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Main results
1. A measurement of position with an uncertainty εQ does not
introduce a disturbance ηP |Q in a subsequent momentum
measurement, such that

εQηP |Q ≥ ~/2.

This result depends on the definition of disturbance and is of
fundamental interest.
2. By preceding a momentum measurement with an imprecise
position measurement, it is possible to cancel the noise of the
second measurement apparatus, obtaining thus an ideal
momentum detector. This result does not depend on the
definition of disturbance and may find applications in precision
metrology.
3. Measuring position then momentum of a system allows to
reconstruct its state.
4. In a finite–dimensional Hilbert space, there are families of
conjugated operators A and B, such that measuring them
sequential allows to reconstruct the state of a system.



Uncertainty principles
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Figure: Many recent claims of violation of Heisenberg relation. Or
maybe “Heisenberg’s”?



Operational definition of noise/uncertainty
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Figure: Measure Q, with the actual apparatus and with an ideal
apparatus. Individual measurement uncertainty: εQ =

√
∆2

Q − σ2
Q.



Operational definition of disturbance
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Figure: Measure A = Q and B = P . Consider the variance of the
pointer ∆2

P |Q.



Operational definition of disturbance
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Figure: Measure only B = P with the same apparatus, by
switching off the QΦQ interaction. Consider the variance of the
pointer ∆2

P .



Operational definition of disturbance

Define the squared statistical disturbance η2
P |Q = ∆2

P |Q −∆2
P .

Notice that a priori we may have η2
P |Q < 0, i.e., the

measurement of Q may not disturb a subsequent measurement
of P , but rather make it more precise!



Validity of Heisenberg noise–disturbance relation

Usually, it is assumed an initial state

|ψsys〉 ⊗ |ψpr1〉 ⊗ |ψpr2〉.

Then, you can prove that εQηP |Q ≥ ~/2.



Validity of Heisenberg noise–disturbance relation

However, if one instead assumes

|ψsys〉 ⊗ |ψpr〉

where |ψpr〉 is an entangled state of the probes, the Heisenberg
relation can be violated.



Elementary proof: operators after the measurement
Heisenberg picture. The interactions lead to the evolution

U = exp[iP̂ Φ̂P ] exp[iQ̂Φ̂Q]

for sequential measurements.
After the first interaction, the readout operator ĴQ operator is
shifted to

ĴQ + Q̂,

while the P operator is shifted to

P̂ ′ = exp[iQ̂Φ̂Q]P̂ exp[−iQ̂Φ̂Q] = P̂ + Φ̂Q

After the second interaction, the pointer of the second meter
becomes

Ĵ ′′P = exp[iP̂ ′Φ̂P ]ĴP exp[−iP̂ ′Φ̂P ] = ĴP + P̂ ′ = P̂ + ĴP + Φ̂Q

If the first meter has a sharp distribution of ĴQ, Φ̂Q has a large
variance (Kennard)



Elementary proof: operators after the measurement
Variance of the second pointer

∆2
P |Q ≡ 〈Ĵ

′′2
P 〉 − 〈Ĵ ′′P 〉2

= 〈
[
P̂ + ĴP + Φ̂Q

]2
〉 − 〈P̂ + ĴP + Φ̂Q〉2

= σ2
P + σ2

JP
+ σ2

ΦQ
,

The cross-terms cancel if no initial correlations are assumed.
The disturbance is thus

η2
P |Q = σ2

ΦQ
≥ 1/(4σ2

JQ
)

Uncertainty of the first measurement times disturbance of the
second measurement

σ2
JQ
σ2

ΦQ
≥ 1/4,

because of Kennard applied to the probe. The
noise-disturbance relation holds.



Main idea
The above conclusion relied on the assumption

|ψsys〉 ⊗ |ψpr1〉 ⊗ |ψpr2〉.

However, why should the detectors be initially uncorrelated to
each other?
We allow the more general initial state

|ψsys〉 ⊗ |ψpr〉.

Then an extra term appears

∆2
P |Q ≡ 〈Ĵ

′′2
P 〉 − 〈Ĵ ′′P 〉2

= 〈
[
ĴP + P̂ + Φ̂Q

]2
〉 − 〈ĴP + P̂ + Φ̂Q〉2

= σ2
JP

+ σ2
P + σ2

ΦQ
+ 2κ,

where κ = 〈ĴP Φ̂Q〉 − 〈ĴP 〉〈Φ̂Q〉
Disturbance: η2

P |Q = σ2
ΦQ

+ 2κ.



Question

Can η2
P |Q = σ2

ΦQ
+ 2κ be negative? What does an imaginary

disturbance mean?
Answer
Yes, η2

P |Q can become negative. κ can reach −σJP σΦQ
for

perfectly anti correlated probes (EPR state).
It means that the first measurement did not disturb the second,
actually it helped make it sharper.
Eu-turbance.



Practical consequences

Since one can reach

∆2
P |Q = (σJP − σΦQ

)2 + σ2
P ,

if additionally one makes sure that σJP = σΦQ
then the standard

deviation in the P measurement is minimal.
This can be achieved by changing the coupling constants,
which were absorbed for brevity Φj → λjΦj and by making the
two variables ΦQ, JP perfectly anti-correlated.



A possible application
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A possible application

Entangled state

BΔB|A= σ

Figure: Sequential measurements with entangled detectors.



A possible application

Now, against common belief, it may happen that the uncertainty
of the P measurement decreases compared with the ∆P when
no Q measurement is made. By entangling the detectors in an
EPR state, we can make ∆P |Q = σP , i.e., the P -detector works
as an ideal detector. This results does not depend on the
definition of disturbance.
ADL, PRL 120403, 2013.
Bullock & Busch, PRL 120401, 2014



Part II: quantum state reconstruction
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Figure: Sequential measurements allow state reconstruction with
a single setup.



Pauli problem

Suppose you know prob(Q) = |ψ(Q)|2 and prob(P ) = |ψ̃(P )|2.
Can you reconstruct ψ?
No



Sequential Pauli problem

Suppose you know prob(Q,P ) the probability of observing Q
and P (or better, the corresponding pointers) in a joint or
sequential measurement.
Can you reconstruct ψ?
Yes, if the measurements are not strong (projective) nor weak.



Key ingredient

Moyal quantum characteristic function

M(χp, χq) =

∫
dPdQW (Q,P )eiQχQ+iPχP = 〈exp[iχpp̂+ iχq q̂]〉



Quantum state reconstruction

Fourier–transform the experimental data
prob(Q,P )→ Z(χQ, χP ).
The relation holds (if first one measures Q then P )

Z(χQ, χP ) =Mpr(χP , 0;χQ, χP )Msys(χQ, χP )

Thus one can findMsys and from it ρsys, provided thatMpr 6= 0.
For a strong interactionMpr = 0 for many values of the
arguments. Intuitively, if the first measurement is projective, all
the information about ρsys gets lost.



Finite–dimensional case

The procedure works if A and B are conjugated variables.
In what sense, since [A,B] = i cannot hold?
This question is related to the generalization of the Wigner
function.
Say A has eigenvectors | − S〉, | − S + 1〉, . . . , |S〉, with
d = 2S + 1.
Let B be defined as the Hermitean operator that generates the
cyclic translations of the eigenstates of A, e−iB|m〉 = |m+ 1〉 if
m < S, and e−iB|S〉 = (−1)d−1| − S〉.
The eigenstates of B form a mutually unbiased basis wrt the
eigenstates of A,

|m̃〉 =

S∑
n=−S

1√
d
e2πimn/d|n〉



Moyal function

Given a conjugate pair A and B,

Msys(φA, a) =
∑
Ā

eiφAĀ〈Ā+
a

2
|ρsys|Ā−

a

2
〉.

Here a ranges in [1− d, d− 1], d dimension of the Hilbert space.
In order for this formula to be invertible it suffices to evaluate at
φ = 2πm/(d− |a|), m ∈ [(1− d+ |a|)/2, (d− 1− |a|)/2].



Equations for the finite–dimensional case

Z(χ) =Mpr(χ;−χσ+)Msys(χ) +Mpr(χ;−χ̄σ+)Msys(χ̄),

Z(χ̄) =Mpr(χ̄;−χ̄σ+)Msys(χ̄) +Mpr(χ̄;−χσ+)Msys(χ),



Conclusions

Noise-disturbance principle:
holds for uncorrelated detectors;
may not hold otherwise.

Perspectives
Finite–dimensional Hilbert spaces?

Quantum state determination:
possible for infinite and finite–dimensional Hilbert spaces;
no need of weak measurement approximation;
single setup.

Perspectives
Detectors with a discrete spectrum?
Efficiency wrt conventional tomographic scheme (Monte Carlo
simulations)?
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