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Abstract
A modified ion trap is described where experiments (in particular related to
quantum information processing) that usually require optical radiation can be
carried out using microwave or radio frequency electromagnetic fields. Instead
of applying the usual methods for coherent manipulation of trapped ions, a
string of ions in such a modified trap can be treated like a molecule in nuclear
magnetic resonance experiments taking advantage of spin–spin coupling. The
collection of trapped ions can be viewed as an N-qubit molecule with adjustable
spin–spin coupling constants.

Given N identically prepared quantum mechanical two-level systems
(qubits), the optimal strategy to estimate their quantum state requires collective
measurements. Using the ground state hyperfine levels of electrodynamically
trapped 171Yb+, we have implemented an adaptive algorithm for state estimation
involving sequential measurements on arbitrary qubit states.

1. Introduction

The localization and preparation of individual quantum systems is prerequisite for many
intriguing experiments on fundamental issues of quantum mechanics. In addition, the ability
to manipulate quantum states, for example, of electrodynamically trapped ions is an essential
ingredient for quantum information processing (QIP). Considerable experimental progress
has been made in recent years concerning well controlled coherent excitation of internal and
external (motional) states of trapped ions (documented, for instance, in this special section).

In many experiments with trapped ions, including the ones related to QIP, it is necessary
to couple the dynamics of internal and external degrees of freedom. To this end optical
radiation is usually employed. Here, we introduce a new concept for a linear ion trap that
allows for the addressing and coherent manipulation of individual ions and their motional
states using microwave (mw) or radio frequency (rf) radiation. Furthermore, it is shown that a
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collection of N trapped two-level ions in such a new type of trap exhibits pairwise spin–spin
coupling between individual ions. This coupling between internal ionic states is mediated
by the vibrational modes of the ion string, but does not involve their direct excitation. Its
formal description is identical to so-called J -coupling between nuclear spins in molecules.
Therefore, schemes designed for coherent conditional dynamics of nuclear spins in molecules
can be directly applied to a designed N-qubit ‘molecule’ in an ion trap.

Important steps towards the experimental realization of conditional dynamics with a
collection of ions have been undertaken: virtually decoherence-free single-qubit operations
with 171Yb+ ions are reported where two hyperfine states of the ground state of 171Yb+ serve
as a qubit. Taking advantage of these arbitrary qubit operations a self-learning algorithm for
the estimation of unknown quantum states was implemented.

The remainder of this paper is organized as follows: at the beginning of section 2 a brief
introduction to basic requirements for QIP with trapped ions is given. In particular, the need
to use optical radiation in conventional traps will be accounted for. Then we will show how,
in a modified trap, spin resonance experiments with mw or rf radiation become possible, even
when internal and motional states need to be coupled. Section 3 is devoted to experiments
with trapped 171Yb+ ions. In particular, the implementation of a self-learning algorithm for
state estimation of quantum mechanical two-state systems (qubits) is reported.

2. Basic elements of QIP with trapped ions

2.1. Optical scheme

Two internal states of each ion, labelled |0〉 and |1〉 and separated by h̄ω0, serve as the
elementary physical unit (the qubit) when using a string of ions crystallized in a linear
trap for QIP. If the confinement of N ions is much stronger in the radial than in the axial
direction, the ions will form a linear chain [1] with inter-ion spacing δz ≈ ζ2N−0.56 where
ζ ≡ (e2/4πε0mν2

1 )1/3, m is the mass of one ion, and ν1 is the angular vibrational frequency
of the axial centre-of-mass (COM) mode of the ion string [2]. The inter-ion spacing,
determined by mutual Coulomb repulsion and the external trapping potential, is typically
a few micrometres. In order to individually manipulate each qubit, electromagnetic radiation
used for coherent excitation must be focused to a spot much smaller than δz. Therefore,
radiation in the optical regime has to be used for individually addressing each ion.

It is clear that in order to implement a quantum algorithm, quantum information has to be
transferred between qubits, and conditional dynamics with several qubits has to be possible.
That is, one qubit changes its state conditioned on the state of other qubits. It has been shown
that arbitrary single-qubit operations together with suitable two-qubit gates are sufficient to
synthesize any desired quantum algorithm [3]. In a linear Paul trap the vibrational motion
of the ion string serves as a ‘bus-qubit’ to transmit quantum information between individual
ions [4]. This means that internal state dynamics needs to be coupled to the external harmonic
motion of the ion string. What is the physical origin of the coupling between qubit states and
the motion of the harmonic oscillator? Upon absorption or emission of a photon, a free atom
(or ion) takes up the momentum h̄�k associated with the photon where k = 2π/λ and λ is the
wavelength of the radiation. In a trap an ion can change its external energy only by discrete
amounts h̄νn with νn (n = 1, 2, . . . , N) being the angular frequency associated with an axial
vibrational mode of the ion string. The Hamiltonian describing the coupling between internal
states and a particular vibrational mode is

HI = 1
2 h̄�R(σ+ + σ−)[exp[i(ηn(a

†
n + an) − ωt + ϕ)] + h.c.], (1)
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where �R = �d · �F/h̄ is the Rabi frequency with �d · �F signifying either magnetic or electric
coupling between the atomic dipole and the respective field component. σ+,− = 1/2(σx ± σy)

are the atomic raising and lowering operators, respectively, zn(a† + a) is the position operator
(zn = √

h̄/(2mνn)), and ϕ is the initial phase of the driving field. The Lamb–Dicke
parameter (LDP) η = h̄k/(2 pn) (with pn = √

h̄mνn/2) is a measure for the strength of
the coupling. If the linewidth of the internal resonance � � νn , the ionic resonance at ω0

will be accompanied by sideband resonances ω0 ± ν (first order in ηn). Excitation of these
sidebands amounts to coupling internal and external dynamics.

The LDP can also be written as ηn = znk, where zn is a measure for the extension of the
ground state wavefunction of the harmonic oscillator (2z2

n is the variance of the wavefunction).
Typically, zn is of the order 10 nm. In order for ηn to take on an appreciable nonzero value, and
therefore to make it possible to excite motional states by irradiating the ion with electromagnetic
radiation, wavelengths in the optical regime are required.

Consequently, when using trapped ions for QIP, a considerable part of the experimental
effort has to be devoted to the development of light sources suitable for precise coherent
driving of ionic resonances. In particular, the coherence time of laser radiation limits the time
available for quantum logic operations. If one-photon transitions are used (for example an
electric quadrupole transition in Ba+ or Ca+ [5–7]), this leads to rather stringent limits on the
emission bandwidth that typically has to be of the order ω/ω � 10−12. Generating laser
light with long coherence time (i.e. small ω/ω) is a challenging task that is also essential for
optical frequency standards (see contributions in this special section). Further issues that have
to be considered when using light for quantum gates are its frequency stability (low drift) and
intensity stability. Furthermore, the transverse beam profile, pointing stability, and diffraction
effects have to be well under control to suppress spurious excitation and allow for precise
manipulations.

If, instead of one-photon resonances, Raman transitions, for instance, between two
hyperfine states are employed [8], then the most stringent requirement for QIP, the small
emission bandwidth of laser light, can be fulfilled more easily. However, the other problems
associated with the use of optical beams mentioned in the previous paragraph remain. When
using Raman transitions relative fluctuations between two light beams have to be controlled
with high accuracy. This is, in principle, a more amenable task. A more detailed look at the
types of ions that have been used for QIP or related experiments reveals that rather intricate
optical setups are still necessary, partly requiring laser wavelengths that are not easily accessible
and/or a considerable number of laser beams that need to be controlled accurately.

In order to produce two laser beams with a fixed frequency difference (or ideally two
phase-locked light sources) for Raman excitation of Zeeman states, rf or mw signals have to be
generated, processed, phase locked, and then employed to control the necessary light sources.
From the considerations at the beginning of this section it is clear that rf or mw radiation cannot
directly be used to address individual ions or couple their internal (Zeeman) and external states,
and one has to take the diversion via laser light (by imprinting rf signals onto optical beams)
to achieve these goals.

2.2. Spin resonance with trapped ions

In spin resonance experiments, for instance nuclear magnetic resonance (NMR), advanced
techniques that have been developed over many decades have been successfully used to
experimentally demonstrate complete quantum algorithms involving a large number of
quantum gates [9]. The technological basis for the sophisticated techniques employed in
NMR or electron spin resonance (ESR) is the virtuosic manipulation of rf and mw radiation. A
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Figure 1. The figure illustrates the coupling of internal and motional states in the presence of
a static field gradient. The internal states of an ion (labelled |0〉 and |1〉) are Zeeman-shifted as
a function of position (left); the external state is indicated in a phase-space diagram (right). An
internal transition is accompanied by a shift dz = −h̄∂zω0/(mν2

n ) of the equilibrium position of
the ion. This may lead to vibrational excitation of the harmonic oscillator even if the momentum
transferred to the ion from an absorbed photon is negligible, since the effective LDP is given by
η′ = η − iε = h̄k/2pn − idz/zn .

drawback associated with the NMR approach to quantum computing is the use of a macroscopic
ensemble that makes the preparation of pseudo-pure states necessary and leads to an exponential
decrease in the signal strength as a function of the number of qubits [10]. The use of large
ensembles is necessary because the read-out of individual qubits is hard to achieve with the
usual spin resonance techniques. Finding, or designing, molecules that have a large number
of qubits (nuclear spins) with useful coupling constants also poses some difficulties. Trapped
ions, on the other hand, provide us with individually accessible qubits.

The proposal outlined in what follows makes it possible to apply rf or mw radiation to
ions in a modified linear trap, allowing for individual addressing and conditional dynamics.
Applying a time-independent magnetic field gradient along the axis of a trap individually shifts
hyperfine (Zeeman) states, thus making the qubits distinguishable in frequency space [11].
When driving an internal transition of an ion, the dependence of the internal state energy on
the position of the ion due to the static field gradient leads to a shift dz = −h̄∂zω0/(mν2

n) in
the equilibrium position of the ion. This may lead to the excitation of vibrational motion of the
ion string (compare figure 1). At the same time the recoil of the absorbed or emitted photon
(on a sideband resonance) results in a kick to the harmonic oscillator along the momentum
coordinate which, however, is negligible when using mw radiation, that is, η ≈ 0. A formal
description of the interaction between ions and driving radiation shows that the interaction
Hamiltonian has the same form as given in equation (1), except that the coupling between
internal and external states is now determined by a new effective LDP η′ ≡ η − iε where
ε ≡ dz/zn = zn∂zω0/νn [11]. This means that all schemes requiring individual addressing
and/or conditional dynamics devised for optical ion experiments can also be applied with such
a new type of trap in the rf or mw regime.

All coherent operations are done using mw radiation,whereas for initial (Doppler-)cooling
and state selective spin detection laser light driving optical dipole transitions are used. Optical
beams for coherent manipulation (Raman scheme or one-photon scheme) and sideband cooling
are no longer necessary which reduces the potential errors associated with optical beams
mentioned in section 2.1 and the number of necessary laser beams. If 171Yb+ is used with
the new scheme presented here, the necessary wavelengths at 369 and 935 nm for cooling
and detection can be generated by diode lasers which considerably simplifies the experimental
apparatus compared to existing setups as described, for instance, in [6, 8].

Instead of using motional sidebands for conditional dynamics with ions confined in a linear
trap with an additional static field gradient, spin–spin coupling between the internal states of
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the ions may be used. The Hamiltonian describing a string of N ions in such a trap reads [12]

H = h̄

2

N∑
j=1

ω j (z0, j )σz, j +
N∑

n=1

h̄νn(a
†
nan) − h̄

2

N∑
i< j

Ji jσz,iσz, j . (2)

The first term on the right-hand side of equation (2) is the sum of the internal energies of N
two-level ions located at their equilibrium positions z0, j . The second term describes N axial
vibrational modes with frequencies ν1, . . . , νN . The last term indicates pairwise coupling
between internal states of the ions where the coupling constants Ji j are given by

Ji j ≡
N∑

n=1

νnεniεn j , and (3)

εn j ≡ Snj
zn∂zω j

νn
. (4)

Snj is the dimensionless entry of the unitary matrix that diagonalizes the dynamical matrix.
It is a measure for how much the ion j participates in the motion of the vibrational mode
n. Since any quantum mechanical two-level system can be mathematically described as a
fictitious spin-1/2, we denote this term as spin–spin coupling.

In molecules used for NMR, different nuclei share binding electrons that generate a
magnetic field at the location of the nuclei. The energy associated with the orientation of
nuclear spins exposed to the electrons’ magnetic field depends on the charge distribution of the
binding electrons. If a particular nuclear spin is flipped, the interaction with the surrounding
electrons will slightly change the electrons’ charge distribution which in turn affects the energy
of other nuclear spins. This is, qualitatively, the physical origin of J -coupling between nuclear
spins which is used to implement conditional dynamics in NMR experiments. The indirect
spin–spin coupling between ionic states in a trap is realized in a different way: the role of the
binding electrons as a mediator of the interaction between spins is played here by the vibrational
motion of the ion string. Formally the coupling term that arises in the type of ion trap discussed
here is identical to the one in molecules, despite the different physical origins. Consequently,
the successful techniques and technology developed in spin resonance experiments, like NMR
or ESR, can immediately be applied to trapped ions. An advantage of an artificial ‘molecule’
in a trap is that the coupling constants Ji j can be chosen by the experimenter by setting the
magnetic field gradient determining ∂zω j , the secular trap frequency ν1 (and thus ν2, . . . , νN ),
and the type of ion used.

In addition, individual spins can be detected state selectively with an efficiency close
to 100% by collecting scattered resonance fluorescence. This is a routine task in ion trap
experiments requiring modest specifications of the light sources used for this purpose.

More details on the size of the required field gradients and the coupling constants,and other
considerations relevant for an experimental implementation can be found in [7, 11, 12]. This
ion ‘molecule’ concept for QIP is the subject of ongoing detailed theoretical and experimental
investigations carried out in our group.

3. Experiments with 171Yb+

In the experiments reported here, the S1/2 ground-state hyperfine doublet of a single 171Yb+

ion confined in a Paul trap represents the qubit (figure 2). The

|0〉 ≡ |S1/2, F = 0〉 ↔ |S1/2, F = 1, m F = 0〉 ≡ |1〉 (5)

transition is driven by a mw field close to 12.6 GHz. Resonance fluorescence scattered on the
S1/2(F = 1) ↔ P1/2 transition driven by a laser at 369 nm serves for state selective detection
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Figure 2. Relevant energy levels of 171Yb+ (not to scale). The hyperfine doublet serves as a qubit.
Scattering of light near 369 nm allows for state selective detection of the hyperfine state |S1/2,
F = 1〉, whereas light near 935 nm avoids optical pumping into the metastable D3/2 state.

with efficiency >98%. Optical pumping into the D3/2 state is prevented by illuminating the
ions with laser light near 935 nm driving the transition |D3/2, F = 1〉 → |[3/2]1/2〉.

3.1. Coherent manipulation of hyperfine states

Figure 3(a) displays Rabi oscillations between the states |0〉 and |1〉. These data were recorded
by repeating the following sequence 85 times for a given length τ of the mw pulse.

(i) The ion is prepared by optical pumping in state |0〉 by illuminating it for 6 ms with light
close to 369 nm detuned a few megahertz to the red side of the S1/2(F = 1) ↔ P1/2(F = 0)

resonance.
(ii) A mw pulse of frequency ω and length τ drives the |0〉–|1〉 transition. In a frame

rotating with ω, that is after transformation of the Hamiltonian according to A† H A
with A = exp[−i/2(ωtσz)], the time evolution operator of the driven qubit is U(t) =
exp[−i/2(φ�σ · �n)] with �n = (�R/�, 0, δ/�)T where δ = ω0 −ω, φ = �t , �R is the Rabi

frequency, and � =
√

�2
R + δ2. Here �R 
 δ, and we have U(t) = exp[−i/2(ϕσx)].

(iii) Illuminating the ion again with UV light (369 nm) for 3 ms and simultaneously collecting
resonance fluorescence serves for state selective detection.

If scattered light is observed in step (iii), then the ion resides in state |1〉, otherwise in state
|0〉. The contrast (defined as 1 − min(P1(t))/ max(P1(t)) with P1 the excitation probability
of state |S1/2, F = 1〉) of the oscillatory pattern in figure 3(a) is 0.89 in these experimental
runs due to imperfect initial preparation of state |0〉 in step (i). These coherent oscillations
indicate that the two-level system, while being driven by mw radiation, shows no detectable
decoherence on experimentally relevant timescales.

The results of a Ramsey type experiment are also shown in figure 3. The single mw pulse
(step (ii)) of variable length in the procedure used to record Rabi oscillations is replaced by
a π/2 mw pulse preparing the ion in a coherent superposition 1/

√
2(|0〉 − i|1〉). Then this

superposition state propagates in time under the Hamiltonian U(t) = exp[−i/2(δtσz)], that
is, it acquires a phase δt relative to the driving field that was initially applied. After time T of
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Figure 3. (a) Excitation probability of state |S1/2, F = 1〉 as a function of mw pulse length
applied to a single 171Yb+ ion: the hyperfine qubit exhibits Rabi oscillations with frequency
2917 × 2π Hz. Each datum represents the average of 85 realizations. (b) Excitation probability
of state |S1/2, F = 1〉 as a function of the time between two π/2-pulses during which the 171Yb+

ion undergoes free precession (100 repetitions). The detuning δ = ω0 − ω determined from the
Ramsey interference fringes is 91.3 Hz. The sub-unity contrast in both experiments is determined
by imperfect initial preparation of state |S1/2, F = 0〉.
(This figure is in colour only in the electronic version)

free precession, the coherent superposition is interrogated again by a second π/2 mw pulse,
followed by a light pulse close to 369 nm (step (iii)) for state selective detection. Thus, the
Ramsey interference fringes displayed in figure 3 are obtained. Again, the contrast is limited
only by the imperfection of the initial preparation of state |0〉. This experiment demonstrates
that the hyperfine qubit does not suffer from detectable decoherence during free propagation.

3.2. Adaptive estimation of quantum states

The notion of a quantum state, mathematically represented by an element in Hilbert space, is
central to quantum theory. How can the state of a system described by quantum mechanics
be determined? Taking advantage of tomographic methods, for instance, quantum states of
light fields and motional states of atoms and ions have been reconstructed [13]. Here we
are interested in the state estimation of quantum mechanical two-state systems (qubits) and
investigate how maximal information about an unknown qubit state can be gathered. In [14]
two identically prepared qubits were considered and it was strongly suggested (and later
proven in [15]) that optimal information gain about the qubits’ state requires a simultaneous
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measurement on both qubits in an entangled basis. This means that by transferring quantum
information between the two qubits, more information (in [14] the Shannon entropy was
used as a measure for information) about their state can be extracted than if only local
operations and classical communication were used. In further theoretical work optimal
and minimal measurement strategies have been found for the estimation of qubit states
when more than N = 2 identically prepared qubits are available [16]. Optimal schemes
always require measurements in an entangled N-qubit basis. This requirement makes it not
only experimentally challenging to implement an optimal strategy and test the theoretical
predictions, but it is also necessary that all N qubits are available simultaneously.

In [17] an adaptive algorithm for quantum state estimation has been proposed that comes
very close to the performance of an optimal scheme, even for a moderate number of available
qubits (N � 20). The qubits are measured sequentially and the measurement basis of
the nth measurement is determined by the outcome of the previous (n − 1) measurement
(n = 1, 2, . . . , N). We have implemented this adaptive strategy to estimate the state of the
hyperfine qubit in 171Yb+ [18].

The information known about the state of a qubit can be represented by a probability
density distribution wn−1(θ, φ) on the surface of the Bloch sphere (θ ∈ [0, π], φ ∈ [0, 2π)

indicate the polar and azimuthal coordinate). The density matrix describing the state is given
by

�n−1 =
∫ π

0
dθ sin θ

∫ 2π

0
dφ wn−1(θ, φ)|θ, φ〉〈θ, φ|. (6)

Before a measurement is performed, the lack of information on the qubits’ state is reflected
by a uniform distribution w0(θ, φ) = 1/4π . After having obtained the measurement outcome
|θm, φm〉 in measurement n, wn(θ, φ) is obtained from wn−1(θ, φ) using Bayes rule [19]:

wn(θ, φ|θm, φm) = wn−1(θ, φ)|〈θm, φm |θ, φ〉|2
pn(θm, φm)

. (7)

Considering the knowledge that has been gained in previous measurements (0, . . . , n − 1;
n � 1), the task is now to optimize the information gain in measurement step n, that is, to
determine the optimal basis for the succeeding measurement. To this end, the Shannon entropy
S = − ∑

x=+,− px log(px) can be maximized, where p+ = pn(θm, φm) (p− = pn(θ̄m, φ̄m))
is the a priori probability to measure state |θm, φm〉 (|θ̄m, φ̄m〉). The Shannon entropy
measures the uncertainty about the qubit’s state before a measurement has been performed,
or alternatively, the gain of information after a measurement. It is maximal if both possible
outcomes determined by the selected measurement basis have equal probability. The first
measurement direction is, of course, arbitrary, since no prior knowledge is available. The
second measurement direction has to be perpendicular to the first one in order to maximize S,
and the third one perpendicular to the first two. However, for n � 4 the optimal basis depends
on all previous n − 1 measurement outcomes. In numerical simulations the use of the fidelity
(as in the remainder of this paper) has been proven to be a better choice to optimize the estimate
of an unknown quantum state [17].

After measurement n − 1 one obtains the probability density function wn−1(θ, φ) that
determines ρn−1. The state |θ ′, φ′〉 having maximal overlap with this density operator
maximizes the fidelity

Fn−1(θ
′, φ′) = 〈θ ′, φ′|ρn−1|θ ′, φ′〉. (8)

If in the next measurement n the basis determined by (θm, φm) were used, and the result of the
measurement were |θm, φm〉, then the estimated state after measurement n would be obtained
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...

n = 2n = 1 n = 3

n = 4 n = 12

Figure 4. A sequence of N = 12 adaptive measurements carried out on identically prepared qubits
in order to estimate their state (|π/4, π/4〉, marked by a grey circle). The probability density
wn(θ, φ) is greyscale coded on the surface of the Bloch sphere (the greyscale code is different for
each measurement). In addition, contour lines indicate where wn takes on the values 0.1, 0.2, . . ..
A grey straight line through each Bloch sphere shows the measurement direction and the filled grey
circle indicates the measurement outcome. The fidelity of state estimation of this particular run is
98.2%.

by maximizing the fidelity Fn(θ
′, φ′|θm, φm), that is, from

Fopt
n (θm, φm) = max[Fn(θ

′, φ′|θm, φm)] (9)

by varying θ ′, φ′. However, the nth the measurement may as well have the outcome |θ̄m, φ̄m〉).
Therefore, the optimal fidelity for the measurement direction (θm, φm) is obtained by the
weighted sum

F̄n(θm, φm) = pn(θm, φm)Fopt
n (θm, φm) + pn(θ̄m, φ̄m)Fopt

n (θ̄m, φ̄m) (10)

(the weights pn are the probabilities for each of the two possible measurement outcomes.)
Maximizing F̄n(θm, φm) as a function of θm, φm then gives the desired result [18].

In figure 4, probability density distributions are displayed that have been obtained from a
single experimental run of N = 12 consecutive measurements of the hyperfine qubit in 171Yb+

in order to estimate its state. The initially prepared state |θ = π/4, φ = π/4〉 to be estimated
is marked with a circle on the surface of the Bloch sphere. The grey straight lines show
the measurement directions n and the filled circles indicate the measurement outcome. Four
different initial states were estimated (|π/4, π/4〉, |π/4, 3π/4〉, |3π/4, π/4〉, |3π/4, 3π/4〉),
each of them 100–200 times. The average experimental fidelity 85.0 ± 0.6% agrees well with
the average theoretical value 85.4±0.7% obtained from simulating the adaptive algorithm 104

times taking into account the experimentally determined preparation and detection efficiencies.
The performance of the self-learning algorithm has been compared, among others, to

state estimation using a randomly chosen measurement basis in each of the N steps. The
experimental and theoretical average fidelity for N = 12 randomly distributed measurements
is 81.9 ± 0.6 and 81.9 ± 0.7%, respectively. The difference between the two methods under
experimental conditions, that is, including decoherence due to initial preparation and detection,
turns out to be larger than under ideal decoherence free conditions. A detailed comparison
with other estimation schemes employing a fixed set of measurement basis will be published
elsewhere.

The estimation procedure implemented here allows for separate (local) measurements on
each qubit (a total of N identically prepared qubits are available). Following each measurement
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on a particular qubit, classical information is used to determine the best measurement to be
performed on the next qubit. In [20] the optimal LOCC scheme (performing local operations
with exchange of classical information) is introduced for arbitrary states on the Bloch sphere
(3D case). Interestingly, if the state to be estimated lies in the xy-plane (2D case), then local
operations alone suffice to obtain the optimal state estimate, and classical communication is
not necessary. This optimal LO(CC) scheme exhibits the same asymptotic behaviour with the
number N qubits as the optimal scheme taking advantage of collective measurements, and
yields a slightly better average fidelity than the adaptive scheme presented here.
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