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Outline

1 Causal inference using conditional statistical
independences
(conventional approach since early 90s)

2 Causal inference using the shape of probability
distributions
(first ideas around 2003, major results since 2008)

3 Relating these new causal inference methods to the
Arrow of Time
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Can we infer causal relations from passive observations?

Recent study reports negative correlation between coffee
consumption and life expectancy

Paradox conclusion:

• drinking coffee is healthy

• nevertheless, strong coffee drinkers tend to die earlier because
they tend to have unhealthy habits

⇒ Relation between statistical and causal dependences is tricky
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Example for causal problems from our collaborations

• Brain Research:
which brain region influences which one during some task?
(goal: help paralyzed patients, given: EEG or fMRI data)

• Biogenetics:
which genes are responsible for certain diseases?

• Climate research:
understand causes of global temperature fluctuations
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Part 1: Causal inference using conditional statistical
independences
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Reichenbach’s principle of common cause (1956)

If two variables X and Y are statistically dependent then either

X Y X

Z

Y X Y

1) 2) 3)

• in case 2) Reichenbach postulated X ⊥⊥ Y |Z and linked this
to thermodynamics in his book ’The direction of time’ (1956)

• every statistical dependence is due to a causal relation, we
also call 2) “causal”.

• distinction between 3 cases is a key problem in scientific
reasoning and the focus of this talk.
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Coffee example

• coffee drinking C increases life expectancy C

• common cause “Personality” P increases coffee drinking C
but decreases (via other habits) life expectancy L

• negative correlation by common cause stronger than positive
by direct influence

C

P

L

+ −

+
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Quantum causality Ried, Agnew, Vermeyden, Janzing, Spekkens, Resch Nature Physics 2015

A B A B A B

1) 2) 3)

Observe dependences between measurements at system A and
system B.

• acausal state: in scenario 2) there is a joint density operator
on HA ⊗HB

• causal state: in scenario 1) and 3) there is an operator on
HA ⊗HB whose partial transpose is a density operator

There are dependences between A and B that can clearly be
identified as 2) and those that can be identified as 1) or 3)
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Causal inference problem, general form Spirtes, Glymour, Scheines, Pearl

• Given variables X1, . . . ,Xn

• infer causal structure among them from n-tuples iid drawn
from P(X1, . . . ,Xn)

• causal structure = directed acyclic graph (DAG)

X1

X2

X3 X4
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Functional model of causality Pearl et al

• every node Xj is a function of its parents and an unobserved
noise term Ej

Xj

PAj (Parents of Xj)

= fj(PAj ,Ej)

• all noise terms Ej are statistically independent (causal
sufficiency)

• which properties of P(X1, . . . ,Xn) follow?
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Causal Markov condition (4 equivalent versions) Lauritzen et al, Pearl

• existence of a functional model

• local Markov condition: every node is conditionally
independent of its non-descendants, given its parents

Xj

non-descendants

descendants

parents of Xj

(information exchange with non-descendants involves parents)

• global Markov condition: describes all ind. via d-separation

• Factorization: P(X1, . . . ,Xn) =
∏

j P(Xj |PAj)

(every P(Xj |PAj) describes a causal mechanism)
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Causal inference from observational data

Can we infer G from P(X1, . . . ,Xn)?

• MC only describes which sets of DAGs are consistent with P

• n! many DAGs are consistent with any distribution

X

Y Z

Z

X Y

Y

Z X

X

Z Y

Z

Y X

Y

X Z

• reasonable rules for prefering simple DAGs required
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Causal faithfulness Spirtes, Glymour, Scheines, 1993

Prefer those DAGs for which all observed conditional
independences are implied by the Markov condition

• Idea: generic choices of parameters yield faithful distributions

• Example: let X ⊥⊥ Y for the DAG

X

Y Z

• not faithful, direct and indirect influence compensate

• Application: PC and FCI algorithm infer causal structure
from conditional statistical independences
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Application: Brain Computer Interfaces Grosse-Wentrup & Schölkopf, 2011

• Goal: Paralyzed subjects communicate by activating certain
brain regions

• Open problem: Performance of subjects varies strongly

• Hypothesis: Attention influenced by oscillations in the
γ-frequency band

• indeed, γ seems to influence the sensorimotor rhythm (SMR)
since conditional dependences support the DAG

c SMR γ

(Grosse-Wentrup, Schölkopf, Hill NeuroImage 2011)
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Limitation of independence based approach:

• many DAGs impose the same set of independences

X Z Y

X Z Y

X Z Y

X ⊥⊥ Y |Z for all three cases (“Markov equivalent DAGs”)

• method useless if there are no conditional independences

• non-parametric conditional independence testing is hard

• ignores important information:
only uses yes/no decisions “conditionally dependent or not”
without accounting for the kind of dependences...

14



What’s the cause and what’s the effect?
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What’s the cause and what’s the effect?

X (Altitude)→ Y (Temperature)

16



What’s the cause and what’s the effect?
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What’s the cause and what’s the effect?

Y (Solar Radiation)→ X (Temperature)
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What’s the cause and what’s the effect?
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What’s the cause and what’s the effect?

X (Age)→ Y (Income)
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Hence...

• there are asymmetries between cause and effect apart from
those formalized by the causal Markov condition

• new methods that employ these asymmetries need to be
developed
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Linear non-Gaussian models

Kano & Shimizu 2003

Theorem

Let X 6⊥⊥ Y . Then P(X ,Y ) admits linear models in both direction,
i.e.,

Y = αX + UY with UY ⊥⊥ X

X = βY + UX with UX ⊥⊥ Y ,

if and only if P(X ,Y ) is bivariate Gaussian

• if P(X ,Y ) is non-Gaussian, there can be a linear model in at
most one direction.

• LINGAM: causal direction is the one that admits a linear
model

22



Intuitive example:

Let X and UY be uniformly distributed. Then Y = αX + UY

induces uniform distribution on a diamond (left):

Y

X

Y

X

uniformly distributed Y and UX with X = βY + UX induces the
diamond on the right.
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Non-linear additive noise based inference Hoyer, Janzing, Peters, Schölkopf, 2008

• Assume that the effect is a function of the cause up to an
additive noise term that is statistically independent of the
cause:

Y = f (X ) + E with E ⊥⊥ X

• there will, in the generic case, be no model

X = g(Y ) + Ẽ with Ẽ ⊥⊥ Y ,

even if f is invertible! (proof is non-trivial)
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Note...

Y = f (X ,E ) with E ⊥⊥ X

can model any conditional P(Y |X )

Y = f (X ) + E with E ⊥⊥ X

restricts the class of possible P(Y |X )
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Intuition

• additive noise model from X to Y imposes that the width of
noise is constant in x .

• for non-linear f , the width of noise wont’t be constant in y at
the same time.
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Causal inference method:

Prefer the causal direction that can better be fit with an
additive noise model.

Implementation:

• Compute a function f as non-linear regression of Y on X , i.e.,
f (x) := E(Y |x).

• Compute the residual

E := Y − f (X )

• check whether E and X are statistically independent
(uncorrelated is not sufficient, method requires tests that are
able to detect higher order dependences)

• performed better than chance on real data with known ground
truth
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Justification of these methods

seems quite ad hoc: one defines a model class and believes that it
is related to causal directions...

To avoid arbitrariness when inventing new inference methods we
need a deeper foundation...
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Tool: Algorithmic Information Theory Kolmogorov, Chaitin, Solomonoff, Gacs

• Kolmogorov complexity: K (x): length of the shortest
program on a universal Turing machine that outputs x

• conditional Kolmogorov complexity: K (y |x∗) length of the
shortest program that generates the output y from the
shortest compression of x

• algorithmic mutual information:

I (x : y) := K (x) + K (y)− K (x , y)
+
= K (x)− K (x |y∗)
+
= K (y)− K (y |x∗)

measures the number of bits that a joint description of x , y
saves compared to separate descriptions
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Postulate: Algorithmic independence of conditionals

The shortest description of P(X1, . . . ,Xn) is given by separate
descriptions of P(Xj |PAj).

(Here, description length = Kolmogorov complexity)

• idea: each P(Xj |PAj) describes independent mechanism of
nature

• special case: shortest desription of P(effect, cause) is given by
separate descriptions of P(cause) and P(effect|cause).

• implication of a general theory connecting causality with
description length

Janzing, Schölkopf: Causal inference using the algorithmic Markov condition, IEEE TIT (2010).

Lemeire, Janzing: Replacing causal faithfulness with the algorithmic independence of conditionals, Minds &

Machines (2012).
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Illustrative toy example

Let X be binary and Y real-valued.

• Let Y be Gaussian and X = 1 for all y above some threshold
and X = 0 otherwise.

• Y → X is plausible: simple thresholding mechanism

• X → Y requires a strange mechanism:
look at P(Y |X = 0) and P(Y |X = 1) !
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Strange relation between P(Y |X ) and P(X )...

look what happens with P(Y ) if we change P(X ):

• P(X ) and P(Y |X ) seem to be adjusted to each other

• Knowing P(Y |X ), there is a short description of P(X ),
namely ’the unique distribution for which

∑
x P(Y |x)P(x) is

Gaussian’.
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Part 1: Relating these methods to the Arrow of Time

33



Arrow of time in stationary stochastic processes

Peters, DJ, Gretton, Schölkopf ICML 2009

• Theorem: If (Xt)t∈Z has an autoregressive moving average
(ARMA) model

Xt =

p∑
j=1

αjXt−j +

q∑
j=1

βjEt−j + Et with independent Et

there is no such autoregressive model for (X−t), unless Et is
Gaussian or αj = 0.

• Experiment: infer the direction of real-world time series
(finance, EEG...)

• Result: more often linear in forward than in backward
direction

smells like an arrow of time, right?
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Physical toy model for Xt = αXt−1 + Et

DJ, Journ. Stat. Phys. 2010

• Xt : physical observable of a fixed system S at time t.

• noise term provided by propagating particle beam (shift on Z)

System 
S 

‐1 ‐2 ‐3  0  1  2 

… 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Model and its implications

Assumptions:

• interaction is rotation on phase space of S and particle at
position 0

• incoming particles statistically independent

Implications:

• outgoing particles are dependent (except for Gaussian states)

• coarse-grained entropy increased

• P(Xt |Xt−1) is linear, but not P(Xt−1|Xt)
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Time-reversed process unlikely...

• incoming particles are statistically dependent

• interaction with S removes dependences

• outgoing particles independent

• rotation angle must be adapted to the dependences

• model requires adjustments between incoming state and
rotation angle
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Note the analogy...

• the input state (of the particles) and the mechanism
transforming the state are independently chosen by nature

• P(cause) and P(effect|cause) are independently chosen by
nature
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Another view on the Arrow of Time

This seems to be its crucial idea:

The initial state and the dynamical law are algorithmically
independent
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Arrow of time

• typical closed system dynamics:

simple state→ complex state

• unlikely:
complex state→ simple state

(thermodynamic entropy = Kolmogorov complexity?)

Zurek: Algorithmic randomness and physical entropy, PRA 1989
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Discrete dynamical system

initial state s with low description length
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Discrete dynamical system

state D(s) with large description length after applying bijective
dynamical law D
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Time reversed scenario

initial state with large dscription length K (s)
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Time reversed scenario

final state with low description length K (D(s))
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Independence principle induces Arrow of Time

initial state s, bijective dynamics D

• assume K (D(s)) < K (s)

• then K (s|D)
+
= K (D(s)|D)

+
≤ K (D(s)) < K (s)

• hence, s contains algorithmic information about D

49



Independence principle more general than Arrow of Time

Postulate:
K (s|D)

+
= K (s)

also for non-bijective D

• implication K (D(s)) ≥ K (s) only holds for bijective D

• lower bounds for K (D(s)) in terms of non-bijectivity of D

• postulate makes also sense if D is probabilistic

• replace s ≡ P(cause) and D ≡ P(effect|cause)
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Wrong approach to distinguish cause and effect

“Variable with lower entropy is the cause”
(motivated by thermodynamics)

• Cause may be continuous, effect binary

• entropy depends on scaling

• application of non-linear functions tends to decrease entropy
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Conclusions

• Arrow of Time can be derived from algorithmic independence
between initial state and dynamical law

• Algorithmic independence between P(cause) and
P(effect|cause) implies novel causal inference rules
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Thank you for your attention!
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