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Abstract
We report a proof-of-principle experimental demonstration of the quantum speed-up for learning
agents utilizing a small-scale quantum information processor based on radiofrequency-driven
trapped ions. The decision-making process of a quantum learning agentwithin the projective
simulation paradigm formachine learning is implemented in a systemof two qubits. The latter are
realized using hyperfine states of two frequency-addressed atomic ions exposed to a staticmagnetic
field gradient.We show that the deliberation time of this quantum learning agent is quadratically
improvedwith respect to comparable classical learning agents. The performance of this quantum-
enhanced learning agent highlights the potential of scalable quantumprocessors taking advantage of
machine learning.

1. Introduction

The past decade has seen the parallel advance of two research areas—quantum computation [1] and artificial
intelligence [2]—from abstract theory to practical applications and commercial use. Quantum computers,
operating on the basis of information coherently encoded in superpositions of states that could be considered
classical bit values, hold the promise of exploiting quantumadvantages to outperform classical algorithms, e.g.
for searching databases [3], factoring numbers [4], or even for precise parameter estimationwith quantum
metrology [5, 6]. At the same time, artificial intelligence andmachine learning have become integral parts of
modern automated devices using classical processors [7–10]. Despite this seemingly simultaneous emergence
and promise to shape future technological developments, the overlap between these areas still offers a number of
unexplored problems [11, 12]. It is hence of fundamental and practical interest to determine how quantum
information processing and autonomously learningmachines canmutually benefit from each other.

Within the area of artificial intelligence, a central component ofmodern applications is the learning
paradigmof an agent interactingwith an environment [2, 13, 14] illustrated infigure 1(a), which is usually
formalized as so-called reinforcement learning. This entails receiving perceptual input and being able to react to
it in different ways. The learning aspect ismanifest in the reinforcement of the connections between the inputs
and actions, where the correct association is (often implicitly) specified by a rewardmechanism, whichmay be
external to the agent. In this very general context, an approach to explore the intersection of quantum
computing and artificial intelligence is to equip autonomous learning agents with quantumprocessors for their

OPEN ACCESS

RECEIVED

23August 2018

REVISED

6November 2018

ACCEPTED FOR PUBLICATION

8November 2018

PUBLISHED

20December 2018

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2018 IOPPublishing Ltd

https://doi.org/10.1088/2058-9565/aaef5e
https://orcid.org/0000-0001-7257-7763
https://orcid.org/0000-0001-7257-7763
https://orcid.org/0000-0003-1950-8640
https://orcid.org/0000-0003-1950-8640
mailto:christof.wunderlich@uni-siegen.de
https://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/aaef5e&domain=pdf&date_stamp=2018-12-20
https://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/aaef5e&domain=pdf&date_stamp=2018-12-20
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


deliberation procedure9. That is, an agent chooses its reactions to perceptual input byway of quantum
algorithms or quantum randomwalks. The agent’s learning speed can then be quantified in terms of the average
number of interactions with the environment until targeted behavior (reactions triggering a reward) is
reproduced by the agentwith a desired efficiency. This learning speed cannot generically be improved by
incorporating quantum technologies into the agent’s design [17].

However, a recentmodel [20] for learning agents based on projective simulation (PS) [14] allows for a speed-
up in the agent’s deliberation time during each individual interaction. Theoretical work has shown that such a
quantum improvement in the reaction speed should be possible within the reflecting projective simulation
(RPS) variant of PS [20]. There, the desired actions of the agent are chosen according to a probability distribution
that can bemodified during the learning process. This is of particular relevance to adapt to rapidly changing
environments [20], as we shall elaborate on in the next section. For this task, the deliberation time of classical
RPS agents is proportional to the quantities 1/δ and 1/ò, where δ represents a spectral gap of aMarkov chain and
ò represents the probability to sample an action in a probability distribution. These characterize the time needed
to generate the specified distribution in the agent’s internalmemory and the time to sample a suitable (e.g.
rewarded rather than an unrewarded) action from it, respectively. A quantumRPS (Q-RPS) agent, in contrast, is
able to obtain such an action quadratically faster, i.e. within a time of the order 1 d as is shown in the next
section.

Here, we report on thefirst proof-of-principle experimental demonstration of a quantum-enhanced
reinforcement learning system, complementing recent experimental work in the context of (un)supervised
learning [21–23].We implement the deliberation process of an RPS learning agent in a systemof two qubits that
are encoded in the energy levels of one trapped atomic ion each.Within experimental uncertainties, our results
confirm the agent’s action output according to the desired distributions andwithin deliberation times that are
quadratically improvedwith respect to comparable classical agents. This laboratory demonstration of speeding
up a learning agent’s deliberation process can be seen as the first experiment combining novel concepts from
machine learningwith the potential of ion trap quantum computers where complete quantum algorithms have
been demonstrated [24–27] and feasible concepts for scaling up [28–30] are vigorously pursued.

2. Theoretical framework of RPS

Ageneric picture formodeling autonomous learning scenarios is that of repeated rounds of interaction between
an agent and its environment. In each round the agent receives perceptual input (‘percepts’) from the
environment, processes the input using an internal deliberationmechanism, andfinally acts upon (or reacts to)

Figure 1. Learning agent and quantum reflecting projective simulation (Q-RPS). (a) Learning agents receive perceptual input
(‘percepts’) from and act on the environment. The projective simulation (PS) decision-making process draws from the agent’s
memory and can bemodeled as a randomwalk in a clip network, which, in turn, is represented by a stochasticmatrixP. Here the clips
represent the elementary patches of episodicmemory of prior experiences. (b)Q-RPS agents enhance the relative probability of
(desired) actions (green columns) compared to other clips (gray) thatmay include undesired actions or percepts (blue)within the
stationary distribution ofP before sampling, achieving a quadratic speed-upwith respect to classical RPS agents.

9
Other approaches that wewill not further discuss here concern among othersmodels where internal processes are sped up by annealing

processes [15, 16]; or where the environment, and the agent’s interactionwith itmay be of quantummechanical nature aswell [17–19].
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the environment, i.e. performs an ‘action’ [14]. Depending on the reward system in place and the given percept,
such actionsmay be rewarded or not, which leads the agent to update its deliberation process, the agent learns.

Within the PS [14] paradigm for learning agents, the decision-making procedure is cast as a (physically
motivated) stochastic diffusion process within an episodic compositionalmemory, that is, a (classical or
quantum) randomwalk in a representation of the agent’smemory containing the interaction history. Onemay
think of the episodic compositionalmemory as a network of clips that can correspond to remembered percepts,
remembered actions, or combinations thereof. That is, the clips represent the elementary patches of episodic
memory.Mathematically, this clip network is described by a stochasticmatrix (defining aMarkov chain)
P pij= ( ), where the pijwith p0 1ij  and p 1i ijå = represent transition probabilities between the clips

labeled i and jwith i j N, 1, 2, ,Î ¼{ }. The learning process is implemented through an update of theN×N
matrix P, which, in turn, serves as a basis for the randomwalks in the clip network. Different types of PS agents
vary in their deliberationmechanisms, update rules, and other specifications.

In particular, onemay distinguish between PS agents based on ‘hitting’ and ‘mixing’. For the former type of
PS agent, a randomwalk could, for instance, start from a clip c1 called by the initially received percept. Thefirst
‘step’ of the randomwalk then corresponds to a transition to clips cjwith probabilities p1j. The agent then
samples from the resulting distribution p j j1{ } . If such a sample provides an action, for instance, if the clip ck is

‘hit’, this action is selected as output, otherwise thewalk continues on from the clip ck. An advanced variant of
the PSmodel based on ‘mixing’ is RPS [20]. There, theMarkov chain is first ‘mixed’, that is, an appropriate
number10 of steps are applied until the stationary distribution is attained (approximately), before a sample is
taken. This, or other implementations of randomwalks in the clip network provide the basis for the PS
framework for learning. The classical PS framework can be used to solve standard textbook problems in
reinforcement learning [31–33], and has recently been applied in advanced robotics [34], adaptive quantum
computation [35], as well as in themachine-generated design of quantum experiments [36].

Here, we focus onRPS agents, where the deliberation process based onmixing allows for a speed-up of
Q-RPS agents with respect to their classical counterparts [20]. In contrast to basic hitting-based PS agents, the
clip network of RPS agents is structured into several sub-networks, one for each percept clip, and eachwith its
own stochasticmatrix P. In addition to being stochastic, thesematrices specifyMarkov chains which are ergodic
[20], which ensures that theMarkov chain in question has a unique stationary distribution, i.e. a unique
eigenvectorawith eigenvalue+1, Pa a= . Starting from any initial state, continued application ofP (or its
equivalent in the quantized version)mixes theMarkov chain, leaving the system in the stationary state.

As part of their deliberation process, RPS agents generate stationary distributions over their clip space, as
specified byP, which is updated as the agent learns. These distributions have support over thewhole sub-
network clip space, and additional specifiers—flags—are used to ensure an output from a desired sub-set of
clips. For instance, standard agents are presumed to output actions only, inwhich case only the actions are
flagged using standard emoticons [14]. This ensures that an actionwill be output, whilemaintaining the relative
probabilities of the actions. Put simply, flags provide amechanism that can be used as a short-termmemory, or
tomark actions, to (temporarily) store additional information about the clip network besides that contained in
theMarkov chain. The samemechanismofflags can also be used to eliminate iterated attempts of actionswhich
did not yield rewards in recent time-steps. This leads to amore efficient exploration of correct behavior.

In the quantumversion of RPS, each clip ci is represented by a basis vector iñ∣ in aHilbert space. In the
most general case, themixing process is then realized by a diffusion process on two copies of the originalHilbert
space. On the doubled space Ä a unitary operatorW(P) (called the Szegedywalk operator [37, 38]) and a
quantum state a¢ñ∣ withW P a a¢ñ = ¢ñ( )∣ ∣ take the roles of the classical objectsP anda. BothW(P) and a¢ñ∣
depend on a set of unitariesUi on that act asU p j0i j ijñ = å ñ∣ ∣ for some reference state 0 ñ Î∣ . Themore

intricate construction ofW(P) is given in detail in [39].
The feature of the quantum implementation of RPS that is crucial for us here is an amplitude amplification

similar toGrover’s algorithm [3], which incorporates themixing of theMarkov chain and allows outputting
flagged actions after an average of O 1 ( ) calls toW(P), where ò is the probability of sampling an action from
the stationary distribution. The algorithm achieving this is structured as follows. After an initialization stage
where a¢ñ∣ is prepared, a number of diffusion steps are carried out. Each such step consists of two parts. Thefirst
part is a reflection over the states corresponding to actions in the first copy of. In the second part, an
approximate reflection over the state a¢ñ∣ , themixing, is carried out [20]. This second step involves O 1 d( )
calls toW(P).

The two-part diffusion steps are repeated O 1 ( ) times before a sample is taken from the resulting state by
measuring in the basis i i N1, ,ñ = ¼{∣ } . If an action is sampled, the algorithm concludes and that action is chosen as
output. Otherwise, all steps are repeated. Since the algorithm amplifies the probability of sampling an action

10
Themixing time depends on the spectral gap δ of theMarkov chain P, i.e. the difference between the two largest eigenvalues ofP[20].
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(almost) to unity, carrying out the deliberation procedure with the help of such a Szegedywalk hence requires an
average of O 1 d( ) calls toW(P). In comparison, a classical RPS agentwould require an average of O 1 d( )
applications ofP tomix theMarkov chain, and an average of O 1 ( ) samples tofind an action.Q-RPS agents
could hence achieve a quadratic speed-up in their reaction time.

Here, it should be noted that, its elegance notwithstanding, the construction of the approximate reflection
for general RPS networks is demanding for current quantum computational architectures.Most notably, this is
due to the requirement of two copies of, onwhich frequently updated11 coherent conditional operations need
to be carried out [39, 41, 42]. However, for the special case of rank-oneMarkov chains P, the entire chain can be
represented on one copy of by a single unitaryU U iP i= " , since all columns ofP are identical. Conceptually,
this simplification corresponds to a situationwhere each percept-specific clip network contains only actions and
theMarkov chain ismixed in one step ( 1d = ). In such a case one usesflags tomark desired actions.
Interestingly, theseminor alterations also allow to establish a one-to-one correspondencewith the hitting-based
basic PS using two-layered networks, intowhich all standard tabular reinforcement learningmodels such as
Q-learning or SARSA can be subsumedwhen the update, and transition rules have been appropriately amended
[2]. In particular, basic PS using a two-layered network is already able to solve interesting classical tasks such as
themountain-car problem, grid-world, andmanymore [31–36].

Let us nowdiscuss how the algorithm above can be performed for the rank-one case with the flagging
mechanism in place. First, we restrict to be the subspace of theflagged actions only, assuming that there are
n N of these, andwe denote the corresponding probabilities within the stationary distribution by a a, , n1 ¼ .
In the initialization stage, the state a ii N i1, ,añ = å ñ= ¼∣ ∣ is prepared. Then, an optimal number of k diffusion
steps [3] is carried out, where

k round
4

1

2
, 1



p
= -

⎛
⎝⎜

⎞
⎠⎟ ( )

and ai n i1, , = å = ¼ is the probability to sample aflagged action from the stationary distribution.Within the
diffusion steps, the reflections are performed only over allflagged actions, i.e.

i iref 2 . 2
i

n

1

 å= ñá -
=

∣ ∣ ( )

In the rank-one case, the reflections over the stationary distributionα becomes an exact reflection

ref 2 3a a= ñá -a ∣ ∣ ( )

and can be carried out on one copy of [39]. After the diffusion steps, a sample is taken and the agent checks if
the obtained action ismarkedwith aflag. If this is the case, the action is chosen as output, otherwise the
algorithm starts anew.

While a classical RPS agents requires an average of O 1 ( ) samples until obtaining aflagged action, this
number reduces to O 1 ( ) forQ-RPS agents. This quantum advantage is particularly pronouncedwhen the
overall number of actions is very large compared to n and the environment is unfamiliar to the agent or has
recently changed its rewarding pattern, inwhich case òmay be very small. Given some time, both agents learn to
associate rewarded actions with a given percept, suitably add or remove flags, and adaptP (and by extensiona).
In the short run, however, classical agentsmay be slow to respond and the advantage of aQ-RPS agent becomes
apparent. Despite the remarkable simplification of the algorithm for the rank-one case withflags, the quadratic
speed-up is hence preserved12. This simplification also leads to a reduction in experimental complexity, in terms
of the required number of two-qubit gates.

3. Experimental implementation of rank-one RPS

3.1.Quantumalgorithm
The proof-of-principle experiment thatwe report in this paper experimentally demonstrates the speed-up of
quantum-enhanced learning agents. That is, we are able to empirically confirmboth the quadratically improved
scaling of O 1 ( ), and the correct output according to the tail of the stationary distribution. Here, ò denotes
the initial probability of finding aflagged actionwithin the stationary distribution aia = { } for the average
number of calls of the diffusion operator before sampling one of the desired actions. The tail is defined as thefirst
n components ofa. By a correct output according to the tail of the stationary distribution, wemean that

11
Updating of the clip networkmay include, e.g.modifications of theweights associated to the edges of the graph corresponding to the clip

network in such away that weights of connections between percepts and rewarded actions are increased. In addition, updatesmay involve
the addition or deletion of clips, as well asmore sophisticatedmechanisms such as glow, generalization, etc. see [20, 31, 40].
12

Since 1d = , the speed-up is only possible, and is achieved for, the quantity ò.

4

QuantumSci. Technol. 4 (2019) 015014 T Sriarunothai et al



a a b b j k n, 1, ,j k j k= " Î ¼{ }, where bj denotes the final probability that the agent obtains the flagged action
labeled j. Note that theQ-RPS algorithm enhances the overall probability of obtaining aflagged action such that

b a , 4
i

n

i
i

n

i
1 1

 å åº > =
= =

˜ ( )

whilstmaintaining the relative probabilities of the flagged actions according to the tail ofa, as illustrated in
figure 1(b).

For the implementationwe hence need at least a three-dimensionalHilbert space that we realize in our
experiment using two qubits encoded in the energy levels of two trapped ions (see the experimental setup
section): two states to represent two differentflagged actions (represented in our experiment by 00ñ∣ and 01ñ∣ ),
and at least one additional state for all non-flagged actions ( 10ñ∣ and 11ñ∣ in our experiment). The preparation of
the stationary state is implemented by

U R R, 00 ,
2

,
2

00 , 5P 1 2 1 1 2 2a q q q
p

q
p

ñ = ñ = ñ∣ ( )∣ ( ) ( )∣ ( )

where R ,j q f( ) is a single-qubit rotation on qubit j, i.e.

R X Y, exp i
2

cos sin . 6j j jq f
q

f f= -
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

Here,Xj,Yj, andZj denote the Pauli operators of qubit j. The total probability a a00 01 = + for aflagged action
within the stationary distribution is then determined by 1q via

cos 2 , 72
1 q= ( ) ( )

whereas 2q determines the relative probabilities of obtaining one of the flagged actions via

a cos 2 . 800
2

2 q= ( ) ( )

The reflection over the flagged actions ref is here given by aZ rotation, defined by R Zexp ij z j, 2
q = - q⎡⎣ ⎤⎦( ) ,

with rotation angle p- for thefirst qubit,

R Zref exp i
2

. 9z1, 1 p
p

= - =
⎡
⎣⎢

⎤
⎦⎥( ) ( )

The reflection over the stationary distribution can be performed by a combination of single-qubit rotations
determined by 1q and 2q and aCNOTgate given by

R R U R Rref ,
2 2

,
2

,
2 2

,
2

, 101 1 2 2 CNOT 1 1 2 2q p
p

q
p p

q p
p

q
p p

= - + - - - -a ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

which can be understood as two calls toUP (once in terms ofUP
†) supplemented byfixed single-qubit operations

[39]. The total gate sequence for a single diffusion step (consisting of a reflection over the flagged actions
followed by a reflection over the stationary distribution) can hence be decomposed into single-qubit rotations
andCNOTgates and is shown infigure 2. The speed-up of the rank-oneQ-RPS algorithmwith respect to a
classical RPS agentmanifests in terms of a quadratically smaller average number of calls toUP (or, equivalently,
to the diffusion operator D ref ref= a )until aflagged action is sampled. Since the final probability of obtaining
a desired action is bi n i1, , º å = ¼˜ , we require 1 ̃ samples on average, each of which is preceded by the initial
preparation of añ∣ and k diffusion steps. The average number of uses ofUP to sample correctly is hence

C k2 1 , 11 = +( ( ) ) ˜ ( )

whichwe refer to as ‘cost’ in this paper. Inwhat follows, it is this functional relationship betweenC and ò that we
put to the test, alongwith the predicted ratio a a00 01of occurrence of the twoflagged actions.

3.2. The experimental setup
Two 171Yb+ ions are confined in a linear Paul trapwith axial and radial trap frequencies of 2 117 kHzp ´ and
2 590 kHzp ´ , respectively. After Doppler cooling, the two ions form a linear Coulomb crystal, which is
exposed to a staticmagnetic field gradient of 19Tm−1, generated by a pair of permanentmagnets. The ion–ion
spacing in this configuration is approximately 10 μm.Magnetic gradient induced coupling (MAGIC) between
ions results in an adjustable qubit interactionmediated by the common vibrationalmodes of theCoulomb
crystal [43]. In addition, qubit resonances are individually shifted as a result of this gradient and become position
dependent. Thismakes the qubits distinguishable and addressable by their frequency of resonant excitation. The
addressing frequency separation for this two-ion system is about 3.7MHz.All coherent operations are
performed using radio frequency (RF) radiation near 12.6GHz,matching the respective qubit resonances [44].
The RF power is carefully adjusted for each ion in order to achieve an equal Rabi frequency of 20.92(3) kHz. A
more detailed description of the experimental setup is given in [26, 43, 45].
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The qubits are encoded in the hyperfinemanifold of each ion’s ground state, representing an effective spin 1/
2 system. The qubit states 0ñ∣ and 1ñ∣ are represented by the energy levels S F, 02

1 2 = ñ∣ and
S F m, 1, 1F

2
1 2 = = + ñ∣ , respectively. The ions areDoppler cooled on the resonance S F, 12

1 2 = ñ∣
↔ P F, 02

1 2 = ñ∣ with laser light near 369nm.Optical pumping into long-livedmeta-stable states is prevented
using laser light near 935 and 638nm. The vibrational excitation of theDoppler cooled ions is further reduced
by employing RF sideband cooling for both the center ofmassmode and the stretchmode [46]. This leads to a
mean vibrational quantumnumber of n 5á ñ for bothmodes. The ions are then initialized in the qubit state 0ñ∣
by state selective optical pumpingwith a 2.1GHz blue-shiftedDoppler-cooling laser on the

S F, 12
1 2 = ñ∣ ↔ P F, 12

1 2 = ñ∣ resonance.

3.3. State preparation, conditional dynamics, and read-out
The desired qubit states are prepared by applying anRFpulse resulting in a coherent qubit rotationwith

precisely defined rotation angle and phase as given by (6)–(8).We replace Rz 2

p( ) by R R R, , 0 ,
2 2 2 2

3

2

p p p p p( ) ( ) ( )
and Rz 2

- p( )by R R R, , ,
2 2 2 2

3

2
pp p p p p( ) ( ) ( ). The required number of diffusion steps is then applied to both

qubits, using appropriate single-qubit rotations and a two-qubit ZZ-interaction given by

U Z Zexp i
2

, 12ZZ 1 2q
q

=
⎡
⎣⎢

⎤
⎦⎥( ) ( )

which is directly realizable withMAGIC [43]. ACNOT gate (UCNOT) can then be performed via

U R U R R Re
2

,
3

2 2 2
, 0

2 2
.z zCNOT

i
2 ZZ 2 2, 1,4
p p p p p p

= -- p ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

The required number of single qubit gates is optimized by combining appropriate single qubit rotations together
from ref and refa (see figure 2). Thus, we can simplify the algorithm to

D R R R R U R R,
2

,
2 2 2 2

,
2

,
2

, 13z z2 2 1 1 2, 1, ZZ 2 2 1 1q
p

q
p p p p

q
p

q
p

= - -⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

as shown infigure 3.
During the evolution time of 4.24ms forUZZ in each diffusion step both qubits are protected from

decoherence by applying universally robust (UR) dynamical decoupling (DD) pulses [47]. A set of ten (x=10)
UR14 (N= 14)RFπ-pulses, equaling a total of 140 pulses, is applied. Each set is comprised of 14 error canceling
pulses (figure 3)with appropriately chosen phasef:

0,
6

7
,

4

7
,

8

7
,

4

7
,

6

7
, 0, 0,

6

7
,

4

7
,

8

7
,

4

7
,

6

7
, 0 .

p p p p p p p p p p⎜ ⎟⎛
⎝

⎞
⎠

Since the phases of theπ-pulses are symmetrically arranged in time, only the first seven pulses are shown
infigure 3. The last pulse is also shown to visualize the spacing of these pulses with respect to the start and end of
evolution time, compared to the intermediate pulses. Themaximum interaction time of 30ms required to
realize the deliberation algorithm (corresponding to 7 diffusion steps) is 60 times longer than the qubit

Figure 2.Quantum circuit forQ-RPS. A rank-oneQ-RPS is implemented using two qubits. The diffusion step consisting of reflections
over theflagged actions and the stationary distribution (shown once each) is repeated k times, where k is given by (1) in section 2. The
specific pulse sequence implementing this circuit is explained in section 3.2.
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coherence time. Such a long coherent interaction time is accomplished by theDDpulses applied to each qubit
simultaneously.

Finally, projectivemeasurements on both qubits are performed in the computational basis 0 , 1ñ ñ{∣ ∣ }by
scattering laser light near 369 nmon the S F, 12

1 2 = ñ∣ ↔ P F, 02
1 2 = ñ∣ transition, and detecting spatially

resolved resonance fluorescence using an electronmultiplying charge coupled device to determine the relative
frequencies b b b b, , ,00 01 10 11 for obtaining the states 00ñ∣ , 01ñ∣ , 10ñ∣ , and 11ñ∣ , respectively. Two thresholds are
used to distinguish between dark and bright states of the ions, thus discarding 10%of allmeasurements as
ambiguous events with a photon count that lies in the region of two partially overlapping Poissonian
distributions representing the dark and bright states of the ions [45, 48].

4. Experimental results

As discussed above, our goal is to test the two characteristic features of rank-oneQ-RPS: (i) the scaling of the
average costCwith ò, and (ii) the sampling ratio for the differentflagged actions.

Therefore, ourfirst set ofmeasurements studies the behavior of the costC as a function of the total initial
probability ò. The second set ofmeasurements studies the behavior of the output probability ratio r b bf 00 01=
as a function of input probability ratio r a ai 00 01= .

For the former, a series ofmeasurements is performed for different values of ò corresponding to k=1 to
k=7 diffusion steps after the initial state preparation (table 1). To obtain the cost C k2 1 = +( ( ) ) ˜ , where

b b00 01 = +˜ , wemeasure the probabilities b00 and b01 after k diffusion steps and repeat the experiment 1600
times forfixed ò. The average cost is then plotted against ò as shown infigure 4. The algorithm complexity is
defined as the number of computational steps (equivalently, the number of calls toUP) until theflagged action is
sampled. To describe the algorithm complexity, the number of operations can be expressed as O  x-( ). Ideally,
the RPS gives 1x = whereas theQ-RPS gives 0.5x = . The experimental data shows that the cost decreases with
òwhere 0.57 5x = ( ). This is in good agreementwith the behavior expected for the ideal Q-RPS algorithm. In the
range of chosen probabilities ò, the experimental result ofQ-RPS shows improved scaling as compared to the

Figure 3.Experimental sequence forQ-RPS. RF1 andRF2 each indicate a time axis for a qubit. The qubits are prepared in the desired
input states using single-qubit rotations implemented by applying RF pulses. For each RFpulse, the two parameters within the
parentheses represent the specific rotation angle and phase according to (6)–(8). Also, dynamical decoupling (DD) during conditional
evolutionU 2zz p( ) (indicated by a green box), is implemented usingRF pulses (indicated in yellow). Ten sets of 14 pulses each (UR14)
[47] are applied during the evolution time 4.24t = mswith a J-coupling between the two ions of 2 59 Hzp ´ . The diffusion step is
repeated k times according to (1) in section 2. Laser light near 369 nm is used for cooling and to initialize the ions in the qubit state

S F0 , 02
1 2ñ º = ñ∣ ∣ . At the end of the coherentmanipulation, laser light is used again for state selective detection and also for

Doppler cooling. These process durations are: 30ms forDoppler cooling, 100ms for sideband cooling on the center-of-massmode,
100ms for sideband cooling on the stretchmode, 0.25ms for initialization in state 0ñ∣ of the ions, and 2ms for detection.
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expected classical RPS, and clearly outperforms the classical RPS, as shown infigure 4. The deviation from the
ideal behavior is attributed to a small detuning of the RF pulses implementing coherent operations, as we discuss
in section 4.1.

For the second set ofmeasurements, we select calculated probabilities a00 and a01 in order to obtain different
values of the input ratio r a ai 00 01= between 0 and 2, whilst keeping k ( ) in a range between k=1 and k=3
(table 2). For these probabilities a00 and a01, the corresponding rotation angles 1q and 2q of RF pulses used for
preparation are extracted using (7) and (8).We then carry out theQ-RPS algorithm for the specific choices of k
and repeat it 1600 times to estimate the probabilities b00 and b01.Wefinally obtain the output ratio r b bf 00 01= ,
which is plotted against the input ratio infigure 5. The experimental data follows a straight linewith a small
offset from the ideal behavior r r 1f i = . Therefore, the ratio of the number of occurrences of the two actions
obtained at the end of the deliberation process ismaintainedwith respect to the relative probabilities of the
initial stationary distribution.

The slopes of the twofitted linear functions shown infigure 5 agreewithin their respective error showing
that the deviation of the output ratio from the ideal result is independent of the number of diffusion steps. In
addition, this indicates that this deviation is not caused by the quantumalgorithm itself, but by the initial state
preparation and/or by thefinalmeasurement process where such a deviation can be caused by an asymmetry in
the detection fidelity (see section 4.1). Indeed, the observed deviation is well explained by a typical asymmetry in

Table 1.Experimentally realized success probabilities. Initial theoretical probabilities, ò, offinding a flagged actionwithin the
stationary distribution for various diffusion steps are shown. Success probabilities (̃ ), that are theoretically calculated and
experimentallymeasured, for diffusion steps k=1–7 are also shown.

Theory Theory Experiment

k a00 a01 ò b00 b01 ̃ b00 b01 ̃

1 0.1371 0.1371 0.2742 0.4966 0.4966 0.9932 0.449(15) 0.440(15) 0.89(2)
2 0.0493 0.0493 0.0987 0.4996 0.4996 0.9993 0.347(15) 0.353(15) 0.70(2)
3 0.0252 0.0252 0.0504 0.4999 0.4999 0.9998 0.438(16) 0.334(15) 0.77(2)
4 0.0152 0.0152 0.0305 0.5000 0.5000 1.0000 0.422(15) 0.336(15) 0.76(2)
5 0.0102 0.0102 0.0204 0.5000 0.5000 1.0000 0.407(17) 0.331(16) 0.74(2)
6 0.0073 0.0073 0.0146 0.5000 0.5000 1.0000 0.431(17) 0.324(16) 0.76(2)
7 0.0055 0.0055 0.0110 0.5000 0.5000 1.0000 0.365(15) 0.299(14) 0.66(2)

Figure 4. Scaling behavior of the learning agent’s cost employingQ-RPS andRPS. After the preparation of añ∣ , k diffusion steps are
applied before an action is sampled. This procedure is repeated until aflagged action is obtained, accumulating a certain costC, whose
average is shown on the vertical axis.Measurements are performed for different values of ò corresponding to k=1 to k=7 diffusion
steps. The dashed black line and the solid blue line represent the behavior expected for idealQ-RPS ( 0.5- ) and ideal classical RPS
( 1- ), respectively. Thefit to the experimental data confirms that the scaling behavior follows a 0.57- behavior, and thus is consistent
withQ-RPS. The data show that the experimentalQ-RPS outperforms the classical RPSwithin the range of ò chosen in the experiment.
Error bars represent the statistical errors.
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the detection fidelity of 3% as encountered in themeasurements presented here. This implies reliability of the
quantumalgorithm also for a larger number of diffusion steps.

4.1. Interpretational considerations
In this section, we discuss deviations of the experimental data from idealized theory predictions. In particular,
for the chosen values of ò and the corresponding optimal k ( ), it is expected that the probability of obtaining a
flagged action is close to 100%.However, the success probability in our experiment lies between 66% (for k= 7)
and 88% (for k= 1). Inwhat follows, we discuss several reasons for this. First, we consider in detail experimental
imperfections that affect the scaling of costCwith ò as shown infigure 4. Then, we discuss how the input and
output ratios (figure 5), ri and rf, are affected by an imbalanced detection efficiency for both qubit states. In both

Table 2. Input and output distributions. Input and output ratios, ri and rf respectively, of the
twoflagged actions represented by the states 00ñ∣ and 01ñ∣ for diffusion steps k=1 and
k=3 are shown.

Theory Experiment

k a00 a01 ri b00 b01 rf

1 0.002 71 0.271 44 0.01 0.061(7) 0.809(12) 0.075(9)
1 0.072 57 0.201 59 0.36 0.290(14) 0.583(15) 0.50(3)
1 0.113 83 0.160 32 0.71 0.415(15) 0.466(15) 0.89(4)
1 0.141 07 0.133 09 1.06 0.488(15) 0.389(15) 1.25(6)
1 0.160 40 0.113 76 1.41 0.519(13) 0.351(12) 1.48(6)
1 0.174 82 0.099 33 1.76 0.566(15) 0.305(14) 1.85(10)
1 0.137 08 0.137 08 1.00 0.468(16) 0.401(16) 1.17(6)

3 0.004 58 0.045 78 0.10 0.127(10) 0.718(14) 0.176(14)
3 0.016 33 0.034 02 0.48 0.301(15) 0.518(16) 0.58(3)
3 0.023 28 0.027 07 0.86 0.442(16) 0.451(16) 0.98(5)
3 0.027 88 0.022 48 1.24 0.510(16) 0.354(15) 1.44(8)
3 0.031 14 0.019 22 1.62 0.551(16) 0.305(14) 1.81(10)
3 0.033 57 0.016 79 2.00 0.586(15) 0.268(13) 2.19(12)

Figure 5.Output distribution. A comparison of the output ratio of twoflagged actions at the end of the algorithmwith the
corresponding input ratio is shown.Measurements are performedwith k=1 (red square) and k=3 (blue circle) diffusion steps. The
black dashed line shows the behavior of the idealQ-RPS. The red and blue dashed lines, each representing a linear fit to the
corresponding set of data, confirm that the initial probability ratio ismaintained. Error bars represent statistical errors.
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cases the observed deviations from the ideal results are quantitively explained by numerically simulating the
quantumalgorithm taking into account experimental imperfections.

4.1.1. Scaling of cost C
Even in an ideal scenario without noise or experimental imperfections the success probability ̃ , as defined in
(4), after k diffusion steps is usually not equal to unity, and depends on the specific value of ò. This behavior
originates from the step-wise increase of the number of diffusion steps k round 4 1

2
p= -( ( ) ) in the

algorithm. The success probability is hence only 100%, if k is an integer without rounding. The change of the
ideal success probability with deviations of ò from such specific values is largest for small numbers of diffusion
steps (e.g. k= 1) and can drop down to 82% (neglecting the cases where it is not advantageous to use a quantum
algorithm at all). For larger numbers of diffusion steps, the exact value of ò does not play an important role any
more for the ideal success probability provided that the correct number of diffusion steps is chosen. For
example, for k=6, the ideal success probability is larger than 98% independently of the exact value of ò.
Throughout this paper, we have chosen ò in such away, that 4 1

2
p -( ( ) ) (see (1)) is always close to an integer

(see table 1), such that the deviation from a 100% success probability due to the theoretically chosen ò is
negligible compared to other error sources.

However, in a real experiment, the initial state, and therefore ò, can only be preparedwith a certain accuracy.
This can lead to an inaccurate estimation of the optimal number of diffusion steps. As opposed to the ideal case,
an assumed accuracy of 1%  for the preparation only has a small effect on the success probability ̃ (drop of
less than 5%) for 0.01  , corresponding to k 3 . However, when ò does not fulfill the aforementioned
condition and approaches 0.01» from above, corresponding to k=6, then the success probability drops down
to 70% =˜ due to a non-optimal choice of k.

The preparation accuracy depends on the detuning wD of the RF pulses for single-qubit rotations aswell as
on the uncertaintyΔΩ in the determination of the Rabi frequencyΩ. The calibration of our experiment revealed
Δω/Ω<0.05 andΔΩ/Ω=0.0015 leading to an error in ò of 2.5 10 3 ´ - and a decrease of the success
probability ̃ of less than 0.04. The detuningΔωand the uncertainty of the Rabi frequencyΔΩnot only
influence the state preparation at the beginning of the quantumalgorithm, but also itsfidelity, as is detailed in
the next paragraph.

To prevent decoherence during conditional evolution, we use 140RFπ-pulses per diffusion step and ion.
Therefore, already a small detuning influences thefidelity of the algorithm. Consequently, the error induced by
detuning is identified as themain error source leading, for example, to 0.77 »˜ for k=6 andΔω/Ω=−0.04.
This error ismuch larger than the error caused by dephasing (that is still present after DD is applied), or the
detection error. In a separatemeasurement, we determined an exponential dephasing rate of γτ≈1/14 for a
single diffusion step of duration τ≈4ms, whichwould lead to 0.90 »˜ for k=6.Here, γ indicates the
experimentally diagnosed rate of dephasing, and τ is the time of coherent evolution. The influence of the
detuning on the cost of our algorithm is shown infigure 6 for different detunings. Here, we simulated the
complete quantum algorithm including the experimentally determined dephasing and detection errors for

0, 0.04, 0.08wD W Î - -{ }. The experimental data is consistent with an average negative detuning ofΔω/

Ω=−0.04.Note that the detuning not only influences the single-qubit rotations that are an integral part of the
quantumalgorithm, but also leads to errors during the conditional evolutionwhenDDpulses are applied.

4.1.2. Input and output ratios.
In the ideal algorithm, the output ratio r b bf 00 01= of the twoflagged actions represented by the states 00ñ∣ and
01ñ∣ at the end of the algorithm equals the input ratio ri. However, in the experiment we have observed deviations
from r r 1f i = . During themeasurements for the investigation of the scaling behavior (figure 4), wefixed ri=1.
The observed output ratios are varying by r r0.98 1.33f i  . That is, the probability b00 to obtain the state 00ñ∣
is increasedwith respect to b01. Also during themeasurement testing the output ratio, we observe that the output
ratios are larger than the input ratios.

An asymmetric detection error could be the cause for this observation. Typical errors in our experiment are
given by the probability to detect a bright ion ( 1ñ∣ )with a probability of d 0.06B = as dark, and a dark ion ( 0ñ∣ )
with a probability of d 0.03D = as bright. Infigure 7we compare themeasured output ratios with the calculated
output ratios assuming the abovementioned detection errors and twodifferent detuning
errors, 0.015, 0.04wD W Î - -{ }.

When the experimentally determined detection error is taken into account, the simulationwith detuning
error 0.04wD W = - does not describe the experimental data well for both one diffusion step and three
diffusion steps. The experimental data agree well with a simulation using an average detuning error

0.015wD W = - . This indicates that the detuning during thesemeasurements was kept around
0.015wD W = - leading to an average success probability of 85% =˜ for k=3 diffusion steps compared to
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77% =˜ for k=3 during themeasurements investigating the scaling (see table 1). In addition, errors in the
preparation of the input states play a role, especially when preparing very large or very small ratios leading to
either a00 or a01 being close to the preparation accuracy of 2.5 10 3 ´ - .

Figure 6.Detuning affecting scaling costC. The influence of the detuning of the RF pulses on the fidelity of theQ-RPS algorithm is
shown for three different values of the relative detuning wD W. Blackmarkers indicate the results of numerical simulations of the
completeQ-RPS algorithm taking different values of the relative detuning wD W into account.Most of the experimental data (red
circles) lie close to a relative detuning of 0.04wD W = - .

Figure 7. Imbalanced detection. Themeasured values (red squares and blue circles) of the input and output ratios are compared to
simulations (solid and dashed–dotted black lines) of theQ-RPS algorithm taking into account the experimentally determined
detection error and detuning errors. The solid line corresponds to an expected output ratio taking into account an unbalanced
detection error where d 0.06B = for bright ions and d 0.03D = for dark ions and detuning error 0.04wD W = - . The dashed–
dotted line represents the same detection error and a detuning error of−0.015.
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5. Conclusion

Wehave investigated a quantum-enhanced deliberation process of a learning agent implemented in an ion trap
quantumprocessor. Our approach is centered on the PS [14]model for reinforcement learning.Within this
paradigm, the decision-making procedure is cast as a stochastic diffusion process, that is, a (classical or
quantum) randomwalk in a representation of the agent’smemory.

The classical PS framework can be used to solve standard textbook problems in reinforcement learning
[31–33], and has recently been applied in advanced robotics [34], adaptive quantum computation [35], as well as
in themachine-generated design of quantum experiments [36].We have focused on reflecting PS [20], an
advanced variant of the PSmodel based on ‘mixing’, where the deliberation process allows for a quantum speed-
up ofQ-RPS agents with respect to their classical counterparts. In particular, we have considered the interesting
special case of rank-oneQ-RPS. This provides the advantage of the speed-up offered by themixing-based
approach, but is also in one-to-one correspondence with the hitting-based basic PS using two-layered networks,
which has been applied in classical task environments [31–36]. In addition, rank-oneQ-RPS can be used to
encode all tabular reinforcement learningmodels includingQ-Learning and SARSAby appropriately amending
the update and transition rules [2].

In a proof-of-principle experimental demonstration, we verify that the deliberation process of the quantum
learning agent is quadratically faster compared to that of a classical learning agent. The experimental
uncertainties in the reported results, which are in excellent agreementwith a detailedmodel, do not interfere
with this genuine quantum advantage in the agent’s deliberation time.We achieve results for the costC for up to
7 diffusion steps corresponding to an initial probability ò=0.01 to choose aflagged action. In this sense, our
experimental realization of a rank-oneQ-RPS decision-making algorithm,which differs from standard
amplitude amplification already due to the reflection over the stationary (rather than a uniform) distribution,
also provides a comprehensive test of the scaling behavior that goes beyond previous experiments [49–51],
where standard amplitude amplification based on single diffusion steps has been carried out.

The systematic variation of the ratio ri between the input probabilities, a00 and a01 forflagged actions and the
measurement of the ratio rf between the learning agent’s output probabilities, b00 and b01 as a function of ri
shows that the quantumalgorithm is reliable independent of the number of diffusion steps.

This experiment highlights the potential of a quantum computer in the field of quantum enhanced learning
and artificial intelligence. A practical advantage, of course, will become evident once larger percept spaces and
general rank-NQ-RPS are employed. Such extensions are, from the theory side, unproblematic given that the
modularized nature of the algorithmmakes it scalable, following [39]. An experimental realization of such large-
scale quantum enhanced learningwill be feasible with the implementation of scalable quantum computer
architectures.Meanwhile, all essential elements ofQ-RPS have been successfully demonstrated in the proof-of-
principle experiment reported here.
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