ {1, 2}:
ρ±|λ = t±λ 1 + ~s±λ · ~σ; ~s±λ = (x±λ , y

±
λ , z

±
λ ) (4.9)

In order for steering to be possible, the assemblage must correspond to a

state ρB =
∑

a ρa|λ ∀λ with rank 2, otherwise the total shared state would

be separable (pure marginal states can only be obtained if the total state

is separable).

For this assemblage, the corresponding SE observables are given by:

B+|λ =
1

2
((1 + αλ)1 + ~rλ · ~σ); B−|λ = 1−B+|λ (4.10)

Where αλ and ~rλ are chosen so that inverting equation (4.1) gives the

desired assemblage {ρa|λ} (the details of the derivation can be found in
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[11]).

In chapter 2, we shoved that such observables are jointly measurable if

they satisfy relation 2.16; the incompatibility of observables (4.10) can

then be quantified2 by the amount of violation of the following inequality:

‖~r1 + ~r2‖+ ‖~r1 − ~r2‖ ≤ 2 (4.11)

This is a necessary condition for joint measurability, thus, if the SE ob-

servables are found to violate such inequality, we can conclude that they

are incompatible and therefore (using theorem 4.1) that the assemblage

{ρa|λ} is steerable.

As shown in example 4.2, we can use known incompatibility relations to

construct inequalities and quantifiers for steering. In fact, [11] gives a

refined version of condition 4.11 which is both necessary and sufficient in

order to have incompatibility of the SE observables. Therefore, the amount

of violation of such inequality can be used as a direct quantification of the

steerability of the assemblage. In the same paper it is also given another

example of such inequalities that holds for the case of three dichotomic

observables on a qubit system.

Example 4.3. We wish to use the criterion presented in example 4.2 to

show the steerability of a state assemblage. For the sake of simplicity,

let us assume that Alice and Bob share the maximally entangled state

|ψ+〉 = 1√
2
|00〉 + |11〉 and that Alice steering attemps are made using

projective measurements along the z and x axis (that is, using the PVMs
1
2(1± σz) and 1

2(1± σx)).

2This quantifier is known as incompatibility degree and has been introduced by [13]
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It is easy to see that the state assemblage for Bob will be:

ρ+|z =
1

2

(
1 0

0 0

)
; ρ+|x =

1

4

(
1 1

1 1

)

ρ−|z =
1

2

(
0 0

0 1

)
; ρ−|x =

1

4

(
1 −1

−1 1

) (4.12)

Using the notation presented in section 4.1, we now write:

ρB = ρ+|z + ρ−|z = ρ+|x + ρ−|x =
1

2
1 (4.13)

Since ρB is clearly rank 2, we have that ρ̃B = ρB and ˜ρa|λ = ρa|λ; we also

have ρ
− 1

2
B =

√
2 1. Using equation (4.1) we find Bob’s SE observables to

be:

B+|z =

(
1 0

0 0

)
; B+|x =

1

2

(
1 1

1 1

)

B−|z =

(
0 0

0 1

)
; B−|x =

1

2

(
1 −1

−1 1

) (4.14)

The parameters αλ, ~rλ of example 4.2 are then found to be:

αz = 0; ~rz = (0, 0, 1)

αx = 0; ~rx = (1, 0, 0)
(4.15)

In this case, equation (4.11) becomes:

‖~rx + ~rz‖+ ‖~rx − ~rz‖ =
√

2 +
√

2 = 2
√

2 > 2 (4.16)
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We conclude that Bob’s SE observable are incompatible, and therefore, by

theorem 4.1, that the assemblage is steerable.

Remark 4.5. Since the state shared between the parties is pure, as ex-

pected from the results of subsection 4.1.1, we find that Bob’s SE observ-

ables found in equation (4.14) match exactly Alice’s PVMs.

4.4 Channel steering and joint measurability

4.4.1 Incompatibility of Alice’s measurements

In [14] a result linking the steerability of a channel extension to the incom-

patibility of Alice’s measurements is presented. However, it is possible to

find a counterexample to this claim. The proposed link is:

Claim 4.6. The channel assemblage {ΛC→Ba|λ } for any channel ΛC→B

with ΛC→Ba|λ = trA[Aa|λΛC→AB] is unsteerable for any channel extension

ΛC→AB of ΛC→B if and only if the set of POVMs {Aa|λ} applied by Alice

is jointly measurable.

Proposition 4.7. To provide a counterexample to claim 4.6, we will prove

that there exist a channel that admits only incoherent extensions, and

therefore that any channel assemblage for Bob output must be unsteerable

regardless of Alice choice of measurement.

Proof. This proof holds for any channel ΛC→B that maps pure states into

pure states. For simplicity we will consider HC = HB and take ΛC→B as

the identity channel, so that ΛC→B(ρ) = ρ. All extensions of this channel

must then satisfy:

trA[ΛC→AB(ρ)] = ρ (4.17)
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If ρ is a pure state, say ρ = |ψ〉 〈ψ|, equation (4.17) implies that the

bipartite state ΛC→AB(ρ) is separable, since it is well known that if the

marginal of a multipartite state is pure, then the multipartite state must

be separable.

If ρ is mixed, say ρ =
∑

i pi |ψi〉 〈ψi|, then we have:

ΛC→AB(ρ) = ΛC→AB

(∑
i

pi |ψi〉 〈ψi|

)
=
∑
i

piΛ
C→AB (|ψi〉 〈ψi|)

(4.18)

And since ΛC→AB (|ψi〉 〈ψi|) must be separable, we can write:

ΛC→AB(ρ) =
∑
i

pi
∑
j

µijρ
A
ij ⊗ ρBij =

∑
k

λkρ
A
k ⊗ ρBk (4.19)

where we defined the multiindex k = (i, j) and λk=(i,j) = piµij .

Therefore we proved that the state ΛC→AB(ρ) is separable for any input

matrix ρ and for any channel extension ΛC→AB.

Hence, all extensions ΛC→AB of the identity channel are incoherent and

therefore unsteerable regardless of Alice choice of measurement.

A modified version of claim 4.6 can however be proved:

Theorem 4.8. The channel assemblage {Λa|λ} arising from the mini-

mal dilation3 of the channel Λ as Λa|λ = trA[(Aa|λ ⊗ 1) V (ρ ⊗ 1)V †] is

unsteerable if and only if the set of POVMs {Aa|λ} is jointly measurable.

Proof. We will first prove that unsteerability implies joint measurability.

We have:

Λa|λ =
∑
k

pk(a|λ)Λk (4.20)

3See proposition 2.9 and corollary 2.10 for details
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Summing over a on both sides, and using the weak compatibility of {Λa|λ}
we find:

Λ =
∑
k

∑
a

pk(a|λ)Λk =
∑
k

Λk (4.21)

that is, the instrument {Λk} is weakly compatible with {Λa|λ}. Using

proposition 2.9, we can find a unique POVM {Gk} such that:

Λk = trA[(Gk ⊗ 1)V (ρ⊗ 1)V †] (4.22)

Putting (4.20) and (4.22) together we have:

trA[(Aa|λ ⊗ 1) V (ρ⊗ 1)V †] = Λa|λ =
∑
k

pk(a|λ)Λk

=
∑
k

pk(a|λ) trA[(Gk ⊗ 1)V (ρ⊗ 1)V †]

= trA[(
∑
k

pk(a|λ)Gk ⊗ 1)V (ρ⊗ 1)V †]

(4.23)

Using proposition 2.9 again, we have that the POVMs {Aa|λ} must be

unique, hence:

Aa|λ =
∑
k

pk(a|λ)Gk (4.24)

that is, {Gk} is a joint observable for {Aa|λ}.
The inverse implication (joint measurability⇒ unsteerability) is trivial, as

the existence of a joint observable for {Aa|λ} directly implies the existence

of a set of instruments {Λk} such that {Λa|λ =
∑

k pk(a|λ)Λk} through

the defining relation of Λa|λ.
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Example 4.4. Let us apply this result to the identity channel used in

proposition 4.7. We find that the minimal dilation of the identity channel

1
C→B : HC → HB is constructed on the extended space HB ⊗CA, that is

Alice’s output space is just complex numbers. This is due to the fact that

the dimension of the minimal dilation is equal to the number of linearly

independent operators in the Kraus decomposition of the channel[15]. In

this case, all possible measurement on Alice’s subsystem would be jointly

measurable (since matrix multiplication reduces to the product of complex

numbers), and therefore no steering would be possible.

Example 4.5. We will now give an example of a steerable channel as-

semblage constructed from a qubit quantum channel.

The defining relation of the channel ΛC→B : C2 → C2 is given as:

ΛC→B

(
a c

c∗ b

)
:=

(
a 0

0 b

)
(4.25)

We can check that this relation defines a valid channel by finding a Kraus

decomposition for it and using theorem 1.10. We find that the channel

(4.25) is indeed given by:

ΛC→B(ρ) = |0〉 〈0| ρ |0〉 〈0|+ |1〉 〈1| ρ |1〉 〈1| (4.26)

That is, under the action of the channel, the states |0〉 and |1〉 are left

untouched, while any other state is projected on the computational basis.

A possible extension of this channel is given by the broadcast channel
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ΛC→AB : C2 → C2 ⊗ C2, defined by:

ΛC→AB

(
a c

c∗ b

)
:=


a 0 0 c

0 0 0 0

0 0 0 0

c∗ 0 0 b

 (4.27)

We can easily check that trA[ΛC→AB] = ΛC→B. This broadcast chan-

nel can be implemented using a CNOT gate, using the quantum circuit

depicted in figure 4.1, with |ψ〉 as input state.

Figure 4.1: The ’CNOT’ broadcast channel

Imagine that Alice uses the set of measurements:

{Sz|± =
1

2
(1± σz), Sx|± =

1

2
(1± σx)} (4.28)

Using proposition 1.21, we can construct the final bipartite state after Al-

ice’s measurement. Following the relation ΛC→Ba|± = trA[(Sa|±⊗1)ΛC→AB],

we trace away Alice’s subsystem and find the channel assemblage for Bob:

ΛC→Bz|+

(
a c

c∗ b

)
=

(
a 0

0 0

)
; ΛC→Bx|+

(
a c

c∗ b

)
=

1

2

(
a c

c∗ d

)

ΛC→Bz|−

(
a c

c∗ b

)
=

(
0 0

0 b

)
; ΛC→Bx|−

(
a c

c∗ b

)
=

1

2

(
a c

c∗ d

) (4.29)



62 4.4. Channel steering and joint measurability

We conclude that this is a steerable assemblage, for example, the in-

put state |+〉 = 1√
2
(|0〉 + |1〉) gives the maximally entangled |ψ+〉 =

1√
2
(|00〉 + |11〉) state as output, allowing Alice to steer Bob. With this

input, the state assemblage on Bob’s output is the same discussed in ex-

ample 4.3.

Remark 4.9. Note that summing over the outcomes +,− for each of Alice’s

measurement choices we obtain the same total channel, as required by the

non signaling condition.

Remark 4.10. This channel assemblage gives rise to steerable state assem-

blages only for some inputs states. For example, if the input state is |0〉,
the bipartite output state is |00〉 which, being separable, does not allow

steering.

4.4.2 Bob’s SE observables for channel steering

The notion of Bob’s steering equivalent observables, introduced for state

steering in section 4.1, can be easily extended to a channel steering sce-

nario:

Proposition 4.11. The channel extension ΛC→AB is unsteerable if and

only if the set of POVMs {Ba|λ := (ρ̃B)−
1
2 ρa|λ (ρ̃B)−

1
2 }, where ρB =∑

a ρa|λ ∀λ and4 ρa|λ := J(ΛC→Ba|λ ) = J(trA[(Aa|λ⊗1)ΛC→AB]), is jointly

measurable.

Proof. Using the results in [8] it can be shown that the steerability of

the channel extension ΛC→AB is equivalent to the steerability of the state

4J(ΛC→Ba|λ ) denotes the state assemblage obtained through the Choi-Jamiolkoski iso-

morphism from the channel assemblage ΛC→Ba|λ
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assemblage {ρa|λ := J(ΛC→Ba|λ )}.
Defining then the steering-equivalent observables:

Ba|λ := (ρB)−
1
2 ρa|λ (ρB)−

1
2

as we did in (4.1) and using Theorem 4.1, we have that the joint measur-

ability of {Ba|λ} is equivalent to the steerability of {ρa|λ} and therefore to

the steerability of the channel extension.

Example 4.6. As an example of proposition 4.11, we will explicitly

show that the Bob’s observables arising from the identity channel through

proposition 4.11 are always jointly measurable.

The channel assemblage for Bob is:

ΛC→Ba|λ = trA[(Aa|λ ⊗ 1)ΛC→AB] (4.30)

Since we are taking ΛC→B to be the identity channel, using the arguments

of proposition 4.7 we find that any possible extension ΛC→AB must be

incoherent. With this in mind, using the definition of incoherent channel
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extension, we can write the state assemblage ρa|λ = J(ΛC→Ba|λ ) as:

ρa|λ =
1

d

∑
i,j

|i〉 〈j| ⊗ trA[(Aa|λ ⊗ 1)

(∑
k

σk ⊗ ΛC→Bk (|i〉 〈j|)

)
]

=
1

d

∑
i,j

|i〉 〈j| ⊗
∑
k

trA[(Aa|λ ⊗ 1)
(
σk ⊗ ΛC→Bk (|i〉 〈j|)

)
]

=
1

d

∑
i,j

|i〉 〈j| ⊗
∑
k

trA[(Aa|λσk] ΛC→Bk (|i〉 〈j|)

=
1

d

∑
i,j

|i〉 〈j| ⊗
∑
k

pk(a|λ) ΛC→Bk (|i〉 〈j|)

=
1

d

∑
k

pk(a|λ)
∑
i,j

|i〉 〈j| ⊗ ΛC→Bk (|i〉 〈j|)

=
1

d

∑
k

pk(a|λ)ρk

(4.31)

We have that the state assemblage ρa|λ can be written as a LHS model

for Bob, and is therefore unsteerable. Hence, using theorem 4.1 we have

that Gk = ρ̃
− 1

2
B ρkρ̃

− 1
2

B is a joint observable for Ba|λ



Chapter 5

Resource theory of

incompatibility

As we’ve seen in the case of steering, measurement incompatibility is

needed in order to show the non classical properties of a quantum sys-

tem. Since the set of measurements available to extract information from

a system is often limited by the experimental setup, the description of

incompatibility as a quantum resource is a natural step to take.

Resource theories are generally characterized by two main components:

the physical property to be treated as a resource and a class of operations

where the property plays the role of a useful resource. These operations

are called the free operations, and they generally represent the class of ac-

tions easily implementable in a real scenario. Free operations are defined

by the requirement of mapping every free state (i.e. every state without

the property) into a free state, that is, they don’t create the resource.

Resource theories of this type have been developed for many quantum

65
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phenomena, like entanglement [16, 17], nonlocality [18, 19], and steering

[20].

In our case, we will identify the free operations as the action of Heisenberg-

picture quantum channels on POVMs. The idea behind this choice is that

in any physical setup, the measured system will undergo some kind of

transformation before interacting with the measuring device, be it caused

by noise or by the design of the experiment. We can therefore describe this

state transformation as a quantum channel applied to the measurement,

acting on the non-transformed state.

5.1 Theoretical framework

In the introduction of this chapter, the idea of choosing quantum channels

as the free operations for the theory was motivated by physical considera-

tions about the nature of measurements devices in real experiments. From

the theoretical point of view, this choice is supported by the following re-

sult:

Proposition 5.1. Let Λ : T (H) → T (H̃) be a quantum channel in the

Heisenberg picture and {Ei|λ} a set of POVMs. Then, if {Ei|λ} is jointly

measurable, the set {Λ(Ei|λ)} is also jointly measurable

Proof. From the definition of joint measurability we know that it exists a

joint observable {Gk} and positive probabilities pk(i|λ) such that Ei|λ =
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∑
k pk(i|λ)Gk. Thus:

Λ(Ei|λ) = Λ

(∑
k

pk(i|λ)Gk

)
=
∑
k

Λ (pk(i|λ)Gk)

=
∑
k

pk(i|λ)Λ(Gk)

(5.1)

and therefore we find that {Λ(Gk)} is a joint observable for {Λ(Ei|λ)}.

Remark 5.2. For the rest of this chapter, all channels will be taken to be

in the Heisenberg picture, unless otherwise stated.

Proposition 5.1 shows that quantum channels map any free state (i.e. any

set of jointly measurable observables) into a free state, therefore, we can

say that quantum channels don’t create the resource, i.e incompatibility.

Definition 5.3. A function I mapping sets of observables into non-

negative reals R≥0 is an incompatibility monotone [21] if it satisfies the

following requirements:

• I
(
{Ei|λ}

)
= 0 for all jointly measurable {Ei|λ}

• I does not increase under the action of a quantum channel, i.e

I
(
{Ei|λ}

)
≥ I

(
{Λ(Ei|λ)}

)
(5.2)

where Λ is any quantum channel.

The first requirements embodies the fact that we expect all jointly mea-

surable sets to have zero incompatibility, while the second formalizes the

idea that incompatibility should not be created under the action of a free

operation.
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Definition 5.4. An incompatibility monotone I is a convex incompatibil-

ity monotone if the following holds: given a real number 0 ≤ α ≤ 1 and

the two sets {Ei|λ} and {Fi|λ}, we have:

I
(
{ α Ei|λ + (1− α) Fi|λ }

)
≤ α I

(
{Ei|λ}

)
+ (1− α) I

(
{Fi|λ}

)
(5.3)

This last requirement states that incompatibility should not increase when

probabilistically mixing two sets of observables.

Example 5.1. Consider an incompatibility monotone I and a set of in-

compatible observables, say {E±|λ = 1
2(1 ± σλ)}λ∈x,z. Take now a set

of compatible observables which can be thought of as noise, say {F±|λ =
1
21}i|λ.

It is possible to choose a strictly positive value for α so that the measure-

ments { α Ei|λ + (1−α) Fi|λ } are compatible1, making the left hand side

of (5.3) to be equal to 0. The right hand side, however, can be greater

than zero, since {Ei|λ} are incompatible.

Proposition 5.5. Let {Ei|λ} and {Fi|λ} be two set of measurement con-

nected by a unitary transformation, so that Ei|λ = U †Fi|λU ∀i, λ.

Then, given any incompatibility monotone I, it must hold that I({Ei|λ}) =

I({Fi|λ}).

Proof. Define the unitary channel Λ(·) = U † ·U , then we have that Ei|λ =

Λ(Fi|λ) ∀i, λ. Therefore, using the second property of incompatibility

monotones:

I({Ei|λ}) ≥ I({Λ(Ei|λ)}) = I({Fi|λ}) (5.4)

1For the explicit calculation, we refer to example 2.2
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but we also have:

I({Fi|λ}) ≥ I({Λ−1(Fi|λ)}) = I({Ei|λ}) (5.5)

and thus:

I({Fi|λ}) = I({Ei|λ}) (5.6)

5.1.1 Incompatibility monotones

With respect to the incompatibility quantifiers introduced in section 4.2,

we will prove that those quantifiers satisfy the conditions to be convex

incompatibility monotones.

Proposition 5.6. The incompatibility weight IW is a convex incompati-

bility monotone. As in definition 4.2, IW ({Ei|λ}) is the minimum µ such

that the following decomposition is admissible:

Ei|λ = µOi|λ + (1− µ)Ni|λ (5.7)

where {Ni|λ} and {Oi|λ} are measurement sets, and {Ni|λ} is jointly mea-

surable.

Proof. The first requirement of definition 5.3 is trivially satisfied by IW ,

that is, if the observables {Ei|λ} are jointly measurable, condition (5.7) is

satisfied with µ = 0. To show that the second requirement holds, let Λ be
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any quantum channel, and apply it to both sides of equation (5.7):

Λ(Ei|λ) = µΛ(Oi|λ) + (1− µ)Λ(Ni|λ)

Λ(Ei|λ) = µÕi|λ + (1− µ)Ñi|λ
(5.8)

By proposition 5.1, {Ñi|λ} is jointly measurable, therefore equation (5.8)

provides a valid decomposition of Λ(Ei|λ).

Hence, we have that IW ({Ei|λ}) ≥ IR({Λ(Ei|λ)}), and thus I is a incom-

patibility monotone. It remains to prove that it is convex.

Consider the two sets {Ei|λ} and {Fi|λ}; we have:2

Ei|λ = IE OEi|λ + [1− IE ]NE
i|λ

Fi|λ = IF OFi|λ + [1− IF ]NF
i|λ

(5.9)

Now, for any value of α, define:

l = α IE + (1− α) IF (5.10)

and the measurements:

Õi|λ =
1

l

[
α IE OEi|λ + (1− α) IF OFi|λ

]
Ñi|λ =

1

(1− l)

[
α (1− IE) NE

i|λ + (1− α)(1− IF ) NF
i|λ

] (5.11)

with {Ñi|λ} being jointly measurable. We now find:

αEi|λ + (1− α)Fi|λ = l Õi|λ + (1− l) Ñi|λ (5.12)

2To ease the notation, we defined IE = IW ({Ei|λ}) and IF = IW ({Fi|λ})
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since this is a decomposition like the one in (5.7), we have that

IW
(
{αEi|λ + (1− α)Fi|λ}

)
≤ l (5.13)

Proposition 5.7. The incompatibility robustness IR is a convex incom-

patibility monotone. As in definition 4.4, IR({Ei|λ}) is the minimum t

for which the set {Oi|λ}, defined as:

Oi|λ =
Ei|λ + t Ni|λ

t+ 1
(5.14)

where {Ni|λ} is any compatible set, is jointly measurable.

Proof. The first requirement of definition 5.3 is trivially satisfied by IR,

that is, if the observables {Ei|λ} are jointly measurable, condition (5.14)

is satisfied with t = 0. To show that the second requirement holds, let Λ

be any quantum channel, and apply it to both sides of equation (5.14):

Λ(Oi|λ) =
Λ(Ei|λ) + t Λ(Ni|λ)

t+ 1

Õi|λ =
Λ(Ei|λ) + t Ñi|λ

t+ 1

(5.15)

By proposition 5.1, {Ñi|λ} is jointly measurable, and for any t satisfying

condition (5.14) {Õi|λ} is as well.

Therefore, we have that IR({Ei|λ}) ≥ IR({Λ(Ei|λ)}), and thus I is a

incompatibility monotone. The convexity follows from a similar argument

as in Proposition 5.6.
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5.2 Incompatibility breaking channels

In a steering scenario, both entanglement and incompatibility are neces-

sary resources for the setup to be steerable. In the next section, we present

results showing how incompatibility is more easily spoiled than entangle-

ment by the action of a channel, making it a more fragile resource than

entanglement in a steering setup. Using an approach similar to [22], we

give the following definitions:

Definition 5.8. We say that a channel Λ is an incompatibility breaking

channel (IBC) if, for any set of POVMs {Ea|λ} the set {Λ(Ea|λ)} is jointly

measurable.

Definition 5.9. We say that a channel Λ is an entanglement breaking

channel (EBC) if, for any state ρ the state3
(
ΛS ⊗ 1

)
(ρ) is separable.

For finite dimensional Hilbert spaces, entanglement breaking channels can

be fully characterized [23] as:

Λ(T ) =
∑
a

tr[ρaT ] Fa ∀T ∈ S(H) (5.16)

where ρa are states and {Fa} is an observable.

Theorem 5.10. The set of entanglement breaking channels is a proper

subset of incompatibility breaking channels. That is, EBC ⊂ IBC [22].

3With ΛS we denote the Schödinger picture of the Heisenberg-picture channel Λ.
See definition 1.13
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Proof. We will first prove that all entanglement breaking channels are also

incompatibility breaking. Take a general set of incompatible observables

{Ea|1...n} and an entanglement breaking channel Λ written as in (5.16).

Now define:

G(a1, a2, . . . .an) =
∑
a

tr[ρaEa|1] . . . tr[ρaEa|n]Fa (5.17)

Using proposition 2.3 we find that G is a joint observable for {Λ(Ea|1...n)},
and thus EBC ⊆ IBC.

To prove that EBC is a proper subset, we need to find a incompatibility

breaking channel which is not entanglement breaking. Consider the family

of white noise channles Λwnα , defined as:

Λwnα (T ) = α T + (1− α)
1

d
tr[T ] (5.18)

where d is the dimension of the system. As shown in [22], this channel

is entanglement breaking if and only if t ≤ 1
d+1 and it is incompatibility

breaking for:

t ≤ (3d− 1)(d− 1)(d−1)

(d+ 1)dd
(5.19)

therefore, choosing a value of t between the two limits gives an incompat-

ibility breaking channel which is not entanglement breaking, completing

the proof.





Conclusions and Outlooks

The work was set out to explore the connections between joint measura-

bility of generalized observables and the steerability of different scenarios,

with particular focus on incompatibility as a necessary experimental re-

source for quantum steering. Original results on the steerability of chan-

nels have been presented, expanding the known link between joint measur-

ability and steering to the realm of quantum channels. This perspective

allowed us to realize the importance of incompatibility in experiments

looking to demonstrate ’quantum’ behaviour (e.g. the need for incompat-

ibility of Alice’s observables in steering), and prompted us to discuss a

resource theory for it. In particular, the relevance of incompatibility as

a resource is highlighted by the knowledge that it is more easily spoiled

than entanglement, as any entanglement breaking scenario will necessarily

break incompatibility, but not the opposite.

The work opens the possibility for future research directions, including

quantification of channel steering and the construction of explicit local

hidden operation models. Moreover, the usage of Bob’s SE observables

allows for the formulation of the steerability problem for channels as an

SDP. Another related direction is to extend the notion of one-way steering

to quantum channels.
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