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Outline

@ Causal inference using conditional statistical
independences
(conventional approach since early 90s)

® Causal inference using the shape of probability
distributions
(first ideas around 2003, major results since 2008)

© Relating these new causal inference methods to the
Arrow of Time



Can we infer causal relations from passive observations?

Recent study reports negative correlation between coffee
consumption and life expectancy

Paradox conclusion:
e drinking coffee is healthy

e nevertheless, strong coffee drinkers tend to die earlier because
they tend to have unhealthy habits

= Relation between statistical and causal dependences is tricky



Example for causal problems from our collaborations

¢ Brain Research:
which brain region influences which one during some task?
(goal: help paralyzed patients, given: EEG or fMRI data)

¢ Biogenetics:
which genes are responsible for certain diseases?

¢ Climate research:
understand causes of global temperature fluctuations






Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either
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2) 3)

e in case 2) Reichenbach postulated X L Y |Z and linked this
to thermodynamics in his book 'The direction of time’ (1956)

e every statistical dependence is due to a causal relation, we
also call 2) “causal”.

e distinction between 3 cases is a key problem in scientific
reasoning and the focus of this talk.



Coffee example

coffee drinking C increases life expectancy C

common cause “Personality” P increases coffee drinking C
but decreases (via other habits) life expectancy L

negative correlation by common cause stronger than positive
by direct influence
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Observe dependences between measurements at system A and
system B.

e acausal state: in scenario 2) there is a joint density operator
on Ha® Hp

e causal state: in scenario 1) and 3) there is an operator on
Ha ® Hp whose partial transpose is a density operator

There are dependences between A and B that can clearly be
identified as 2) and those that can be identified as 1) or 3)



Causal inference problem, general form s, ciymour, scheines, pear

e Given variables Xi,..., X,

e infer causal structure among them from n-tuples iid drawn
from P(X1,...,Xp)
e causal structure = directed acyclic graph (DAG)

¢
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Functional model of causality e

e every node X; is a function of its parents and an unobserved
noise term E;

e all noise terms E; are statistically independent (causal
sufficiency)

e which properties of P(Xi,...,X,) follow?



Causal Markov condition (4 equivalent Versions) taurien et sl e

e existence of a functional model

¢ local Markov condition: every node is conditionally
independent of its non-descendants, given its parents

parents of X
non-descendants

o

. Q descendants

(information exchange with non-descendants involves parents)
¢ global Markov condition: describes all ind. via d-separation
e Factorization: P(Xy,...,X,) = [[; P(Xj|PA))

(every P(Xj|PA;) describes a causal mechanism)



Causal inference from observational data

Can we infer G from P(Xi,..., X,)?

e MC only describes which sets of DAGs are consistent with P

e n! many DAGs are consistent with any distribution
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e reasonable rules for prefering simple DAGs required
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Ca Usal fa ithfu | neSS Spirtes, Glymour, Scheines, 1993

Prefer those DAGs for which all observed conditional
independences are implied by the Markov condition

e Idea: generic choices of parameters yield faithful distributions

e Example: let X | Y for the DAG
X

e not faithful, direct and indirect influence compensate

Y V4

e Application: PC and FCI algorithm infer causal structure
from conditional statistical independences
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Application: Brain Computer Interfaces  crosewentrup & schitkops, 2011

e Goal: Paralyzed subjects communicate by activating certain
brain regions

e Open problem: Performance of subjects varies strongly
e Hypothesis: Attention influenced by oscillations in the
~-frequency band

e indeed, v seems to influence the sensorimotor rhythm (SMR)
since conditional dependences support the DAG

c SMR gl

(Grosse-Wentrup, Schélkopf, Hill Neurolmage 2011)
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Limitation of independence based approach:

many DAGs impose the same set of independences

X V4 Y
X V4 Y
X V4 Y

X 1L Y |Z for all three cases (“Markov equivalent DAGs")

method useless if there are no conditional independences
non-parametric conditional independence testing is hard
ignores important information:

only uses yes/no decisions “conditionally dependent or not
without accounting for the kind of dependences...
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e there are asymmetries between cause and effect apart from
those formalized by the causal Markov condition

e new methods that employ these asymmetries need to be
developed
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Linear non-Gaussian models

Kano & Shimizu 2003

Theorem

Let X L Y. Then P(X,Y) admits linear models in both direction,
ie.,

Y = aX+ Uy with Uy 1L X
X = BY+UxwithlUx LY,

if and only if P(X,Y) is bivariate Gaussian

e if P(X,Y) is non-Gaussian, there can be a linear model in at
most one direction.

e LINGAM: causal direction is the one that admits a linear
model
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Let X and Uy be uniformly distributed. Then Y = aX 4+ Uy
induces uniform distribution on a diamond (left):

uniformly distributed Y and Ux with X = Y + Ux induces the
diamond on the right.
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Non-linear additive noise based INference toyer, saning, peters, sehskopt, 2008

e Assume that the effect is a function of the cause up to an
additive noise term that is statistically independent of the
cause:

Y=fX)+E with ELX

y T e **i o f(X)
a8

o there will, in the generic case, be no model
X=g(Y)+E with ELY,

even if f is invertible! (proof is non-trivial)
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Y =f(X,E) with ELX
can model any conditional P(Y|X)

Y=f(X)+E with ELX
restricts the class of possible P(Y|X)
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Intuition

e additive noise model from X to Y imposes that the width of
noise is constant in x.

e for non-linear f, the width of noise wont't be constant in y at
the same time.
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Causal inference method:

Prefer the causal direction that can better be fit with an
additive noise model.

Implementation:

e Compute a function f as non-linear regression of Y on X, i.e.,
f(x) :=E(Y|x).
e Compute the residual

E:=Y —f(X)

e check whether E and X are statistically independent
(uncorrelated is not sufficient, method requires tests that are
able to detect higher order dependences)

e performed better than chance on real data with known ground
truth
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seems quite ad hoc: one defines a model class and believes that it
is related to causal directions...

To avoid arbitrariness when inventing new inference methods we
need a deeper foundation...
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TOOl: Algorith m |C Inform atlon Theory Kolmogorov, Chaitin, Solomonoff, Gacs

e Kolmogorov complexity: K(x): length of the shortest
program on a universal Turing machine that outputs x

e conditional Kolmogorov complexity: K(y|x*) length of the
shortest program that generates the output y from the
shortest compression of x

¢ algorithmic mutual information:

I(x:y) = K(x)+K(y)—K(x,y)
LK) = K(xly")
= K(y) - K(ylx")

measures the number of bits that a joint description of x, y
saves compared to separate descriptions
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Postulate: Algorithmic independence of conditionals

The shortest description of P(Xi,...,Xy) is given by separate
descriptions of P(X;|PA;).

(Here, description length = Kolmogorov complexity)

e idea: each P(X;|PA;/) describes independent mechanism of
nature

e special case: shortest desription of P(effect, cause) is given by
separate descriptions of P(cause) and P(effect|cause).

e implication of a general theory connecting causality with
description length

Janzing, Schélkopf: Causal inference using the algorithmic Markov condition, IEEE TIT (2010).

Lemeire, Janzing: Replacing causal faithfulness with the algorithmic independence of conditionals, Minds &

Machines (2012).
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[llustrative toy example

Let X be binary and Y real-valued.

e Let Y be Gaussian and X =1 for all y above some threshold

and X = 0 otherwise.

p(y,x=0) p(yx=1)

N

e Y — X is plausible: simple thresholding mechanism

e X — Y requires a strange mechanism:
look at P(Y|X =0) and P(Y|X =1)!
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Strange relation between P(Y|X) and P(X)...

look what happens with P(Y) if we change P(X):

e P(X) and P(Y]|X) seem to be adjusted to each other

e Knowing P(Y|X), there is a short description of P(X),
namely 'the unique distribution for which > P(Y|x)P(x) is
Gaussian’.
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Arrow of time in stationary stochastic processes

Peters, DJ, Gretton, Schélkopf ICML 2009

e Theorem: If (X;):cz has an autoregressive moving average
(ARMA) model

p q
Xe=> ajXej+ Y BjEcj+E  with independent E;
j=1 j=1

there is no such autoregressive model for (X_;), unless E; is
Gaussian or o = 0.

e Experiment: infer the direction of real-world time series
(finance, EEG...)

e Result: more often linear in forward than in backward
direction

smells like an arrow of time, right?
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Physical toy model for X; = aX;_ 1 + E;

DJ, Journ. Stat. Phys. 2010

e X;: physical observable of a fixed system S at time t.
e noise term provided by propagating particle beam (shift on Z)

35



Physical toy model for X; = aX;_ 1 + E;

DJ, Journ. Stat. Phys. 2010

e X;: physical observable of a fixed system S at time t.
e noise term provided by propagating particle beam (shift on Z)
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Physical toy model for X; = aX;_ 1 + E;

DJ, Journ. Stat. Phys. 2010

e X;: physical observable of a fixed system S at time t.
e noise term provided by propagating particle beam (shift on Z)

% interaction

y: N \ y-

0
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DJ, Journ. Stat. Phys. 2010

e X;: physical observable of a fixed system S at time t.
e noise term provided by propagating particle beam (shift on Z)

interaction
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DJ, Journ. Stat. Phys. 2010

e X;: physical observable of a fixed system S at time t.
e noise term provided by propagating particle beam (shift on Z)

interaction
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Model and its implications

Assumptions:

e interaction is rotation on phase space of S and particle at
position 0

e incoming particles statistically independent

Implications:

e outgoing particles are dependent (except for Gaussian states)
e coarse-grained entropy increased
e P(X¢| Xt—1) is linear, but not P(X;_1|X:)
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Time-reversed process unlikely...

incoming particles are statistically dependent
interaction with S removes dependences

outgoing particles independent

rotation angle must be adapted to the dependences

model requires adjustments between incoming state and
rotation angle

41



e the input state (of the particles) and the mechanism
transforming the state are independently chosen by nature

o P(cause) and P(effect|cause) are independently chosen by
nature

22



This seems to be its crucial idea:

The initial state and the dynamical law are algorithmically
independent
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o typical closed system dynamics:
simple state — complex state

¢ unlikely:
complex state — simple state

(thermodynamic entropy = Kolmogorov complexity?)

Zurek: Algorithmic randomness and physical entropy, PRA 1989



Discrete dynamical system

initial state s with low description length
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Discrete dynamical system

state D(s) with large description length after applying bijective
dynamical law D
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Time reversed scenario

initial state with large dscription length K(s)
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Time reversed scenario

final state with low description length K(D(s))
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initial state s, bijective dynamics D

e assume K(D(s)) < K(s)
e then K(s|D) == K(D(s)|D) % K(D(s)) < K(s)

e hence, s contains algorithmic information about D
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Independence principle more general than Arrow of Time

Postulate:
K(s|D) £ K(s)

also for non-bijective D

implication K(D(s)) > K(s) only holds for bijective D
lower bounds for K(D(s)) in terms of non-bijectivity of D

postulate makes also sense if D is probabilistic

e replace s = P(cause) and D = P(effect|cause)
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Wrong approach to distinguish cause and effect

“Variable with lower entropy is the cause”
(motivated by thermodynamics)
e Cause may be continuous, effect binary
e entropy depends on scaling

e application of non-linear functions tends to decrease entropy
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e Arrow of Time can be derived from algorithmic independence
between initial state and dynamical law

e Algorithmic independence between P(cause) and
P(effect|cause) implies novel causal inference rules
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