Conditions on the compatibility of channels in General Probabilistic Theory and their connection to steering and Bell nonlocality

Martin Plávala

Mathematical institute Slovak Academy of Sciences

The aim of the talk is to introduce operational definitions of:

- compatibility of channel
- steering by channel
- Bell nonlocality of channels

in the context of General Probabilistic Theory.

For simplicity, the talk will be limited only to quantum channels, but we will use only operational ideas.

Notation

 \mathcal{H}, \mathcal{K} finite-dimensional, complex Hilbert spaces $B_h(\mathcal{H})$ set of self-adjoint operators on \mathcal{H} $\mathfrak{D}_{\mathcal{H}}$ set of states Tr, Tr₁, Tr₂ trace, partial trace $C(\Phi)$ Choi matrix of channel Φ Channel is a linear CPTP map $B_h(\mathcal{H}) \to B_h(\mathcal{K})$.

Compatibility of channels

Channels Φ_1 , Φ_2 are compatible if and only if there is a channel $\Phi: B_h(\mathcal{H}) \to B_h(\mathcal{H} \otimes \mathcal{H})$ such that for every $\rho \in \mathfrak{D}_{\mathcal{H}}$ we have

$$\begin{split} \Phi_1(\rho) &= \mathsf{Tr}_2(\Phi(\rho)), \\ \Phi_2(\rho) &= \mathsf{Tr}_1(\Phi(\rho)). \end{split}$$

Note that: for any $\Phi : B_h(\mathcal{H}) \to B_h(\mathcal{H} \otimes \mathcal{H})$ we can define the channels $\operatorname{Tr}_1(\Phi)$ and $\operatorname{Tr}_2(\Phi)$ as $(\operatorname{Tr}_1(\Phi))(\rho) = \operatorname{Tr}_1(\Phi(\rho))$, $(\operatorname{Tr}_2(\Phi))(\rho) = \operatorname{Tr}_2(\Phi(\rho))$. Hence Φ_1 , Φ_2 are compatible if and only if there is a channel Φ such that

$$\begin{split} \Phi_1 &= \mathsf{Tr}_2(\Phi), \\ \Phi_2 &= \mathsf{Tr}_1(\Phi). \end{split}$$

We are "using" a canonical isomorphism between linear maps and elements of some tensor product.

Direct product of state spaces and channels

 $\mathfrak{D}_{\mathcal{H}\otimes\mathcal{H}}$ - form of tensor product of state spaces in GPT, describes states of joint system

Definition

Let $\mathfrak{D}_{\mathcal{H}}\times\mathfrak{D}_{\mathcal{H}}$ denote direct product of state spaces.

 $\mathfrak{D}_{\mathcal{H}} \times \mathfrak{D}_{\mathcal{H}}$ is a set of pairs of states, i.e. for $\rho_1, \rho_2 \in \mathfrak{D}_{\mathcal{H}}$ we have $(\rho_1, \rho_2) \in \mathfrak{D}_{\mathcal{H}} \times \mathfrak{D}_{\mathcal{H}}$.

 $\mathfrak{D}_{\mathcal{H}}\times\mathfrak{D}_{\mathcal{H}}$ corresponds to conditional states, conditioned by our choice in the past. In the same way:

$$(\Phi_1, \Phi_2) : \mathfrak{D}_{\mathcal{H}}
ightarrow \mathfrak{D}_{\mathcal{H}} imes \mathfrak{D}_{\mathcal{H}}$$

is a conditional channel. $(\Phi_1, \Phi_2)(\rho) = (\Phi_1(\rho), \Phi_2(\rho)).$

Compatibility of quantum channels, revisited

Definition

Define the map J that maps a channel $\Phi: B_h(\mathcal{H}) \to B_h(\mathcal{H} \otimes \mathcal{H})$ to a conditional channel, given as

$$J(\Phi) = (\mathsf{Tr}_2(\Phi), \mathsf{Tr}_1(\Phi)).$$

The channels Φ_1 and Φ_2 are compatible if and only if there is a channel Φ such that

$$(\Phi_1, \Phi_2) = J(\Phi).$$

We can use this condition to obtain an SDP problem for compatibility of quantum channels using their Choi matrices.

Prelude to steering and Bell nonlocality

 $ho \in \mathfrak{D}_{\mathcal{H}}$ - fixed state If the channels Φ_1 , Φ_2 are compatible, there exist a state $\sigma \in \mathfrak{D}_{\mathcal{H} \otimes \mathcal{H}}$ such that

$$\begin{split} \Phi_1(\rho) &= \mathsf{Tr}_2(\sigma), \\ \Phi_2(\rho) &= \mathsf{Tr}_1(\sigma), \end{split}$$

because we can just take $\sigma = \Phi(
ho)$.

Would this be a good compatibility test?

No. For fixed $\rho \in \mathfrak{D}_{\mathcal{H}}$ we can always take

$$\sigma = \Phi_1(\rho) \otimes \Phi_2(\rho).$$

But what if ρ was an multipartite entangled state?

Some definitions

Definition Define a map $J': \mathfrak{D}_{\mathcal{H}\otimes\mathcal{H}} \to \mathfrak{D}_{\mathcal{H}} \times \mathfrak{D}_{\mathcal{H}}$ given for $\sigma \in \mathfrak{D}_{\mathcal{H}\otimes\mathcal{H}}$ as

$$J'(\sigma) = (\mathsf{Tr}_2(\sigma), \mathsf{Tr}_1(\sigma)).$$

The map J' maps bipartite states to conditional state.

Definition

Let $\sigma \in \mathfrak{D}_{\mathcal{H} \otimes \mathcal{H}}$ and let (Φ_1, Φ_2) be a conditional channel, then we call $(id \otimes (\Phi_1, \Phi_2))(\sigma)$ a bipartite conditional state.

Definition

Let $\sigma \in \mathfrak{D}_{\mathcal{H}\otimes\mathcal{H}}$ and let (Φ_1, Φ_2) , (Φ_3, Φ_4) be conditional channels, then we call $((\Phi_1, \Phi_2) \otimes (\Phi_3, \Phi_4))(\sigma)$ a bipartite biconditional state.

Steering

 $ho \in \mathfrak{D}_{\mathcal{H}\otimes\mathcal{H}}$ - fixed bipartite state If the channels Φ_1 , Φ_2 are compatible, there exist a state $\sigma \in \mathfrak{D}_{\mathcal{H}\otimes\mathcal{H}\otimes\mathcal{H}}$ such that

$$(\mathit{id}\otimes (\Phi_1,\Phi_2))(
ho)=(\mathit{id}\otimes J')(\sigma).$$

because we can just take $\sigma = (id \otimes \Phi)(\rho)$.

Definition

The state $ho \in \mathfrak{D}_{\mathcal{H} \otimes \mathcal{H}}$ is steerable by the channels Φ_1 , Φ_2 if we have

 $(id \otimes (\Phi_1, \Phi_2))(\rho) \notin (id \otimes J')(\mathfrak{D}_{\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}}).$

Results on steering

- No steering by compatible channels.
- No steering of separable states.
- For measurements, this yields the well known definition of steering.

Proposition

The maximally entangled state $|\psi^+\rangle\langle\psi^+|$ is steerable by channels Φ_1 , Φ_2 if and only if they are incompatible.

Proof.

One simply obtains the Choi matrices of $\Phi_1, \ \Phi_2$ as the bipartite conditional state.

Results on steering

Proposition

The state $\rho \in \mathfrak{D}_{\mathcal{H} \otimes \mathcal{H}}$ is steerable by the channels Φ_1 , Φ_2 only if it is steerable by two copies of the identity channel id : $\mathfrak{D}_{\mathcal{H}} \to \mathfrak{D}_{\mathcal{H}}$.

Proof.

Assume that the state $\rho \in \mathfrak{D}_{\mathcal{H}\otimes\mathcal{H}}$ is not steerable by two copies of the identity channel *id*, then there exists $\sigma \in \mathfrak{D}_{\mathcal{H}\otimes\mathcal{H}\otimes\mathcal{H}}$ such that

$$\operatorname{Tr}_3(\sigma) = \rho, \qquad \qquad \operatorname{Tr}_2(\sigma) = \rho.$$

Let

$$\tilde{\sigma} = (id \otimes \Phi_1 \otimes \Phi_2)(\sigma),$$

then we have

$$\mathsf{Tr}_3(\tilde{\sigma}) = (\mathit{id} \otimes \Phi_1)(\rho), \qquad \mathsf{Tr}_2(\tilde{\sigma}) = (\mathit{id} \otimes \Phi_2)(\rho).$$

so the state ρ is not steerable by the channels Φ_1 , Φ_2 .

W state example

Example

Let dim $(\mathcal{H})=2$ with the standard basis |0
angle,~|1
angle and let

$$|W
angle = rac{1}{\sqrt{3}}(|001
angle + |010
angle + |100
angle).$$

 $|W
angle\langle W|\in\mathfrak{D}_{\mathcal{H}\otimes\mathcal{H}\otimes\mathcal{H}}$ is the W state. We have

$$\rho_{W} = \mathsf{Tr}_{2}(|W\rangle\langle W|) = \mathsf{Tr}_{3}(|W\rangle\langle W|) \in \mathfrak{D}_{\mathcal{H}\otimes\mathcal{H}},$$

that shows that the state ρ_W is not steerable by a pair of the identity channels $id : \mathfrak{D}_H \to \mathfrak{D}_H$ that implies that ρ_W is not steerable by any pair of channels. Moreover it is known that the state ρ_W is entangled.

Also the only state $\sigma \in \mathfrak{D}_{\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}}$, such that $\rho_W = \text{Tr}_2(\sigma) = \text{Tr}_3(\sigma)$ is $\sigma = |W\rangle \langle W|$.

Bell nonlocality

 $ho \in \mathfrak{D}_{\mathcal{H}\otimes\mathcal{H}}$ - fixed bipartite state If the channels Φ_1^1 , Φ_2^1 are compatible and Φ_1^2 , Φ_2^2 are compatible, there exist a state $\sigma \in \mathfrak{D}_{\mathcal{H}\otimes\mathcal{H}\otimes\mathcal{H}\otimes\mathcal{H}}$ such that

$$((\Phi^1_1,\Phi^1_2)\otimes (\Phi^2_1,\Phi^2_2))(\rho)=(J'\otimes J')(\sigma).$$

because we can just take $\sigma = (\Phi^1 \otimes \Phi^2)(\rho)$.

Definition

The bipartite biconditional state $((\Phi_1^1, \Phi_2^1) \otimes (\Phi_1^2, \Phi_2^2))(\rho)$ is Bell nonlocal if

 $((\Phi_1^1,\Phi_2^1)\otimes(\Phi_1^2,\Phi_2^2))(\rho)\notin (J'\otimes J')(\mathfrak{D}_{\mathcal{H}\otimes\mathcal{H}\otimes\mathcal{H}\otimes\mathcal{H}}).$

Result on Bell nonlocality

- No Bell nonlocality using compatible channels.
- No Bell nonlocality using separable states.
- For measurements, the definition yields the well known definition of Bell nonlocality.
- One can form a generalized version of the CHSH inequality, with maximal algebraic violation 4 and valid Tsirelson bound $2\sqrt{2}$.

Proposition

Let $\rho \in \mathfrak{D}_{\mathcal{H} \otimes \mathcal{H}}$ and let Φ_1^1 , Φ_2^1 , Φ_2^1 , Φ_2^2 be channels. The bipartite biconditional state $((\Phi_1^1, \Phi_2^1) \otimes (\Phi_1^2, \Phi_2^2))(\rho)$ is Bell nonlocal only if the bipartite biconditional state $((id, id) \otimes (id, id))(\rho)$ is Bell nonlocal.

W state example

Example

Let $\rho_W = \text{Tr}_2(|W\rangle\langle W|) = \text{Tr}_3(|W\rangle\langle W|)$ and consider the bipartite biconditional state $((id, id) \otimes (id, id))(\rho_W)$. It is Bell local, if there is a state $\sigma \in \mathfrak{D}_{\mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H}}$ such that

$$\mathsf{Tr}_{13}(\sigma) = \mathsf{Tr}_{14}(\sigma) = \mathsf{Tr}_{23}(\sigma) = \mathsf{Tr}_{24}(\sigma) = \rho_W.$$

 $\mathsf{Tr}_3(\mathsf{Tr}_1(\sigma)) = \mathsf{Tr}_4(\mathsf{Tr}_1(\sigma)) =
ho_W$ implies that we must have

 $\mathsf{Tr}_1(\sigma) = |W\rangle \langle W|.$

This implies that there is a state $\tau \in \mathfrak{D}_{\mathcal{H}}$ such that $\sigma = \tau \otimes |W\rangle \langle W|$. This implies that we have $\operatorname{Tr}_{23}(\sigma) = \tau \otimes \frac{1}{3}(2|0\rangle \langle 0| + |1\rangle \langle 1|)$ which is clearly a separable state. This is a contradiction as we should have had $\operatorname{Tr}_{23}(\sigma) = \rho_W$ which is an entangled state.

Open problems

- Structure of conditional states and conditional channels.
- Degrees and measures of compatibility of channels.
- Best approximation by compatible channels.
- Steering and Bell nonlocality with more than 1 fixed state.
- Lack of connection between steering and Bell nonlocality.
- Applications to cryptography.
- Resource theories of steering and Bell nonlocality.

Thank you for your attention.

For more detail see the full publication arXiv: 1707.08650