
Interference with monochromatic light

H. O. Tittel

1 Two beam interference

1.1 Division of amplitude

For interference at least two beams are needed.
Two special situations of interference:

• two beam interference (i.e., two beams interfere),

• multiple beam interference (i.e., very many beams interfere).

There are two fundamental methods of generating interfering beams:

• division of amplitude,

• division of wavefront.

No chance to apply two or even many independent sources to get interference
patterns which are stable in time; fluctuations of rates � 108 hertz happen,
observation impossible. Therefore, the interfering beams must have their origin
in the same source. At first, the method of division of amplitude shall be applied
to generate two interfering beams, Fig. 1.

Analyzing the interference pattern, different situations must be regarded:

a) Parallel monochromatic light, all elements perfectly aligned and flat.
Wave entering the beamsplitter BS:

Ein = E0e
i(ωt−kz0) (1)

Ein is divided into

and
E1 = |E1|ei(ωt−kz1) travelling BS −M1 −BS − . . .

E2 = |E2|ei(ωt−kz2) travelling BS −M2 −BS − . . .
(2)

E2 can also be thought travelling BS −M ′

2 −BS − . . ..

E1 and E2 superpose (interfere) from BS “downstream”. The resulting
electric field oscillates too fast to be detected, only the intensity can be
measured and yet only as a mean value averaged over the integration time
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Figure 1: Generating two beams by division of amplitude in a Michelson inter-
ferometer

BS: beamsplitter
M1,M2: plane mirrors
M ′

2: virtual image of M2 generated by BS
BS does not modify the shape of the beam when dividing it (i.e., the wavefront
keeps its form); only the amplitude is reduced by the dividing process.

of the detecting instrument (film, human eye, photo-multiplier, . . .). So
〈|E1 + E2|2〉 must be calculated. It is

|E1 + E2|2 = (E1 + E2)(E
∗

1 + E∗

2) = |E1|2 + |E2|2 + E1E
∗

2 + E∗

1E2 . (3)

Introducing the intensity as
I = |E|2

we get on the screen

|E1 + E2|2 = I = I1 + I2 +
√

I1I2 ei(−kz1+kz2) +
√

I1I2 ei(kz1−kz2)

= I1 + I2 + 2
√

I1I2 cos kz , (4)

where
2 · z

2
= z = z2 − z1

is the path difference of the two beams as can be seen on the sketch (Fig. 1).
Obviously there is no need to calculate the temporal mean value of I, as
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there is no dependence on t. This is because both ω, i.e., in beams 1 and
2, are identic. Even if they are the same but not infinitely sharp as we
supposed (monochromatic light), our result will contain t as a variable and
integration over t will be necessary.

Equation (4), the interference signal, has a constant term and a cosine
function, the latter is called interferogram. With

k = 2πσnz , (5)

n being the refractive index on the path BS−M1−BS resp. BS−M2−BS,
we state that at a given wave number σ and constant n, the brightness on
the screen depends only on the path difference z of the beams. In particular,
the screen is uniformly illuminated without any local structure, because z
is constant all over the field of view. When mirror M1 or M2 is scanned
along its normal the alignment precisely kept, the intensity observed on the
screen follows the curve in Fig. 2. Introducing the visibility or contrast

V =
Imax − Imin

Imax + Imin

=
2
√

I1I2

I1 + I2

,

the interference signal can also be written

I

I1 + I2

= 1 +
2
√

I1I2

I1 + I2

cos 2πσnz = 1 + V cos 2πσnz . (6)

Thus the visibility is a measure of the difference of brightness between dark
and bright fringes. To make it independent of the intensity of the entering
beam it is divided by I1 + I2 (normalization).

Notice that the displacement of M1 or M2, ∆ z
2
, to proceed from a maximum

to a minimum in the plot of Fig. 2 is tiny. Indeed, it is for red light at
632,8 nm (He–Ne laser) and n = 1

∆
z

2
=

1

2
· 1

2

λ

n
=

λ

4
≈ 0,16 µm .
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Figure 2: Intensity of interference as a function of path difference z at different
ratios I1/I2 but constant sum I1 + I2. The maximum of contrast is at I1 = I2.
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Figure 3: Simplified optical layout of the interferometer in Fig. 1 but M ′

2 inclined
around x and y axis with respect to M1. Fringes of equal thickness or Fizeau
fringes as interference pattern.

b) Parallel monochromatic light, all elements perfectly flat but M1 and M ′

2

mutually inclined

The analysis is like in paragraph a), however, z is now a function of x and
y, the coordinates in the plane of the field of view. As the optical elements
are flat, z is a linear function of x and y. It is obviously

z(x, y) = αx + βy + z0 , (7)

where α and β are the angles at which the beams are mutually inclined.
The path difference z is constant on straight lines parallel to the apex of the
wedge which the plane wavefronts of beams 1 and 2 include. The thickness
of the wedge is constant on these lines which is why they are called fringes
of equal thickness; they are also named after Fizeau. The brightness across
the fringe pattern is still the cosine function according to (4) and (6), resp.
Wherever z is a multiple of λ/n there is the center of a bright fringe and
this multiple is called interference order m. Every fringe has an individual
m, and the equation defining a fringe is

αx + βy + z0 = m
λ

n
. (8)
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If mirror M1 or M2 is not perfectly plane, z has an additional dependence
on x and y which is not necessarily linear. Lack of flatness combined with
inclination leads to

αx + βy + f(x, y) + z0 = m
λ

n
(9)

as definition of a fringe of interference order m, where the two-dimensional
function f(x, y) is a measure of the contour of the mirrors M1 and M2.
Therefore Fizeau fringes are an excellent tool to control the flatness of
optical elements in manufacturing workshops.

c) Parallel monochromatic light, all elements perfectly flat, M1 and M ′

2 in-
clined or not, refractive index different along both paths and not constant.

When the indices of refraction are constant but different on both paths, the
exponentials in (4) must be replaced by

ei(−k1z1+k2z2) resp. ei(k1z1−k2z2) ,

with
k1z1 = 2πσn1z1 and k2z2 = 2πσn2z2 .

The product of the index of refraction and the geometrical path is called
optical path. If n is not constant over the path length the product becomes
an integral, the general form of which is

∫

n(s) ds .

The path may be curved, this is why we have written s. Applied to the
analysis of the interference pattern, Eq. (4) now becomes

I = I1 + I2

+ 2
√

I1I2 cos
{

2πσ
[
∫

BS−M2−BS
n2(z2) dz2 −

∫

BS−M1−BS
n1(z1) dz1

]}

.

(10)

Beside z1 and z2, which can depend on x and y as mentioned, even the
functions n1(z1) and n2(z2) may change with x and y. As an example
imagine a jet of gas traversing one of the interferometer arms.

d) Monochromatic light, this time divergent or convergent, all elements flat
and aligned, constant and equal indices of refraction. The bold path differ-
ence in Fig. 4, the bishop’s mitre, is
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Figure 4: For divergent as well as convergent light the path difference is the bold
figure, which looks like a bishop’s mitre

1
2
z

cos ϑ
+

1
2
z

cosϑ
cos 2ϑ

=
z

2 cosϑ

(

1 + cos2 ϑ− sin2 ϑ
)

(

because of
cos 2ϑ = cos2 ϑ− sin2 ϑ

)

=
z

2 cosϑ
2 cos2 ϑ

= z cosϑ with 0 < ϑ < ϑmax . (11)

Now the interference signal is

I = I1 + I2 + 2
√

I1I2 cos (2πσnz cosϑ) . (12)

The pattern consists of concentric circles ϑ = const., named fringes of equal
inclination or Haidinger rings.

1.2 Division of wavefront

Field at P
from slit 1: E1 = |E1|ei(ωt−kr1)

from slit 2: E2 = |E2|ei(ωt−kr2)

Intensity of interference field at P :

I = |E1 + E2|2 = |E1|2 + |E2|2 + E1E
∗

2 + E∗

1E2 , with |E1,2|2 = I1,2

or

I = I1 + I2 + 2
√

I1I2 cos 2πσn(r2 − r1) . (13)
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Figure 5: Young’s interference experiment, the double slit. Monochromatic waves
from two slits, S1 and S2, interfere. S1 and S2 are infinitely narrow, and so is the
source S. The observer, P , is very far away, i.e., ` � a (far-field approximation).

This is the same result as before at division of amplitude. If S, S1, and S2 are
slits perpendicular to the plane of the sketch in Fig. 5, the interference pattern
on the screen consists of straight cosine fringes parallel to S, S1, and S2. When
the screen of observation is far away so that ` � a and if, in addition, the
observer’s position is restricted to sin θ ≈ tan θ ≈ θ ≈ x

`
, then we get from (13)

and r2 − r1 ≈ a sin θ:

I = I1 + I2 + 2
√

I1I2 cos
(

2πσn
a

`
x
)

. (14)

The spacing of neighbour fringes is

∆x =
λ`

na
.

As a result of this analysis of two beam interference we conclude:

• Either method to generate interference (division of amplitude and division
of wavefront) leads to cosine fringes. The geometrical form of the fringes
is defined by the interference device (flatness of elements etc.) and by the
divergence of the beam on the input side.

• Till now we have been fixed on two unrealistic restrictions, i.e., monochro-
matic light from point-like sources. As for the latter, parallel light is ex-
clusively obtained from a point source at infinity or from such a source at
the focal point of a perfect lens. And yet, even our admission of divergent
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and convergent light in paragraph 1.1d required a point-like source resp. a
point-like image (case of convergent light), for the interference phase

Φ(x, y) = 2πσnz cos ϑ(x, y)

in the interferogram term (12) is an unambiguous function of a point x, y on
the observation screen only if the source consists of a point. As soon as the
source is laterally extended, the same point x, y on the screen is attained
by many light rays, all with different ϑ. It is obvious that the contrast in
the interference pattern then must decrease. Loss of contrast will also be
stated, if the light is no longer monochromatic, because again the phase
Φ(x, y) at the point of observation, x, y, is not unambiguous if the wave
number σ has more than a single value.

In the chapter on coherence we must bring the pattern back to reality based
on an extended non-monochromatic source.

2 Multiple beam interference

Again the two methods of creating beams that can interfere are applied, i.e.,
division of amplitude and division of wavefront.

Example for division of amplitude: the Fabry–Pérot interferometer,
example for division of wavefront: the diffraction grating.

Our analysis shall be restricted to the Fabry–Pérot interferometer, because the
grating can be better treated with the concept of diffraction and Fourier optics.
The Fabry–Pérot is nearly infinitely often applied, it is the resonator in a laser.

The basic realization of the Fabry–Pérot interferometer has plane mirrors as
shown in Fig. 6. The mirrors are parallel, their coatings have a reflection coeffi-
cient R and a transmission ratio T , both related to the intensity, R ist close to
unity.

A parallel beam of monochromatic light enters from the left side under the angle
of incidence ϑ. Due to multiple reflection between the mirrors there is an infi-
nite number of beams leaving the device to the right side; they are all laterally
displaced by the same amount with respect to their neighbour. We suppose a
small angle ϑ, so that the displacement is negligible. There is a phase shift αT

caused by the bare passage through the coating on the mirror in the direction
glass–coating–medium between the mirrors. At each reflection on the coating
surface a phase shift −αR is given to the wave, when it enters the coating from
the side of that medium. Two successive beams leaving the interferometer to the
right side differ by the bold geometrical path δ = a cos ϑ (Fig. 6), which we know
from Fig. 4, paragr. 1.1d). It is again bishop’s mitre, this time in horizontal
position (sleeping bishop).
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Figure 6: Multiple beam interference with parallel light. In transmission as well as
in reflection there is an infinite number of interfering beams. The phase shift be-
tween two successive beams is always the same and corresponds to the bold path

The total transmitted light is the sum of the following beams with these complex
amplitudes:

1st beam: E1 = E0

√
TeiαT ei a

2 cos ϑ

√
Te−iαT = ei a

2 cos ϑ TE0

2nd beam: E2 = E1

√
Re−iαRe−i2πσnδ

√
Re−iαR =

[

Re−i(2αR+2πσnδ)
]

E1

3rd beam: E3 =
[

Re−i(2αR+2πσnδ)
]

E2 =
[

Re−i(2αR+2πσnδ)
]2

E1

:
:
:

The sum of these amplitudes is the geometrical series

E

E0
= ei a

2 cos ϑ T
(

1 + Re−i(2αR+2πσnδ) +
[

Re−i(2αR+2πσnδ)
]2

+ · · ·
)

= ei a

2 cos ϑ

T

1−Re−iφ
, with φ = 2αR + 2πσnδ . (15)

To obtain this result we have taken into account that the series has infinitely
many terms, so it is

[

Re−i(2αR+2πσnδ)
]m → 0

for m →∞ and R < 1. The intensity is

I

I0
=

E · E∗

E2
0

=
|E|2
E2

0

=
T 2

(1−Re−iφ)(1−Reiφ)
= · · ·

=
T 2

(1−R)2

1

1 + M sin2 φ

2

, with M =
4R

(1−R)2
. (16)
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Figure 7: The Airy function for different reflection coefficients. The plot is the
same, when σ, n, a, or cosϑ is the abscissa because of φ = 2πσna cos ϑ (αR set
to zero). Without absorption in the mirror coatings it is T = 1−R, so the peaks
on the plot attain 1

Equation (16) is called Airy function, it is plotted in Fig. 7 for different reflection
coefficients R.

φ is a linear function of σ, n, a, cos ϑ, actually

φ = 2αR + 2πσna cos ϑ ,

where αR can be set equal to zero, it is just a constant shift of the plot. The
plot is the same for the four variables. The closer the reflection coefficient R is
to unity the sharper are the maxima of the Airy function.

In the peaks where the Airy function equals one, there is a standing wave in the
medium between the mirrors. Indeed, it follows from the relation above for the
peaks

φ

2
= mπ = πσna cos ϑ

or

n
a

2
cosϑ = m

λ

2
, (17)

which means that λ/2 fits m times (m integer) in the “optical gap” n a
2
cosϑ

between the mirrors, ϑ is supposed to be very small. Relation (17) indicates
resonance, and this is why the Fabry–Pérot interferometer is also called resonator
or cavity.

The factor
(

T
1−R

)2
in (16) can be replaced by

(

T
T+A

)2
, because of the relation

R + T + A = 1 ,

10



where A is the absorption of the coating on the mirrors. For material without
absorption the factor becomes unity. Such materials are dielectric, and a whole
stack of different types with individual thickness is needed to get a coating with
the required reflection coefficient. However, the reflection of such a multifilm
changes rapidly with wavelength. Metallic single films absorb a little, but their
spectrum of transmission is broad. In visible light silver is chosen, in ultraviolet
aluminum is better.

The extrema of the Airy function are obviously

Imax

I0
=

(

T

1−R

)2

=
(

1− R− A

1− R

)2

−→ 1 for A = 0

Imin

I0

=
(

T

1−R

)2 1

1 +
(

4R
1−R

)2 =
(

T

1 + R

)2

=
(

1−R− A

1 + R

)2

−→
(

1− R

2

)2

for A = 0, R → 1 . (18)

Divergent light after passing a pair of Fabry–Pérot mirrors presents beautiful
concentric circles as interference pattern. They are extremely sharp if R is close
to unity. As ϑ is constant on such a ring, they are again named fringes of equal
inclination or Haidinger rings. Like in two beam interference, fringes of equal
thickness can generated, too. One of the mirrors must be slightly inclined and
the beam has to be parallel.

From the sharpness of interference fringes one can immediately see whether they
are generated by two beam or multiple beam interference. Two beam intererence
yields cosine fringes, whereas from multiple beam interference extremely sharp
patterns are obtained, they look as if they were grooved with a needle.

In order to have a measure of the sharpness the finesse has been introduced,
see Fig. 8; it is the ratio of the distance between two neighbour peaks and the
halfwidth of a single one, i.e.,

F =
∆φ

2

dφ

2

.

The halfwidth of a peak is immediately obtained from

1

2
=

1

1 + M sin2
(

1
2
dφ

2

) with M =
4R

(1−R)2

as

d
φ

2
=

2√
M

=
1−R√

R
= 2πna cos ϑ dσ , (19)

where the last part of this equation has been taken from the definition of φ/2.
As ∆φ/2 equals π (Fig. 8), the finesse results to

F =
π
√

R

1− R
. (20)
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Figure 8: Halfwidth and free spectral range

The finesse can be pushed very high (F > 200). But to achieve such a value the
mirrors must be extremely plane, about λ/1000, and their alignment must be of
the same precision.

The free spectral range, ∆σ = σmax − σmin, fitting into the gap between two
successive maxima of the Airy function (Fig. 8) is found from

∆
φ

2
= 2πna cos ϑ ∆σ = π as ∆σ =

1

2na cos ϑ
.

As mentioned, the Fabry–Pérot serves as a laser cavity. The stimulated emission
is bound to such frequencies which correspond to the peaks of the Airy function.
Therefore a laser can simultaneously oscillate at those wavelengths where the
resonance condition is fulfilled, that means

m
λ

2
= nL ,

where L is the length of the cavity. The corresponding frequencies are

ν = m
c

2nL
,

and
∆ν =

c

2nL

is the separation of longitudinal modes.

12


