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Abstract

In order to faithfully detect the state of an individual two-state quantum system (qubit) realized
using, for example, a trapped ion or atom, state selective scattering of resonance fluorescence is
well established. The simplest way to read out this measurement and assign a state is the
threshold method. The detection error can be decreased by using more advanced detection
methods like the time-resolved method (Myerson et al 2008 Phys. Rev. Lett. 100 200502) or the
n-pulse detection method (Hemmerling et al 2012 New. J. Phys. 14 023043). These methods
were introduced to qubits with a single possible state change during the measurement process.
However, there exist many qubits like the hyperfine qubit of '7'Yb* where several state change
are possible. To decrease the detection error for such qubits, we develop generalizations of the
time-resolved method and the z-pulse detection method for such qubits. We show the advantages

of these generalized detection methods in numerical simulations and experiments using the
hyperfine qubit of '"'Yb*. The generalized detection methods developed here can be
implemented in an efficient way such that experimental real time state discrimination with

improved fidelity is possible.
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1. Introduction

Quantum information processing can be divided into three
steps: (i) the preparation of the system in a well defined state,
(ii) the controlled time evolution of the system to carry out a
desired algorithm, simulation or precision measurement, and,
(iii) the readout of the quantum system. State selective
detection is a key ingredient for quantum information pro-
cessing, not only necessary for readout, but also to verify the
preparation of a system, to characterize the performance of
quantum gates, or to perform an error correction algorithm. It
is assumed, that a detection error of the order of 10~* must be
achieved to perform universal quantum computations.

In ion traps state dependent scattering of resonance
fluorescence is used for state selective detection. In this article
we consider state selective detection of two internal ionic
states labeled |d) and |b). Laser light drives a transition
between one state of the qubit (the so called bright state) and a
third fast decaying energy level. This leads to resonance
fluorescence, if the ion was initially in the bright state. If the
ion was initially in the other qubit state (dark state), no light,
or only a small number of photons is measured resulting from
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off-resonant fluorescence, background scattering and dark
counts. This method for state selective detection can give rise
to quantum jumps [3-5].

The simplest way to discriminate between the bright and
dark states of an ion is the threshold method: if more than n.
photons were registered during the measurement time #, we
assume that the ion is bright, otherwise we assume it is dark.
Due to the fact that a bright ion scatters photons only with a
certain probability and dark states are not perfectly dark, due
to background light not scattered by the ion and dark counts,
statistical errors occur. This statistical error can be reduced by
longer measurement times. However, the ion can change its
state during the measurement which leads to additional sys-
tematic errors. These errors usually increase with longer
measurement times.

In the context of this article we refer to a measurement of
a qubit’s state when resonant light is directed at the ion and an
attempt is made to register fluorescence. The detection of the
qubit state may, however, involve more than one measure-
ment and also additional coherent manipulations of the ionic
internal states. When using the threshold method outlined
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above, the words ‘measurement’ and ‘detection’ have iden-
tical meaning.

Several detection schemes were proposed and imple-
mented to improve qubit detection by state selective reso-
nance fluorescence. For example, Myerson et al [1] divided
the total measurement time ¢, into several sub-bins of duration
t; and calculated the probabilities pp (pp) that the measure-
ment sequence is the result of an initially bright (dark) ion. A
comparison of both probabilities reveals the more probable
one, which determines the detection outcome. We call this
method the time-resolved detection method. It can also be
applied to read out multi-qubits [6].

Another detection scheme was proposed and imple-
mented by Hemmerling et al [2] . They apply a z-pulse to the
qubit states inverting their population after a first measure-
ment followed then by a second measurement. Only if the first
and second measurement lead to opposite results, the mea-
surement results are used for state discrimination, all other
results are discarded. Different methods to readout a single
measurement can be used when applying this detection
technique. However, here the threshold method seems to
provide an advantage compared to the time-resolved method.
In general, detection methods that discard doubtful results,
such as this z-pulse method, have a higher failing probability
(probability to get no answer or an incorrect answer) than
detection methods that always provide an answer. Note that,
by assigning randomly a state to measurement results that
were discarded, we obtain by chance some correct answers,
which increases the overall probability to get a correct answer
(success probability). Nevertheless, for some scenarios, the
probability that the given answer is right is more important
than the average probability of success.

Both methods were designed for qubits in the optical
regime such as “°Ca* where the dark state can be transferred
to the bright state via spontaneous decay, and the bright state
is stable. As a consequence, only a single state change (from
dark to bright) is possible. Therefore, the state of an initially
bright state is fixed and the time dependent state of an initially
dark ion can be described with a single parameter: the time ¢
at which the ion changes its state.

The present study was done in view of the widespread
use of hyperfine qubits (for example, °Be* [7], ¥*Ca* [8, 9],
137Ba* [10], '"'Yb* [11-16]) where the analysis of the mea-
surement process is more complicated.

Hyperfine qubits can change during the detection process
from the bright state (for '7'Yb* the state S;,», F = 1 as shown
in figure 1) to the dark state (S;,,, F = 0) and vice versa via
off-resonant excitation and subsequent spontaneous decay.
This leads to an increased number of parameters (times #; at
which a state change takes place), due to the fact that not only
one, but many state changes may occur. Furthermore, when
using time resolved measurements for detection, the photon-
number distributions of individual time sub-bins are not
independent of each other. As a consequence, the total
probability of a measurement sequence is not given by the
product of the probability distributions of the single sub-bins.
One way to deal with this problem is to draw a decision tree
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Figure 1. Level structure of 7'Yb™: levels S;,,, F = 0 and one of the
Zeeman states Sy, F = 1 form the hyperfine qubit. The transition
from Sy, F = 1to By, F =0 (red arrow) is used for fluorescence

detection and Doppler cooling. Through off-resonant excitation to
B/, F = 1 and spontaneous decay (dashed arrows), the ion can

change from the bright state S;,,, F = 1 to the dark state S;,», F = 0

and vice versa. The hyperfine splittings are given by
Ay =12.6 X 10° Hz and 4, = 2.1 x 10° Hz.

and sum up the probabilities of all possible paths, which was
done in [2]. However, in the case of several possible state
changes, this leads to complicated formula: assuming only a
single possible state change per sub-bin for M sub-bins in
total already leads to 2™ terms. As a consequence, we will not
follow the calculation in [2] directly but we will use hidden
Markov models instead, similar to [17]. Hidden Markov
models can be used to describe processes where the prob-
ability distribution P of an obversable at time ¢ depends only
on a hidden state s(f) and the probability W of changing this
hidden state depends only on the actual state but not on
anything before. As a consequence, to calculate P (r + dr) we
only need to know s(f), whereas a decision tree takes all
earlier states into account. The time dependent photon dis-
tribution in our experiment can be exactly described by a
hidden Markov model. Compared to the calculations done
with the help of decisions trees, the Markov model takes only
the necessary information into account, whereas the decision
tree takes into account too many details. Therefore, with the
help of Markov models the calculations for our experiment
can be performed in an efficient way.

In this paper, we generalize the ideas of [1, 2] to two-
level systems that allow several state changes during the
measurement. Furthermore, we give an efficient expression to
calculate the probability of a sequence of measurements
starting with the probability distributions of single measure-
ments. We apply this result to simulated measurement events
and to experimental data obtained with trapped '7'Yb* ions.

The paper is organized as follows: in section 2 we
develop the mathematics necessary to generalize the time-
resolved method to ions with several possible state changes
during the measurement sequence. Then, we apply the
detection scheme to a simulation of the hyperfine qubit of the
17lYb* ion followed by the description of the experimental
realization of the improved time-resolved method to trapped
7yb* ions. We finish section 2 with a comparison of the
improved time-resolved detection method developed in this
paper with the original one. In section 3 we generalize the
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z-pulse method in a similar way. Then we apply the gen-
eralized z-pulse method to simulate detection of the hyperfine
qubit in '7'Yb*. We finish this section by comparing the
generalized n-pulse method to a threshold method with two
thresholds.

2. Time-resolved detection

Myerson et al consider in their work a qubit which can only
change from the dark state to the bright state but not
vice versa. Therefore, the probability, that the sequence of
measured photon numbers {n;} is the result of an initially
bright state is given by pg ({ni}) = [] P (i), where Py(n) is
the probability distribution of measuring n photons during a
single sub-bin. The probability, that the measurement
sequence is the result of an initially dark ion is given by [1]

f% M ts M [ k-1
Po =(1 ——)HPD<nk)+(—)Z I1 »@»
k=1 T/ =1\ =

T

ey

M
H PB(nj)]
J=k

Here, Pp(n) is the photon distribution of the dark state, M is
the number of sub-bins of duration ¢, f, is the total mea-
surement time and 7 the mean lifetime of the dark state
(limited by spontaneous decay into the bright state). To gain
this equation, Meyerson et al assume that t, < 7. The term
(1 — #,/7) is the approximated probability that the ion stays
dark during the whole measurement and (%) is the probability
that the ion changes from dark to bright during a single sub-
bin of duration #;. As a consequence, the total probability is
given by the sum of the probabilities of all possible paths (no
state change, state change in first bin, ---).

A straightforward way to generalize this formula to ions
that allow several state changes would be to introduce a new
summation index j' for every possible state change. Assuming
a maximal number M of state changes, about 2™ terms needed
to be summed up to calculate pp and pg. This would lead to a
fast increasing effort of data analysis and would make real-
time readout very slow and adaptive schemes as described
e.g. in [1] impossible for all practical purposes.

However, taking into account 2M terms is not necessary,
because the probability distribution of the kth sub-bin only
depends on the state of the ion after the (k-1)th sub-bin and
not on all previous sub-bins. Therefore, the probability dis-
tribution of the kth sub-bin can always be written as a sum of
only two functions as we will show in this section.

2.1. Generalization

For our generalization, we assume that although the ion may
perform several state changes during the total measurement
time #5, only a single state change may occur during a single
sub-bin of duration #,. This assumption can be justified by
analyzing typical parameters relevant for the detection of

17'Yb*, or other ions with hyperfine structure used for quan-
tum information processing. In our experiments the mean life
times of the states depend on the power of the laser beam used
to scatter resonance fluorescence. Typically, 7z = 5.5 ms for
the bright state and 7, & 50 ms for the dark state. Using these
lifetimes in our simulations, we have found that from 10°
simulated bright (dark) ions 2% (0.2%) changed their state
during a single sub-bin of duration ¢, = 0.1 ms. None of them
changed its state twice or more during a single sub-bin, which
justifies our initial assumption. During a total measurement
time #, = 3 ms, around 2% of the ions change their state twice
or more.

Thus, the behavior of the ion during a single sub-bin is
described by four probability distributions: (i) the probability
of a bright ion staying bright

W (t) = e™/™, t € [0, 1], (2)
(ii) the probability Wgp = 1 — Wpp that a bright ion becomes
dark, (iii) the probability of a dark ion staying dark

Wop (1) = e/, 1 € [0, 1], (©)
and (iv) the probability Wpp =1 — Wpp that a dark ion
becomes bright.

Each of these four situations lead to different photon-
number distributions, which we determine as follows. The
total measured photon rate of a dark ion is the sum of the off-
resonant fluorescence rate, the background scattering rate, and
the dark count rate, and is given by Rp. The total measured
photon rate of a bright ion is given by Rp + Rp (see
appendix A). If the ion does not change its state during the
measurement time #;, then the probability of detecting n
photons is given by a Poisson distribution. For a bright ion we
get

[(Rs + Rp) - 1, ]'

Py (l’l) = e_(RB+RD)'t3‘ (4)

and

Rp - 1)
Py(n) = Me—lﬁm

&)

for a dark ion.

If the ion changes its state during #,, then the probability
of detecting n photons is a superposition of Poisson dis-
tribution [18]. As a consequence, the resulting photon dis-
tribution

Rp+Rp)ty n
xm= [ s Lo ©
Rpt, n‘

‘ls

is gained by integrating the poissonian distributions over all
mean photon numbers 4 times the probability g(1) to get the
mean photon number A. For a bright ion becoming dark at
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exactly the time ¢, the mean photon number is given by
A(t)=Rp - t; + Rp - t. 7

Therefore, the weight function g (1) is given by

_ dWpp((4)) | dr.
8sp () = & ‘ 0 ®)
A—=Rp -t
:exp[—TDTBt]/(RB . TB), 9)

and we call the resulting function Xpp(n). Analogously, we
obtain for a dark ion becoming bright

(Rp + Rg)t; — A

RB'TD

]/(RBTD)s (10)

gpp(A) = exp[—

and we call the resulting function Xpp(n). We note that the
function X(n) does not only contain information about the
photon distribution but also about the probabilities of the ion
to be bright or dark. As a consequence, the photon distribu-
tion of the kth sub-bin is described by the matrix

Xpp(ng)
WopPp(ni) )

Wap Ps (1)

11
Xpp(ny) b

O (ny) =(

These matrices have the property that the first (second) col-
umn contains information about ions that were bright (dark)
before the measurement, whereas the first (second) row
contains information about ions that are bright (dark) after the
measurement.

This construction simplifies the calculation of the total
probability pp ({ni}) (pp({ni})) for the total series of mea-
sured photon numbers {n;} being the result of an initially
bright (indicated by (iB)) or initially dark (iD) ion to a simple
matrix product as is shown below.

By defining
pp(ine}) = B ({n})) + DB ({mi ), (12)
pp(Une}) = B2 ({ni ) + D2 ({mie D), (13)

where B, and D, stand for the probabilities of all possible
paths where after the kth sub-bin the ion is in the bright or
dark state, respectively, we find

BB D) k
[ ) C =TT oimn.
j=1

. . (14)
pi® p»

This matrix product can be calculated very fast, if the function
values of the four probability distributions (WpgPs(ny),
Xpg(ny), WppPp(ny), Xpp(ny)) have been determined and
stored for all possible photon numbers 0 < ng < R in
advance. In this way fast state detection on-the-fly is
achievable which makes adaptive schemes possible, even in
the presence of more than one state change.

012 — T T
+ threshold
01r * time-resolved ||
0.08 |
£
0.06
0 + .
T
0.04 " +++++++++++
st
0.02 2 S S
0 . . . . .
0 5 10 15 20 25 30

tb(O.lms)

Figure 2. Comparison of the error of the threshold method (+), and
our improved time resolved method (x) for different total
measurement times #;, and constant sub-bin time ¢, = 0.1 ms.

2.2. Simulation

In order to compare numerically different detection methods,
we assume typical parameters for an '7'Yb* ion:

g =4.9ms, 7p = 56 ms,

Rp=16ms™', Rp = 0.3 ms™}, (15)

a sub-bin time of 7, = 0.1 ms, and a total measurement time of
1, = 3 ms or less. The simulation of the detection process of a
single initially dark or bright ion was performed in the fol-
lowing way: first, a random number generator randomly
chooses the times # at which the atom changes its state
according to the probability distribution Wyp or Wpp,
respectively, until Zj tj > tp. In a second step, we generate
the photon numbers {n;} for each sub-bin measurement
according to the Poisson-distribution Py and Pp, for bright or
dark ions. For sub-bins & in which the ion changes from bright
to dark, we use

ﬂjZRD'l‘S-FRB'[[j—(k—l)lS]

with (k — Dty <t; <k-tg (16)
as mean photon number of the Poisson-distribution and
/1j=RD~[S+RB'[k'l‘X—tj:|
with (k — Dt <t; <k -t 17)

if the ion changes from dark to bright. In the last step, the
different detection methods are applied to the generated data.
A comparison of the initial state and the result of the detection
methods determines the error. We define the error of bright
ions by

# simulated bright ions detected as dark

Ebright = (18)

# simulated bright ions
The error of dark ions &4, is defined analogously.

We simulated 10° bright and 10° dark ions and deter-
mined the average error € = (eprign + €dark )/2 of the thresh-
old method and our improved time-resolved method. For the
threshold method we optimized the critical photon-number 7,
for each measurement time #,. As we can see in figure 2 the
error is nearly equal for both methods for small measurement
times. However, the minimum error of the threshold method
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Figure 3. Behavior of the advantage A¢/€iime = (Ethresh — Etime )/ Etime
of the generalized time-resolved method compared to the threshold
method for different collection efficiencies 7.

with egresn & 2.1% achieved for t, = 0.8 ms and 7, = 0.9 ms
is a little bit larger then the minimum error of the generalized
time-resolved method with Eime ~ 1.85% for
1 ms < t, < 3 ms. For long measurement times, t,, the error
of the threshold method increases whereas the error of the
improved time-resolved method stays nearly the same.

This behavior can be explained in the following way: the
threshold method assumes that there are no state changes and
therefore, weights all measured photons in the same way, no
matter when they arrive. However, in the limit of long times
15, the photon distributions of an initially dark and an initially
bright ion are indistinguishable (see appendix B), and there-
fore, the threshold method does not work anymore. In con-
trast, the time-resolved method takes state changes of the ion
into account and puts more weight on early arriving photons.

The minimal detection error that can be reached depends
on the experimental efficiency, # with which scattered pho-
tons are collected. For numerically simulating the data shown
in figure 2, a collection efficiency 5, = 3.1 x 107> is used
which was experimentally determined for the setup used in
these investigations (see section 2.3). The collection effi-
ciency includes the loss of fluorescence photons due to the
limitation of the solid angle of the detector and its photon
detection efficiency. It is interesting to see how an improved
collection efficiency changes the detection error. For this
purpose, we determine the behavior of the error for different
photon collection efficiencies # for the threshold method and
our time-resolved method. The two photon rate Rz and Rp
grow linearly with increasing collection efficiency. Both
detection methods benefit by the same magnitude from an
enhanced collection efficiency. For 7 = 21, = 6.2 X 1072 the
error of both methods decreases by around 0.8% to
Ethresh = 1.22% and gipme = 0.97%. An increasing collection
efficiency leads to a decreasing measurement time needed to
distinguish between bright and dark ions. As a consequence,
fewer state changes will occur during the measurement time
and the advantage Ae = epresh — Eime gained by the time-
resolved method compared to the threshold method decreases
(see figure 3). Therefore, for = 30.69 x 1073 both detection
methods (generalized time-resolved and threshold) lead to
nearly the same error of ¢ ~ 0.33%. Here, we want to note,
that the error for both methods are monotonically decreasing
and the time-resolved method always better or as good as the

threshold method. However, Ae/egime is slightly oscillating
due to the stepwise change of the threshold for different
optimal measurement times 7.

2.3. Experimental results

To determine the error rates of the threshold method and the
generalized time-resolved method experimentally we capture
a single '"'Yb* ion in a Paul trap, laser cool it, prepare it in the
dark or bright state, measure the number of photons n;
arriving during consecutive sub-bins j of duration #; = 0.1 ms
and apply the different detection methods (for a detailed
account of the experimental setup see [19]). Each measure-
ment starts with the preparation of the ion in the dark state by
driving the transitions Sjp, F=1o Bp, F=1 (see
figure 1) using laser light near 369.5 nm (preparation laser)
and subsequent spontaneous decay of the ion to the dark
ground state Sj,,, F = 0. For the preparation of a bright ion
we use rapid adiabatic passage [20] to transfer the state of the
ion from dark to bright. Then the time dependent fluorescence
on the resonance Sj;, F=1 < Bp, F=0 is measured
using again laser light near 369.5 nm (measurement laser,
detuned by 2.1 GHz relative to the preparation laser light).
After each measurement we cool the ion with Doppler-cool-
ing on the Sy, F =1 < By, F =0 transition before pre-
paring the next state.

To apply the time-resolved method to experiments, we
have to determine not only the photon rates for the bright and
the dark ion, but also the rate at which state changes occur
from bright to dark and vice versa. All rates depend on the
intensity of the measurement laser. To achieve this task we
first measure the time dependent fluorescence for initially
dark and bright ions for a total time of 10 ms, divided into 30
sub-bins of duration #, = 1/3 ms. The average photon number
per sub-bin is given by

fig(t) = a + be™’" 19)
for an initially bright ion and
fip(t) =a — ce™’" (20)

for an initially dark ion. The parameters a and z are the same
in both cases. Here we note, that in the presence of the
fluorescence laser all states turn into a steady state in the long
time limit. In this state, on average the same number of ions
turn from dark to bright as turn from bright to dark. As a
consequence the photon rate in the long time limit does not
depend on the initial state and is determined by a. The mean
lifetime 7 = tp7p/(rp + 7p) determines the time scale to
reach this steady state. With the help of

b/c
1+ b/c

we can estimate the lifetime 73 = 7/A of the bright state and
7p = 7/B of the dark state (for derivation see appendix B).
The coefficients A, B determine the probability to be in the
bright or dark state for the steady state.

We measured the time dependent fluorescence for a
single ion 2000 times consecutively prepared in the bright

A and B=1-A

2D
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Figure 4. Long time measurement of the time dependent fluores-
cence of an average bright ion (+) and an average dark ion (x) and
their simultaneous fit (lines) for a laser power of 36 W and a beam
diameter given by 174 ym (measurement laser near 369.5 nm). With
a collection efficiency of 7, = 3.1 x 1073 the average measured
photon scattering rates are Rz = 16 ms™' for the bright state and
Rp = 0.3 ms™! for the dark state (see section 2.1 for the definition of
the scattering rates).
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Figure 5. Experimental errors of the threshold (+) and the time-
resolved method () in comparison to each other and to simulations.

state or 2000 times in the dark state to determine the time-
dependent mean photon rates. The measured average photon
number per sub-bin is shown in figure 4. We have fitted 71
and 77p simultaneously, which means we minimized

\/Z(’T‘BJ’ — g (j - zs))2 + Z(ﬁa,j —7p(j - zs))z. (22)

J

Here, 715, 7ip j are the measured mean photon number of sub-
bin j for an initially bright or dark ion, respectively.

For a laser power of 36 uW focused to a beam diameter
of 174 ym (measurement laser) the fit leads to the parameter
a = 0515, b =468, ¢c = 0434, t =4.50ms. As a con-
sequence, the lifetimes of the dark and bright ion in our
experiment are given by 7z = 4.92ms and 7p = 53.1ms.
With these parameters, we are now able to apply the time-
resolved detection method. For this purpose, we measure a
total of 9 x 10° bright ions and 9 x 10° dark ions, always a
single bright and a single dark ion in turns. At the

measurement laser intensity quoted above and with a collec-
tion efficiency of 7, = 3.1 x 10~* the average measured
photon rates are Rz = 16 ms~! and Rp = 0.3 ms™".

We evaluate the data with both detection methods and
estimate the error depending on the number of measurement
bins used for the detection methods. In figure 5 we see that
the experimental results show the same qualitative behavior
as the simulations. These simulations were done for both
methods, using the experimental parameters given in the last
paragraph. The minimal experimental error of the improved
time resolved method is determined as &;pe = 2.24%, and,
thus smaller than the error of the threshold method given by
Ethres = 2.67%. The simulations of both detection methods
reach smaller errors due to the fact that the simulation does
not consider preparation errors or fluctuations of laser power
or frequency.

In [13] Ejtemaee et al report how they optimized the laser
intensity to get the best detection efficiency. Optimal detec-

tion was achieved for a fluorescence rate of Rz ~ 25ms .

The collection efficiency in [12] was given by 2.9 x 10~ and
was therefore approximately equal to the experiment reported
here. This means that the intensity of the measurement laser
differed. Although our experimental parameter seem to differ
slightly from the optimal one, we achieve detection effi-
ciencies exceeding 97% similar to [13]. Therefore, by opti-
mizing the experimental parameter and using the general
time-resolved detection method, it should be possible to
exceed the detection efficiency of 97.9% measured by Olm-
schenk et al [12].

Recently, Noek er al were able to improve the state
detection efficiency of hyperfine qubits with '7'Yb* dramati-
cally to € = 0.085% [21]. The main reason of this improve-
ment is based on an improved photon collection efficiency #
which is around 10 times larger than the ones of our
experiment or the experiment done by Ejtemaee et al and the
reduction of background photons. The reduction of the error &
with our generalized time-resolved detection method is small
compared to the reduction gained by a higher photon col-
lection efficiency. Nevertheless, our measurement scheme is
very useful, since for every fixed collection efficiency, it is
still able to reduce the error over a wide range of # as shown
in figure 3. As a consequence, even if an improvement of the
collection efficiency is not possible due to structurally engi-
neered reason, the detection error can be reduced by using our
generalized time-resolved method.

2.4. Comparison with original algorithm

In the previous sections we showed how to generalize the
time-resolved detection method from [1] and applied it to
simulations and to experimental data. Our simulation showed
(see section 2.1), that only a small fraction of the ions execute
several state changes. Therefore, we compare now the gen-
eralized method with the original method to investigate
whether additional effort of the generalized time-resolved
method leads to better results of our experiment.

In figure 6 we compare the evaluation of our experi-
mental data (see section 2.3) using different detection
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Figure 6. Comparison of the experimental data evaluated with the
original time-resolved method () that considers only one possible
state change from bright to dark, our generalized time-resolved
method (+) that considers several possible state changes from bright
to dark and vice versa, and the threshold method (/\).

methods. The simple time-resolved method gives better
results than the threshold method, and the generalized time-
resolved method leads to a further reduction of the detection
error. In particular, for larger measurement times #,, the error
of the simple time-resolved methods starts to increase sig-
nificantly, whereas the error of the generalized method stays
nearly the same, making the later more robust. The minimal
error achievable with the simple time-resolved method with
min(&gmple) = 2.34% 1is slightly larger than the error of the
generalized method with min(egepera) = 2.24%.

In order to investigate the significance of this difference
observed in the experimental data, we performed 20 simula-
tions with 10° ions each with the parameters determined in
section 2.3 and evaluated them with the simple and the
generalized time-resolved method. For the simple time-
resolved method we found an average error of
Eimple = 1.92% with a variance of Aggmpe = 0.026%. For the
generalized time-resolved method we found Egepera = 1.80%
with a variance Aegenera = 0.029%. Again, our simulations do
not take into account preparation errors or errors due to the
drift of the laser frequency and therefore lead to smaller errors
than our experiment.

In summary, we see in figures 5 and 6 that we benefit
more and more from the time-resolved method (the simple
one and especially our generalized one) compared to the
threshold method when the optimal time 7,?" necessary to
collect enough photons for state discrimination increases
compared to lifetime 7 of the state. For 7?" < 7 no difference
between the three detection methods (threshold, simple time-
resolved, generalized time-resolved) exists. For an increasing
£ a benefit from the time-resolved method becomes visible.
For even larger 1™ the difference between the simple and the
generalized time-resolved method becomes visible. Since 7™
depends on the ratio between the fluorescence rate Rg and the
dark count rate Rp, it is also this ratio together with the
fluorescence rate Rp which decides if the time-resolved
methods is advantageous.

Increased laser power leads to a decrease of 7' as well

as of 7, and therefore to a faster measurement. However, this
also changes the minimal error achievable. A higher fluor-
escence rate does not, in general, lead to a smaller detection
error [13].

An increased collection efficiency #n leads also to a
shorter measurement time, and also to a decreasing minimal
error. Since the lifetime 7 is independent of #, an increased 5
may also decrease the advantage of the time-resolved method
(see figure 3).

3. IT-pulse detection

Another way to increase the detection efficiency is to perform
a detection followed by a z-pulse and a second detection as
described in [2]. Only results with different detection out-
comes for detection one and two are considered, detections
with the same outcome for both detections are excluded.
Similarly to the previous section, we have to generalize the
results of [2] to an ion that cannot only change from the dark
state to the bright state but also vice versa in order to consider
this method for ions where several state changes during the
detection process are possible.

3.1. Generalization

The calculations of the error in [2] where done with the help
of a decision tree. However, the possibility of several state
changes (instead of a single state change) increases the
number of possible branches exponentially. In the presence of
several possible state changes, it is, therefore, not useful to
draw a decision tree and sum up all possibilities. Instead, we
develop a more efficient way to determine the error with the
help of hidden Markov models as we show in this section.

We start to describe the measurements with the help of
matrices. The important variables for the z-pulse detection
scheme are: (i) the initial state, (ii) the state after the mea-
surement, (iii) the detection outcome. Therefore, the prob-
ability of detecting a bright ion is in general a sum of four
probabilities: (i) an initially bright ion stays bright and is
correctly detected as bright (Rpp), (ii) an initially bright ion
turns dark and is correctly detected as bright (Rpp), (iii) an
initially dark ion stays dark and is falsely detected as bright
(Fpp), (iv) an initially dark ion turns bright and is falsely
detected as bright (Fpp). These four probabilities form the
matrix Mg given by

(23)

R F,
My = | Row fom)
Rpp Fpp

which does not only help us to calculate the probability of
detecting a bright ion but also contains the information about
the state of the ion after the measurement. By describing a
bright ion by the vector vz = (1, 0)" and a dark ion by
vp = (0, )T the probability that an initially bright ion is
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detected as bright is given by pgp = pV + p@ with

PV _ (Res Fos (1) _ M

p@) \Rep Fpp (0) -
where pl is the probability that the ion is in the bright state
after the measurement and detected as bright and p® is the
probability that the ion is in the dark state after the mea-
surement and detected as bright.

Analogously, the probability of detecting a dark ion and
its state after the measurement is determined by the matrix

Fgg Rpp
Fgp Rpp |

(24)

M, D= ( (25)
The z-pulse that turns dark states into bright states and
vice versa is described by the matrix

( €x l—eﬂ)
M, = s
1 —¢, €x

where €, is the error of the z-pulse.

The process that an initially bright ion is falsely detected
as dark by the z-pulse method is therefore described by the
vector

(26)

fg = MM Mpvp, 27)

where the total error is given by the sum of the entries of fz. In
the same way, the probability of detecting the bright ion
correctly is determined by

rp =MDM,,MBVB. (28)

In addition to the ions that are correctly detected and the ions
with a wrong detection result, there exists a third category:
ions that are ignored, because the detection result of the first
and second detection are equal. We call the ions that are not
ignored the remaining ions.

When determining the error associated with a scheme
where some ions are ignored (i.e. an inconclusive result is
obtained for these ions), the ratio between the number of
wrong answers and the total number of detected ions (which
is the sum of remaining and ignored ions) may not be a useful
criterion. To illustrate this point, we consider a simple
example: a possible worst case scenario is that the detection
gives a wrong answer or no answer at all, but never the
correct answer. In this case, despite the fact that one never
obtains a correct answer, the detection error could be found to
be small. Therefore, in what follows we consider instead the
relative error defined as the ratio between the number of
wrong results and the number of remaining ions. For this
purpose, we calculate how many detections of the remaining
data lead to a wrong result. This relative error determines how
reliable the result of the detection is, if we get one. This
relative error is given by

(1) (2)

rel __ fB +fB
B = 2 1 2)°
D+ 12+ + g

(29)

where fg) and rg) denotes the jth entry of the vector fz (27)
and rp (28), respectively. Analogously, we calculate the
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Figure 7. Comparison of the relative error (left scale ) of the
generalized time-resolved method combined with the z-pulse
method () and the threshold method combined with the z-pulse
method (+), for different total measurement times 7, and fixed
sub-bin time ¢, = 0.1/3 ms. The detection efficiency Nk for the
generalized time-resolved (red stair diagram) and the threshold
method (blue bar diagram) correspond to the right scale.

relative error for detecting a dark ion as follows:

Jp = MpM,Mpgvp (30)
rp = MpM;Mpvp (31)
(1) 2)
+
Bel — D D 5 (32)

1 2 1
P+ + )+

rel

and the total error €™ = (¢f + /2.

3.2. Simulation

For single detections before and after the z-pulse we use
either the threshold or the generalized time-resolved method.
We simulate again 10° bright and 10° dark ions to determine
the matrices My and Mp, for different measurements times z,
and fixed sub-bin time #; = (0.1/3) ms and optimized n.. We
assume an error of e, = 0.02 [2] for the z-pulse. With the
help of these matrices we are able to determine the overall
error &.

Similar to [2], we find that the z-pulse method can reduce
the relative error of the threshold method as well as of the
generalized time-resolved method. For the generalized time-
resolved method we get, for the above mentioned parameter
set, a minimal error of ¢ = 1.0% compared to 1.85% (see
section 2.2) without the z-pulse. As we can see in figure 7 the
error of the z-pulse method combined with the improved
time-resolved method increases for smaller time scales
whereas the combination of z-pulse method and the threshold
method seems to decrease. The minimal error € = 0.4% dis-
played in figure 7 is obtained using the threshold n. = 1.

It is also important to compare detection efficiency
defined as

# remaining ions

Ng = (33)

# total ions

for the generalized time-resolved method (red stair diagram)
and the threshold method (blue bar diagram) also displayed in
figure 7 and corresponding to the right scale. For small times
1, only a few ions are remaining if the threshold method is
used, e.g. only 10% are remaining for the minimal error
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Figure 8. Relative error (left scale) of the the threshold method
combined with the 7-pulse method for different total measurement
times #;, and different thresholds n. = 1 (+), n. = 3 (*), n. = 5 (x). The
red bar diagram displays the detection efficiency N for n. = 3 (right
scale).

achieved for #, = 100 us/3. This means that a small relative
error is obtained at the expense of the number of ions that
yield a conclusive detection result. If the generalized time-
resolved method is used, also for small times more than 40%
of the ion lead to a conclusive measurement result. For large
measurement times, Ny is nearly equal for both methods.

The problem of small numbers of remaining ions is further
illustrated by considering the relative error for even smaller
measurement times. As displayed in figure 8, the error of the -
pulse method using the threshold method decreases for even
smaller time-scales independently of the chosen threshold #.
However, we have to be careful with this statement because for
very small total measurement times #, it becomes nearly
impossible to detect bright ions. As a consequence, the relative
error is not well defined anymore. For example, in figure 8 no
error for n. =5 and t5 < 30 us is displayed, because all data has
been neglected. However, in these cases, we get no information
about the state of the ion and therefore it is also not useful to
calculate the error. Even if there is some remaining data, we have
to be careful: for example for n. = 1 and #5 = 10 us it was
possible to calculate an error, but the remaining data was small:
out of 10 bright ions, only 23 were detected as bright in a single
detection, and therefore only 0.023% of the data was remaining.
This means that (i) there exists a large statistical error in the
calculation of the error and (ii) we need many measurements
before we get a statement about the state of the ion.

In summary, the 7-pulse method [2] has been generalized
from qubit states where only a single state change occurs
during a measurement to states with several possible state
changes. This generalization is achieved by using methods
from hidden Markov models instead of decision trees. We
find that the generalized z-pulse method can reduce the
relative error of the threshold method as well as of the
improved time-resolved method. However, a large error
reduction (compared to the time-resolved method) can only
be achieved at the expense of discarding many measurement
results.

3.3. Double-threshold method

Applying the z-pulse method to an ion like '"'Yb* is not
straight forward, because the bright state is split into three
states mp = —1, 0, +1 (see figure Al).

0,1 1,0
0,08 0,8
o 006 106 Np
0,04 10,4
+
0,02 " i 0,2
e

0

15
t5(0.1ms)

Figure 9. Error of the double threshold method for lower limit np =0
and different upper limits ng = 1 (+), ng = 4 (x), ng = 10 (x) for
different measurement times #,. The red bar diagram displays the
detection efficiency Ny for n. = 4 (right scale).

Nevertheless, the general idea of dividing the measure-
ment results not only into bright and dark states, but also into
the group ‘inconclusive result’ decreases the detection error
(at the expense of the detection efficiency, see e.g. [6, 22]),
which we show in this section by considering the double-
threshold method.

For the double-threshold method we define two thresh-
olds:(i) if the measured photon number n obeys n < np we
assume that the ion is dark, (ii) if n > np we assume that the
ion is bright. If n is in between, we make no statement about
the state of the ion and ignore this datum.

In figure 9 we display the result of simulations for a
lower threshold np = 0." We first calculate the relative error
g™ = (# falseresults)/(# remainingresults) for bright and dark
ions before we average them to the total error

e 11;:1 +e Ir)el

e= " (34)

The error for a fixed threshold np first rapidly decreases as a
function of time, before it increases again slowly; for each
fixed threshold np, there exists a minimum error. For a larger
upper threshold np we get a larger optimal time. The minimal
error varies with the threshold ng. It first decreases with
increasing threshold np and reaches a minimum before it
increases again. Therefore, we have to optimize the threshold
np and the measurement time #, to get the minimum error
similar to the normal threshold method. For 7z = 4.9 ms,
Tp = 56ms, Rg =16 ms~' and Rp =03 ms™' we get a
minimal error of 0.81% for ng = 4 and t, = 0.5 ms with a
detection efficiency of Ny = 0.86. If we demand a detection
efficiency of Ng > 0.8 the minimal error achievable with the
z-pulse method is only € = 1.23% which is worse than the
error of the double threshold method. This may be caused be
the additional error caused by the error of the z-pulse and the
higher rate of state changes during two consecutive mea-
surements, each of duration f,, compared to a single mea-
surement of duration #,. However, the minimal error
achievable with the double threshold method is limited,
whereas the z-pulse method can reached arbitrary small errors
at the cost of a decreasing detection efficiency. To beat the

! Our simulations showed that np = 0 is the optimal lower threshold.
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minimal error of the double threshold method with the z-pulse
method, we have to tolerate a detection efficiency of
Nr < 04.

Both, the z-pulse method and the double-threshold
method ignore some data to decrease the detection error, yet,
they behave quite differently: for very small time scales, the
z-pulse method neglects all data because it is not possible to
detect bright states. The double-threshold method detects in
theory nearly all dark states perfectly, but detects bright states
as dark or neglects them. Therefore, the error of the double-
threshold method is equal to 1/2 for small measurement times.
For long measurement times, the photon distribution for
initially dark and bright ions are nearly the same. If we choose
np and ng such that we neglect most of the overlap of both
distributions, nearly no data will be left. The z-pulse method
can show two different behaviors for long measurement
times: (i) if we choose n. very large or very small, there will
be also nearly no date left, (ii) if we choose n, in the middle,
we will get an error of around 50%.

4. Conclusion

We generalize two detection methods [1, 2] for qubits with
only a single possible state change during the detection pro-
cess. This generalized treatment is applicable to qubits that
undergo several state changes during the detection procedure
such as, for example, hyperfine qubits realized with trapped
ions or neutral atoms, or solid state qubits such as NV centers
in diamond. By introducing matrices of probabilities instead
of single probability functions, numerical simulations as well
as real-time experimental detection procedures of the gen-
eralized qubit detection methods can be efficiently imple-
mented. Experiments carried out using a hyperfine qubit in
17yb* agree well with results of numerical simulations. Our
results show that the generalized methods lead to smaller
errors compared to the threshold method as well as compared
to the original time-resolved method.

Furthermore, we compared the z-pulse method to the
double-threshold method. This method is a post-selective
method similar to the z-pulse method. This method is
applicable to qubits that undergo one ore more state changes,
and also to qubits where (nearly) degenerate states are
populated during a measurement. This is the case, for
example, for hyperfine qubits. It ignores some data, however
shows a decrease of the detection error.

Whereas we discuss in this paper the difference between
one single possible state change and several possible state
changes, there exists another difference between the original
time-resolved and z-pulse method and the generalized meth-
ods: the rate of state change may not be given by nature
(spontaneous decay), but can depend on experimental para-
meters such as the intensity of the laser inducing resonance
fluorescence. Therefore, maximizing the fluorescence rate
might not result in the minimum error [13]. Future work will
have to concerned with optimizing the generalized detection

10

Pyjp, F =0

=

Sl/Q,F:1
mp=—1 mp=0 mp=+1

Figure A1. Zeeman structure of the Sj», F=1 < B, F=0

transition: the splitting due to the magnetic field is given by +4, the
laser detuning A is defined relative to the magnetic field B = 0. The
branching for all decays is equal 1/3.

schemes taking explicitly into account adjustable experi-
mental parameters.
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Appendix A. Fluorescence rate of '"'Yb*

The fluorescence rate Rp is given by

Rg=n-v-p;, (A.D)
where 7 is the photon collection efficiency, y the natural line-
width of the R, state and pthe steady state population of the
By, F =0 state. To calculate p; we have to include the
Zeeman splitting of the S, F = 0 state (see figure Al). To
avoid dark states and to maximize p, a magnetic field has to
be present and the laser needs to drive all transitions equally
strong. For this case, pris given by [13].

1 foX

BT R (A-2)
A+ (Y'/2)

Py
with Q the laser Rabi frequency, A the detuning of the laser
and

! 2
v =(
%)

The photon rate R, is mainly given by light scattered by
the ion or the apparatus and by black-counts.

4
= 1457

1f+1[9

2

6\ 3652 (&-3)
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Appendix B. Time-dependent mean photon rate

Phenomenologically we described the state changes of the ion
by the probability

Wpp (1) = e/ (B.1)
that a bright ion stays bright, and the probability
Wpp (1) = e~/ (B.2)

that a dark ion stays dark. As a consequence, the state
population Wy (Wp) of the bright (dark) state are determined
by the differential equations

) 1 1
W(t) = ——Wp (1) + —Wp (1),

(B.3)

TR (9))

. 1 1

Wp(t) = —Wp(t) — —Wp(). (B.4)

B (7))

For an initially bright ion we find the solution

WP () =B+ A-e ", (B.5)
WiB()=A—-A-e'", (B.6)
with A= TD/(TB + 7p), B=1-A and

T = 137p/(7p + 78) = At = Brp. The solution of an initially
dark ion is given by

WP (t)=B - B-e™'"", (B.7)

WP (ty=A + B - e, (B.8)

In contrast to the probability distributions Wz and Wpp the
state populations Wl(fB) (t) and WSB) (f) can be directly
observed experimentally. As a consequence, the photon rate
rg is given by

rg(t) = RgWEP (1) + Rp (B.9)
for an initially bright ion, and by
rp(t) = RgWEP) (1) + Rp (B.10)

for an initially dark ion, with the fluorescence rate Ry and the
background photon rate Rp. The average photon number of
an initially bright ion in the time interval #y — At < 1 < 1y is
therefore equal to

to
M) = [ @
10—At
= At(RpB + Rp) + RBAT(eA'/f - 1)6"0”
= a + be™/", (B.11)

Similar, we get for an initially dark ion

11

1o
p(19) = f | ndr
_

= At(RyB + Rp) — RyBr (4" — 1)e™0

=qa — ce ",

(B.12)

As a consequence, we get A/B = b/c and with B = 1 — A the
result A = (b/c)/(1 + b/c) used to determined A with the help
of the fit parameter b and c.
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