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We present schemes to prepare two-dimensional cluster states �H. J. Briegel and R. Raussendorf, Phys. Rev.
Lett. 86, 910 �2001�� with atomic ions confined in a microstructured linear ion trap and coupled by an
engineered spin-spin interaction. In particular, we show how to prepare a n�2 cluster state by creating a linear
cluster state and adding third-neighbor entanglement using selective recoupling techniques. The scheme is
based on the capabilities provided by segmented linear Paul traps to confine ions in local potential wells and
to separate and transport ions between these wells. Furthermore, we consider creating three- and four-qubit
cluster states by engineering the coupling matrix such that through the periodicity of the time evolution
unwanted couplings are canceled. All entangling operations are achieved by switching of voltages and currents
and do not require interaction with laser light.
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I. INTRODUCTION

Cluster states �1� are the physical resource needed for a
one-way quantum computer �2,3�—a scheme for
measurement-based quantum computation �4�. It has been
shown that the one-way quantum computer provides a uni-
versal set of quantum gates. Furthermore, cluster states can
be used to efficiently simulate quantum circuits. On the other
hand, some quantum circuits based on the cluster-state model
cannot be interpreted as a network of gates such as the bit-
reversal gate �5�.

Not only are cluster states a central ingredient for
measurement-based quantum computing, they are also of in-
terest for investigating questions of fundamental relevance,
for instance, regarding the robustness of entanglement. The
presumption that the lifetime of entanglement decreases with
the number of constituents of an entangled system and that,
therefore, entanglement does not have to be taken into ac-
count when describing the properties of mesoscopic and
macroscopic systems is widespread. This is indeed true, for
example, for Greenberger-Horne-Zeilinger �6� states for
which the decoherence rate increases linearly with the num-
ber N of qubits. However, such behavior does not necessarily
hold for other N-particle systems. In fact, many-body states
exist where the entanglement between the constituents is ex-
pected to not decay faster than that determined by the deco-
herence rate of a single qubit �7�. Cluster states belong to this
class of entangled states.

The topology of cluster states may exist in different di-
mensions. In �8� it is shown that one-dimensional �1D� clus-
ter states can be efficiently simulated by classical computers,
thus two-dimensional �2D� cluster states are needed for use-
ful quantum computation. The first experimental realization
of cluster states was reported in �9�. In that experiment, the

entanglement was created using controlled collisions be-
tween atoms confined in an optical lattice. Photonic one-way
quantum computers have already been used to implement
quantum algorithms, namely, Grover’s algorithm �10� and
the Deutsch algorithm on a four-photon cluster state �11�.
Four- and six-qubit cluster states have also been recently
experimentally realized with photons �12,13�.

Until now, multiqubit cluster states have not been created
with trapped ions. In �14� it was proposed to generate a linear
cluster state of four, five, and six ions in a linear Paul trap
using a gate similar to the Mølmer-Sørenson gate �15,16�.
This would be accomplished by collective addressing of all
ions by means of two laser beams tuned to the blue- and
red-sideband transition of the exploited vibrational mode.
This technique is robust against heating and does not require
the ions to be cooled into their motional ground state. How-
ever, scaling this method to larger numbers of ions becomes
complex.

In this paper we propose schemes to prepare two-
dimensional cluster states with atomic ions confined in a
linear �one-dimensional� trap. In contrast to the scheme de-
scribed above, we consider creating cluster states by means
of spin-spin coupling induced by a magnetic-field gradient
that creates a state-dependent force acting on each qubit.
Here, laser light is not required to achieve an entangling gate
between the ions. Furthermore, we consider two-dimensional
cluster states and suggest that our scheme should be highly
scalable. In addition, cooling the ion string to its motional
ground is not necessary.

An easily scalable method for preparing cluster states is
applying a Hamiltonian equivalent to an Ising-type interac-
tion on qubits, initially prepared in states �+ �= 1

�2
��0�+ �1��

�1�:

H = ��
a,a�

Ja,a�
1 + �z

�a�

2

1 − �z
�a��

2
. �1�

The time evolution e−iHt/��+ ��
n

results in cluster states, if
Ja,a�t=�+2k� with k�N and restricting the interaction to
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next neighbors yields two-dimensional cluster states. How-
ever, in general, experimentally accessible J couplings Ja,a�
are of such a form that preparing cluster states �or perform-
ing other operations� is not trivial.

This paper presents methods to engineer spin-spin cou-
plings suitable for generating two-dimensional cluster states,
a prerequisite for one-way quantum computing with state-of-
the-art linear ion traps. The outline of the paper is as follows:
Sec. I A is a review of how one-way computing with two-
dimensional cluster states can be implemented on a smaller
number of physical qubits by reusing those qubits that have
been measured during the computational process. In Sec. I B
we summarize the relevant properties of a collection of spin-
coupled trapped ions and then explicitly show in Sec. II how
to prepare a n�2 cluster state with a number of operational
steps that is linear in n using this system.

Section II A deals with schemes for cluster-state genera-
tion, where the local electrostatic trapping potential experi-
enced by each ion is individually adjustable. We outline two
schemes that are primarily suited for creating one-
dimensional cluster states, even though they could, in prin-
ciple, be used to generate two-dimensional clusters. For
implementing the first scheme, proposed by Mc Hugh and
Twamley �17,18�, the harmonic oscillator frequencies that
characterize the local trapping potentials are set to equal val-
ues, resulting in uniform nearest-neighbor couplings. Con-
trolled generation of nearest-neighbor couplings by a choice
of appropriate nonuniform trap frequencies is considered in
the second scheme. Then, with the help of numerical simu-
lations based on an existing microstructured ion trap, we
show that these methods require smaller trap-electrode struc-
tures than currently available to attain coupling constants
that are useful in practice for cluster-state generation.

While the above-mentioned schemes are based on
nearest-neighbor interactions provided by individual poten-
tial wells, Sec. II A 2 deals with the question of whether
coupling constants can be engineered in such a way that they
fulfill periodicity conditions imposed on the time-evolution
operator suitable for generating cluster states in one time-
evolution step.

In Sec. II B we propose a scalable scheme for creating
two-dimensional cluster states, which does not rely on a
static placement of the ions in individual wells. Instead it
makes use of the possibilities provided by segmented traps to
adiabatically transport ions, and separate ions held in com-
mon traps, thus allowing us to circumvent problems arising
in the previously mentioned schemes.

The scheme for creating 2D cluster states detailed in Secs.
II A and II B is underpinned by simulations of electrostatic
potentials in a microstructured ion trap. To be concrete, we
used for this purpose the parameters of a microtrap that is
currently being developed.

A. Breaking up a nÃm cluster state into clusters of size nÃ2

In order to make one-way quantum computing possible
first a two-dimensional n�m cluster state needs to be pre-
pared and then single-qubit adaptive measurements in qubit-
specific bases are performed in order to achieve a quantum

gate �3�. The basis of a measurement may depend on the
outcome of previous measurements.

The question this paper deals with is “How can a two-
dimensional cluster state be efficiently prepared with trapped
ions?” Generally, preparing a two-dimensional cluster state
turns out to be difficult for an arbitrary number of qubits. In
order to work out an experimentally feasible procedure for
generating cluster states, we notice that—within the scope of
the one-way model—a n�m cluster state may be broken up
into segments of dimension n�2 as shown by Mc Hugh �17�
and recapitulated for the reader’s convenience in what fol-
lows.

The usual way to implement a measurement-based quan-
tum computer is to prepare the entangled state followed by
single-qubit measurements. This procedure is equivalent to
the following: imagine the qubits arranged in a two-
dimensional array. Then, the initial state containing the input
data for the quantum gate to be performed is written upon the
first column of qubits. The second column is prepared in the
state �+ �= 1

�2
��0�+ �1��. After entangling all qubits with their

nearest neighbors via the time evolution generated by Hamil-
tonian �1� with Ja,a�t=�, a n�2 cluster state is established.
Now, measurements on the first column are performed in a
predetermined basis such that these measurements amount to
executing a desired quantum gate. Due to the entanglement,
the quantum information generated by these measurements is
thus transferred to the second column’s qubits. At the same
time, the entanglement between the two columns is erased by
the measurement operation.

That means the first column may now be used to simulate
the third column of a n�m cluster. For this purpose, its
qubits are prepared in the state �+ � and entangled with the
second column’s qubits. Then, single-qubit measurements
are performed on the second column so that the quantum
information is transferred to the first column’s qubits. Thus,
performing this procedure m−1 times, one can simulate a
n�m cluster via a n�2 cluster.

B. Spin-coupled trapped ions

We consider N ions of mass m confined strongly in two
spatial dimensions �x and y directions� and by a weaker po-
tential in the third �z direction�. This can be achieved, for
example, by using a linear electrodynamic trap where the
effective harmonic confinement in the radial direction, mea-
sured in terms of the secular angular frequency �r, is much
stronger than in the axial direction characterized by secular
frequency �z �19–21�. The ions are laser cooled such that
their radial degrees of freedom are frozen out and they form
a linear Coulomb crystal.

Each ion provides two internal levels �e.g., hyperfine
states� serving as qubits described by the Pauli operator �z.

In addition, a magnetic field B� = �B0+bz�e�z is applied such
that the ions experience a gradient b along the z axis. Then,
the Hamiltonian of the system reads �18,22,23�

H =
�

2 �
n=1

N

�n�z0,n��z,n + �
n=1

N

��nan
†an −

�

2 �
n�m

Jnm�z,n�z,m.

�2�

The first term of the Hamiltonian represents the internal en-
ergies of N qubits where the qubit resonances are given by
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�n�z0,n� and z0,n is the axial equilibrium position of the nth
ion. The second term expresses the collective quantized vi-
brational motion in the axial direction of the ions with eigen-
frequency �n of vibrational eigenmode n. The last term de-
scribes a pairwise spin-spin coupling between qubits with the
coupling constants,

Jnm =
�

2m
�
j=1

N
1

� j
2	 ��n

�zn
	

z0,n

	 ��m

�zm
	

z0,m

DnjDmj

=
�

2
	 ��n

�zn
	

z0,n

	 ��m

�zm
	

z0,m

�A−1�nm, �3�

where A is the Hessian of the trap potential and D is the
unitary transformation matrix that diagonalizes A. The eigen-
values of A are given by m� j

2. Therefore, the spin chain can
be interpreted as an N-qubit molecule with adjustable cou-
pling constants Jnm, an ion spin molecule. If the ions are
confined in a global harmonic potential, then Jnm�b2 /�1

2.
In Fig. 1, as a concrete example, the coupling constants

Jnm are displayed for eight 171Yb+ ions in a linear trap char-
acterized by �1=2��200 kHz and a magnetic-field gradi-
ent of 100 T/m.

So far we have a considered a global axial potential con-
fining the ion string. However, the trapping potential for each
ion may be shaped such that the ions reside in individual
harmonic potential wells. This is accomplished by dividing
the dc electrode of a linear Paul trap into segments to which
individual voltages may be applied that shape the axial po-
tential experienced by the ions. Thus, one or more ions may
be held in local potential wells, and there are additional
handles to change the range and strength of the coupling
constants Jnm �18�. Recently, segmented microstructured
traps have been investigated experimentally and theoreti-
cally. Such traps provide the capability of storing ions in
separate potential wells and of separating and transporting
ions into different trap regions �24–29�.

The spin-spin coupling mediated by the vibrational mo-
tion in Eq. �2� arises when the ions are exposed to a
magnetic-field gradient that induces a state-dependent force.
The scheme for cluster-state preparation proposed here can
also be applied to the case when the required spin-spin cou-

pling is generated by means other than a magnetic-field gra-
dient. In �30� it was shown that an optical state-dependent
force may induce a coupling whose formal description is
identical to what is outlined above. Electrons confined in an
array of microstructured Penning traps and exposed to a spa-
tially varying magnetic field also exhibit a similar spin-spin
coupling �31–33�.

II. PREPARING CLUSTER STATES USING SPIN-SPIN
INTERACTIONS

Spin-spin coupling as it appears in Eq. �2� may be used to
prepare cluster states. This is achieved in two steps �1�: first,
all qubits are prepared in the state �+ �. Second, the spin-spin
coupling according to Eq. �2� is switched on for a time such
that 
Jnmdt= �

2 +2k�, k�N for all qubit pairs �n ,m� that are
to be entangled. This way of preparing cluster states pro-
vides, in principle, an efficient and scalable method to gen-
erate entangled states.

In actual experiments, the above condition can be fulfilled
by manipulating the coupling constants, by applying a pulse
sequence to selectively realize specific couplings, or by com-
bining these two methods. In what follows, we will address
the issue of creating suitable interactions for cluster-state
preparation in detail.

With a string of trapped ions, if all ions are located in the
same harmonic potential well, the J couplings vary in
strength throughout the ion string �see Fig. 1�. Thus, achiev-
ing controlled dynamics of the system is possible only at
high cost, for example, by using selective recoupling pulse
sequences whose length grows quadratically with the qubit
number �34�. Furthermore, the vibrational motion of the ion
string is mediated by the Coulomb repulsion. So J couplings
decrease for non-nearest neighbors. This turns out to be a
serious problem for an efficient preparation of large two-
dimensional cluster states.

The coarse procedure for creating n�2 cluster states that
forms the basis for the schemes presented in the remainder of
this paper �unless noted otherwise as in Sec. II A 2� is illus-
trated in Fig. 2. First, a linear n-qubit cluster state is pre-
pared. Subsequent entanglement of third-neighbor qubits
then results in the desired two-dimensional cluster.

Alternatively, one could create two four-qubit linear clus-
ter states �e.g., qubits 1 to 4 and qubits 5 to 8�. These linear
graph states could then be converted into box cluster states
by local operations and relabeling of some qubits as de-
scribed in �35�. Thereafter, entangling qubits 4 and 5 and
qubits 3 and 6 would result in the same graph as depicted in
Fig. 2.

A. Ions confined in individual potential wells

The inhomogeneity of spin-spin couplings in the case of a
single harmonic potential can be treated by locating the ions
in the individual potential wells created in microstructured
traps. In �17� it is shown that by placing each ion in an
individual potential well, uniform nearest-neighbor interac-
tions could be achieved. In that scheme, individual harmonic
oscillator potentials �characterized by trap frequencies typi-

FIG. 1. �Color online� Coupling constants for eight Yb+ ions in
a Paul trap with axial trap frequency �1=2��200 kHz and a
magnetic-field gradient of 100 T/m.
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cally of order 1 MHz� confine a linear array of ions such that
they are spatially separated by 10 	m. The relatively small
distance between neighboring potential wells is necessary to
achieve reasonably large coupling constants Jnm.

In this arrangement of trap potentials, nearest-neighbor
couplings dominate. Second �third�-neighbor couplings reach
values of �1 /6 ��1 /25� of the nearest-neighbor couplings
�these specific values result from the choice of the two pa-
rameters trap frequency and ion separation mentioned
above�. Because of the small third-neighbor couplings in this
arrangement, the general scheme sketched in Fig. 2 is not
well suited for cluster-state generation. In �17� it was pro-
posed that a 2D cluster state can be created by utilizing
nearest- and second-neighbor couplings in separate steps.
This scheme would then require appropriate refocusing pulse
sequences to eliminate undesired couplings �e.g., third-
neighbor couplings�.

An alternative scheme using microstructured traps with
electrode dimensions of order 10 	m or smaller is sketched
in the following. One may set the potentials of these indi-
vidual traps such that, at a given time, only ions i and i+1
interact. This will be the case, if �1

j 
�1
i , �1

i+1 with j� i , i
+1. This choice of the strength of individual potential wells
ensures strong suppression of non-nearest-neighbor cou-
plings �below we give a concrete example�. Confining the
ions in such a trap configuration and applying a magnetic-
field gradient for a suitable time such that 
Ji,i+1dt=� /2 re-
sults in maximal entanglement between ions i and i+1. Thus,
a linear cluster state can be obtained by subsequently per-
forming this operation on ions 1 through N−1. In order to
create a n�2 cluster state, third neighbors need to be en-
tangled, that is, ions 1 and 4, 3 and 6, 5 and 8. This may be
accomplished by first setting �1

1 through �1
4 to a frequency

much lower than the remaining frequencies to enable cou-
pling between ions 1 and 4. Now, ions 1 and 4 are entangled
utilizing spin-spin coupling and selective refocusing is used
on ions 1 through 4 to undo the unwanted couplings in this
quartet of ions, thus realizing the coupling J14. The other
third neighbors are entangled analogously. In order to check

the feasibility of implementing this scheme with currently
available ion traps we performed numerical calculations of
electrostatic potentials achievable in a typical microstruc-
tured trap.

1. Realization with microstructured traps

The schemes for generating cluster states outlined above
require ion traps with electrode structures at a characteristic
length scale of around 10 	m in order to achieve coupling
constants in the kilohertz regime. Even though such struc-
tures appear feasible, they imply that the distance between
ions and a solid-state surface is of the same order of magni-
tude, which leads to significant heating rates of the ions’
secular motion �36–38�. This, in turn, is likely to impede
precise quantum logic operations �39�. On the other hand, in
recent experiments strongly reduced heating rates have been
observed with ion traps in cryogenic environments �37,38�.
Thus, by sufficiently cooling ion traps, this difficulty that
arises with small electrode structures may be overcome.

For many existing microstructured traps typical axial
lengths of electrode segments are of order 100 	m �see Fig.
3�, and isolation spacings between electrode segments are
typically of order 30 	m. Such segmented microtraps could
serve to create individual harmonic oscillator potentials for
each ion. However, with such relatively large trap structures
this would lead to large mutual distances between ions and
thus to small coupling constants J. This will make it difficult
to employ the schemes outlined above for efficient cluster-
state generation as will be shown now by means of a con-
crete example.

For numerical simulations we used the parameters of a
microtrap that is currently being developed. This trap is a
three-layer microstructured segmented trap with two trap-
ping regions. The upper and lower layers both carry elec-
trodes for applying rf and dc electric fields. The middle layer
serves as a spacer and contains segments of current-carrying
coils that generate a spatially varying magnetic field �40�. We
consider a trapping region in our potential simulation with
the following geometric parameters of the electrodes: the
two electrode layers are separated by the distance s
=350 	m and the segmented electrodes are separated in ra-
dial direction by a gap g=250 	m. The thickness of the
electrodes is t=125 	m and the axial length of each elec-
trode segment amounts to k=100 	m. For isolation, the

FIG. 2. Preparing a 4�2 cluster state: in a first sequence of
operations, a linear eight-qubit cluster state is created �indicated by
solid lines connecting the qubits�. The second sequence then yields
entanglement of third-neighbor qubits �dashed lines� resulting in the
two-dimensional cluster topology.

FIG. 3. Sketch of the geometry of a segmented ion trap consid-
ered for potential simulations. The electrode layers are separated by
s=350 	m, while separation in radial direction is g=250 	m. The
thickness of the electrodes is t=125 	m, the axial length k
=100 	m, and the axial isolation distance is h=30 	m �compare
Ref. �41�.
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electrode segments are divided by a gap of h=30 	m.
We consider 17 segment electrode pairs for the potential

simulation. The simulation was created using the ISIM pack-
age �41�, which is based on boundary-element methods. All
coupling constants calculated in this section are done for six
171Yb+ ions.

This ion trap is structured such that for each ion an indi-
vidual potential well may be applied and thus the trap fre-
quencies can be individually set. It is then possible to gener-
ate a sequence of single nearest-neighbor couplings with
suppressed non-nearest-neighbor couplings. As noted above,
setting two neighboring oscillators’ frequencies to small val-
ues compared to all other’s allows selective coupling of a
single pair of qubits.

Coupling of, for example, only ions number 2 and 3 can
be attained by applying the voltage configuration given in
Table I to the trap dc electrodes. These voltages result in the
simulated potential shown in Fig. 4. A polynomial fit up to
second order yields trap frequencies for oscillators 2 and 3 of
0.35 MHz and 0.27 MHz, whereas all other frequencies are
between 0.8 and 1.6 MHz. Furthermore, the distance be-
tween oscillators 2 and 3 is smaller by a factor of around 2
compared to the other oscillator distances. The nearest-
neighbor coupling constants shown in Table II illustrate that
J23 dominates over all other couplings by two orders of mag-
nitude as desired. But due to the large distance between ions
of 140 	m, even this dominating coupling is very small. So
segmented microtraps with much smaller axial electrode
lengths and isolation spacings �of order 10 	m� would be
required to achieve J couplings in the kilohertz range.

2. Periodicity of the time-evolution operator

The schemes outlined above for preparing a two-
dimensional cluster state are based on the generation of a
linear cluster state of ions and subsequent third-neighbor
couplings. These third-neighbor couplings, while undoing
the unwanted next-neighbor �NN� couplings, could be ac-
complished by selective recoupling techniques �compare
Sec. II B�. However, simultaneous coupling of all qubit pairs
would be advantageous. In this section we show that tailor-
ing the time-evolution operator, that is, imposing a suitable
periodicity condition by sculpting the J couplings, allows for
creation of a cluster state for three qubits, which corresponds
to a triangle graph, and the creation of a linear cluster state
for four qubits in one time-evolution step.

The general form of the time-evolution operator is

U = �
i�j

exp�i�ij�z,i�z,j� , �4�

where �ij =
Jijdt. In order to obtain cluster states by spin-
spin coupling, the �ij need to take on values of �

4 , �
4 +2�,

�
4 +4� , . . ., whereas � values of 0, 2�, 4� , . . . transform the
time-development operator into the identity operator. So us-
ing periodicity to entangle three qubits requires the following
J matrix:

TABLE I. Example for voltage configuration for the microstructured trap described in the text to establish the single coupling J23 in a
string of six 171Yb+ ions while strongly suppressing all other couplings.

Segment no. 1 2 3 4 5 6 7 8 9

Voltage/V 48 −8 48 0 37.1 18.3 27.4 18.3 36.8

Segment no. 10 11 12 13 14 15 16 17

Voltage/V 0 48 0 48 0 48 −8 48

FIG. 4. �Color online� Potential simulation for the voltage con-
figuration shown in Table I. The arrows indicate local potential
minima �i.e., the equilibrium position of the respective ion�. Oscil-
lators 2 and 3 have small frequencies compared to the other oscil-
lators so that J23 is the dominating coupling.

TABLE II. Distances di,i+1 between the individual potential
wells i / i+1 and axial trap frequencies �i determined from polyno-
mial fits up to second order around the potential minima shown in
Fig. 4. These parameters clearly lead to the domination of the cou-
pling J23 by two orders of magnitude over all other couplings. In
this way controlled nearest-neighbor couplings may be imple-
mented without the need for refocusing pulses. To increase J cou-
plings smaller distances between ions and therefore smaller elec-
trode structures are required.

i
di,i+1

�	m�
�i

�MHz�
Ji,i+1

�Hz�

1 320 1.65 0.001

2 138 0.35 0.610

3 297 0.27 0.006

4 266 1.16 0.001

5 279 0.83 0.001

6 0.98
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� = Jdt =�
�

4
+ 2k�

�

4

�

4
+ 2k�

�

4
+ 2k�

�

4

�

4
+ 2k�

� , �5�

with k�N. Applying this time evolution to qubits prepared
in �+ ��

3
results in the three-qubit cluster state

�C3� = exp�i
�

4
��z,1�z,2 + �z,1�z,3 + �z,2�z,3��� + ��

3

=l.u.
1

2
��000� + �111�� . �6�

Here l.u. denotes equivalence up to local unitaries.
One may also utilize the periodicity relation to realize

only NN interactions. In this case, the J matrix reads

� = Jdt

=�
�

4
+ 2k3� 2k2� 2k1�

�

4
+ 2k3�

�

4
+ 2k4� 2k2�

2k2�
�

4
+ 2k4�

�

4
+ 2k3�

2k1� 2k2�
�

4
+ 2k3�

� ,

�7�

with k1, k2, k3, and k4�N. The time evolution �4� describes
an effective nearest-neighbor interaction, thus generating the
linear four-qubit cluster state:

�C4� = exp�i
�

4
��z,1�z,2 + �z,2�z,3 + �z,3�z,4��� + ��

4

=l.u.
1

2
��0000� + �0011� + �1100� − �1111�� . �8�

Replacing the matrix elements �14=2k1�=�41 in matrix 7
by �14=2k1�+� /4=�41 would allow for generating a 2D
cluster state.

In the following we show how coupling matrices can be
achieved that fulfill the desired periodicity. As before �Sec.
II A 1�, the ions are placed in individual harmonic oscillator
potential wells with adjustable frequencies. Superposing a
long-range harmonic potential affecting all ions, one more
degree of freedom is available �sketched in Fig. 5�. So the
problem reduces to finding trap frequencies resulting in J
couplings that fulfill the periodicity relation. The coupling
constants are functions of the ions’ equilibrium positions,
which can be calculated analytically only for two and three
ions. Furthermore, a change in only one trap parameter, say
in one trap frequency, affects all couplings simultaneously.

So due to the highly nonlinear nature of the coupling con-
stants as well as the sensitivity to parameter alterations, find-
ing trap configurations that are suitable for utilizing the pe-
riodicity condition becomes increasingly difficult with the
number of ions involved. Here we present empirically found
parameters.

Consider three Yb+ ions in individual potential wells su-
perposed by a harmonic long-range potential of frequency
�=2��100 kHz. Trap frequencies of traps 1 and 3 are
2��277 kHz. The middle individual trap has frequency
2��100 kHz �see Figs. 5 and 6�. The potential wells are
separated by a distance of 20 	m, and a magnetic-field gra-
dient of 100 T/m is applied along the trap axis. These param-
eters result in the following J matrix:

J/�100 Hz� = � 7.85 0.87

7.85 7.85

0.87 7.85
� . �9�

These couplings are useful for cluster-state preparation since
the periodicity relation is fulfilled:

J21

J31
= 9.02 �

2� + �/4
�/4

. �10�

In an analogous fashion, we present parameters useful for
generating a four-qubit NN interaction. The four ions are
again located in individual traps of frequency �1=�4=2�

FIG. 5. Locating ions in individual microtraps and superposing
a harmonic long-range potential serves to create coupling constants
suitable for periodic entanglement.

FIG. 6. �Color online� Coupling constants suitable for generat-
ing a triangle graph state in one time evolution for three Yb+ ions in
individual potential wells superimposed on a harmonic long-range
potential of frequency �=2��100 kHz. Trap frequencies of traps
1 and 3 are 2��277 kHz. The middle individual trap has fre-
quency 2��100 kHz.
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�415 kHz and �2=�3=2��280 kHz. A harmonic long-
range potential of frequency �=2��239 kHz is then ap-
plied. The individual traps are separated by 5 	m, and the
magnetic-field gradient is again �B

�z =100 T /m. With these
parameters, we obtain the following J matrix:

J/�100 Hz� =�
4.33 2.08 1.05

4.33 4.36 2.08

2.08 4.36 4.33

1.05 2.08 4.33
� , �11�

which results in the following periodicity relations:

J32

J41
= 4.15 �

4 � 2� + �/4
2�

,

J21

J41
= 4.12 �

4 � 2� + �/4
2�

,

J31

J41
= 1.98 �

2 � 2�

2�
. �12�

We conclude from the case of three ions that periodic
entanglement is in principal possible, but as can be seen from
the case of four ions, finding appropriate trap frequencies
becomes more and more difficult with higher number of ions
due to the nonlinearity of the problem. We conjecture that
numerical approaches such as genetic algorithms could be
efficiently applied to find optimal parameter configurations.

In Sec. II A 1 it was demonstrated that suitable voltage
configurations can be found to implement a desired coupling
matrix. In order to attain reasonably large coupling constants
small electrode structures �of order 10 	m� are required. For
the scheme presented in Sec. II A 2, relying on appropriate
periodicity of the time-evolution operator, again small elec-
trode structures are required to be implemented efficiently.

B. Including ion transport for generating cluster states

Now we turn to the description of a different scheme for
generating cluster states, which takes advantage of the capa-
bilities of segmented ion traps, even with relatively large
electrodes. Segmented ion traps may not only serve for cre-
ating an array of linearly arranged potential wells, but also
for transporting ions into different trap regions as well as for
separation of ions held in a common trap into two distinct
traps �24–29�.

Adiabatic ion transport using segmented microtraps has
been demonstrated by Rowe et al. �24�. In this experiment a
9Be+ ion was transferred between trap locations 1.2 mm
apart in 50 	s with almost unit efficiency. Furthermore,
separation of two ions held initially in a common trap into
distinct traps was demonstrated. This was accomplished by
using a five electrode configuration. Fast nonadiabatic trans-
port of 40Ca+ ions was reported in �29�. The experimental
results show a success rate of 99.0�1�% for a transport dis-
tance of 2�2 mm in a round-trip time of T=20 	s. Appli-
cation of optimal control theory is planned to achieve lower
excitation of vibrational motion in the future.

A n�2 cluster is prepared using the scheme illustrated in
Fig. 2. This generation of cluster states is accomplished in
two operational sequences. During the first sequence nearest-
neighbor couplings are established that lead to the prepara-
tion of a one-dimensional cluster state. The second sequence
then establishes couplings between third-neighbor qubits and
serves to create a 2D cluster state of eight ions. These two
sequences will be detailed in what follows. First, we outline
the sequences and state the required time evolution. Then,
numerical simulations of the potentials of a microstructured
ion trap, which is currently being tested, will serve to illus-
trate the feasibility of the proposed scheme.

1. First sequence: creating a 1D cluster state

The first sequence itself consists of two steps. During the
first time step with duration t1, pairs of ions, namely ions
number 1 and 2, 3 and 4, 5 and 6, 7 and 8 occupy a common
trap potential. Switching on the magnetic-field gradient for a
desired time results in N /2 uniform nearest-neighbor cou-
plings:

Ht1
= −

�

2
J1,2��z,1�z,2 + �z,3�z,4 + �z,5�z,6 + �z,7�z,8� .

�13�

The duration t1 is chosen such that 
0
t1Jdt= �

2 is fulfilled and
the time-evolution operator

Ut1
= exp�i

�

4
��z,1�z,2 + �z,3�z,4 + �z,5�z,6 + �z,7�z,8��

�14�

is obtained.
At the end of the first time interval, the magnetic-field

gradient is turned off �i.e., the spin-spin is zero�, and the ions
sharing a common trap are separated and transported into
potential wells such that ions 2 and 3, 4 and 5, 6 and 7
occupy a common trap. When the ion transport is finished,
the magnetic-field gradient is switched on again during time
t2, thus resulting in the other half of NN couplings:

Ut2
= exp�i

�

4
��z,2�z,3 + �z,4�z,5 + �z,6�z,7�� . �15�

The time evolution during the first sequence described
above �i.e., between t=0 and t= t2� requires N /2 potential
wells of equal axial trap frequency for N ions. We now show
that the required axial potential can be realized using the
segmented microtrap introduced in Sec. I B. Applying a volt-
age of 1.6 V to the outermost electrodes, and an alternating
series of 2 V and 0 V, respectively, on the remaining dc
electrode pairs �Table III�, results in harmonic axial poten-
tials of frequency �=2��200 kHz �compare Fig. 7�.

Six of the eight created harmonic oscillators have the
same frequency, so that the scheme for preparing a two-
dimensional eight-qubit cluster state can be realized with this
axial potential. Keeping the pairs of ions 1 and 2 through 7
and 8 in potential wells 2 through 5 for the time t1 results in
the time evolution according to Eq. �14� when the magnetic-
field gradient is switched on. Thereafter, the field gradient is
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deactivated, and the ions are rearranged, such that ions 1 and
8 occupy potential wells 2 and 6, respectively, and the pairs
of ions 2 and 3 through 6 and 7 are located in wells 3
through 5. Reactivating the field gradient for a time t2 leads
to the evolution given in Eq. �15�, thus creating an eight-
qubit linear cluster state.

The distances between the minima of the potential wells
are shown in Table IV. The characteristic value of the dis-
tances between the traps 2 to 7 is simply given by 2�k+h�
=260 	m. Deviating values of oscillators 1 and 8 can be
explained by fringe effects.

Trap frequencies of �=2��200 kHz and a magnetic-
field gradient of �zB=100 T /m result in coupling constants
of �3 kHz. In Fig. 8 the coupling constants for the time
evolution for 0� t� t1 are displayed and Fig. 9 shows the
coupling values for t1� t� t2. Non-nearest-neighbor cou-
plings are suppressed by four orders of magnitude due to the
large distance of more than 260 	m between the corre-
sponding ions.

2. Second sequence: transforming a 1D cluster state into a 2D
cluster state

Now that a linear cluster state has been prepared during
the first sequence of operations, qubits 1 and 4, 3 and 6, and
5 and 8 need to be entangled in order to prepare a two-
dimensional cluster state during the second sequence. This
can be achieved in three steps. In the first step of the second
sequence during time interval t2� t� t3, qubits 1 through 4
are stored in a common trap, e.g., with trap frequency �
=2��200 kHz, while all other ions occupy single, indi-
vidual traps with trap distances of 260 	m. Now, applying a
magnetic-field gradient of 100 T/m results in a coupling of
spins 1 and 4 of J14=1.24 kHz with time-evolution operator

U�t14� = exp�−
i

2 �
n,m=1;n�m

4

Jn,mt14�z,n�z,m� . �16�

Other couplings involving qubits 1 to 4 can be canceled by
selective recoupling pulse sequences �34�. All couplings re-
garding qubits 5 to 8 can be neglected during this time inter-
val, since those are approximately 0.5 Hz. The entire time
evolution for coupling ions 1 and 4 including pulses to elimi-
nate couplings involving qubits 2 and 3 is thus given by

Ut3
= U�t14/4��x,2U�t14/4��x,2

� �x,3U�t14/4��x,2U�t14/4��x,2�x,3, �17�

where t14= �
2J14

and �x,k denotes the usual Pauli X operator
acting on the Hilbert space of qubit k. To see that Ut3

imple-
ments only the coupling between qubits 1 and 4, it is conve-
nient to think of the two rows as individual sequences. In
each of the two sequences, all couplings involving qubit 2
are eliminated, because applying �x,2 before and after
U�t14 /4� adds a minus sign to every �z,2 in this time evolu-
tion due to the commutation relation of the Pauli matrices.
Analogously, the �x,3 at the beginning and end of the second
sequence affects nothing but adding a minus sign to all cou-
plings involving qubit 3. In total, all couplings to qubits 2
and 3 differ in their signs for exactly half of the time, and
thus they are eliminated. On the other hand, the coupling of
qubit 1 to 4 has the same sign during the entire sequence,
such that Ut3

=exp�−i �
4 �z,1�z,4�.

At the end of time interval t14, the magnetic-field gradient
is switched off, and the same procedure is repeated to en-
tangle ions 3 and 6, respectively, 5 and 8. Then the ions are
arranged in a configuration, such that ions 3 to 6 occupy a
common potential well and all other ions are located in sepa-
rate trap potentials. Switching on the magnetic-field gradient
again results in

U�t36� = exp�−
i

2 �
n,m=3;n�m

6

Jn,mt36�z,n�z,m� , �18�

and the time evolution including recoupling pulses reads

Ut4
= U�t36/4��x,4U�t36/4��x,4

� �x,5U�t36/4��x,4U�t36/4��x,4�x,5, �19�

with t36= �
2J36

. Repeating this procedure for entangling ions 5
and 8, one obtains the following time evolution:

TABLE IV. Distances between the minima of the potential wells
in 	m for the voltage configuration shown in Table III.

230 260 260 260 260 259 231

FIG. 7. �Color online� Simulated potential for the voltage con-
figuration shown in Table III. Six of eight potential wells have
uniform axial frequencies of 200 kHz as well as equidistant axial
spacings of 260 	m.

TABLE III. Voltage configuration for creating eight harmonic potential wells such that oscillators 2 to 7 have uniform axial frequencies
of 200 kHz. Voltage at electrode pairs 1 and 17 is lower in order to reduce fringe effects.

1.6 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1.6
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Ut5
= U�t58/4��x,6U�t58/4��x,6

� �x,7U�t58/4��x,6U�t58/4��x,6�x,7, �20�

where t58= �
2J58

and

U�t58� = exp�−
i

2 �
n,m=5;n�m

8

Jn,mt58�z,n�z,m� . �21�

The result of this procedure is the cluster state based on the
graph shown in Fig. 2:

�� = Ut5
Ut4

Ut3
Ut2

Ut1
� + ��

8

= exp�− i
�

4
��z,1�z,4 + �z,3�z,6

+ �z,5�z,8 + �
i=1

7

�z,i�z,i+1��� + ��
8
. �22�

This scheme can be scaled to any n�2 cluster, which may
then serve to simulate a n�m cluster.

3. Summary of transport scheme for generating 2D cluster
states

A summary of the scheme that makes use of transport of
ions over small distances is provided in Table V. If we re-
strict the scheme to adiabatic ion transport, the required time
tT for transport must obey tT
2� /�1. For �1�2�
�200 kHz, we estimate tT=50 	s, which is still more than
one order of magnitude less than the time required for entan-
gling the qubits. The ions need only be linearly transported
over distances of the order of the size of two electrode seg-
ments; in our concrete example considered above this
amounts to a distance of around 200 	m.

Adiabatic switching of the magnetic-field gradient would
require a time scale of order tB


2�
� , if only the qubit states

�0� and �1� were present. However, usually other nearby ionic
states have to be included in these considerations. For ex-

FIG. 8. �Color online� Coupling constants for eight ions stored
in individual harmonic potential wells �shown in Fig. 7�. Each po-
tential well is occupied by two ions yielding uniform NN couplings
of 3 kHz between ions number 1 and 2, 3 and 4, etc. These coupling
constants are required for the first time evolution in the first se-
quence of operations at the end of which a 2D cluster state is ob-
tained. Non-nearest-neighbor couplings are suppressed by four or-
ders of magnitude.

FIG. 9. �Color online� After creating the NN couplings shown in
Fig. 8, the magnetic-field gradient is switched off. Then, ions shar-
ing a common oscillator are separated and transported into four
other potential wells, so that ions 2 and 3, 4 and 5, etc. occupy now
a common well. Switching on a magnetic-field gradient of 100 T/m
results in uniform NN couplings of 3 kHz again. This completes the
second step of the first sequence of operations required for a 2D
cluster.

TABLE V. Summary of transport scheme for preparing a n�2
cluster state in a segmented ion trap with magnetic-field gradient of
100 T/m. Steps 1 through 2 serve to create a linear cluster state,
while steps 3 through 5 create additional third-neighbor couplings
that turn the one-dimensional cluster into a two-dimensional cluster.
Here, the coupling constants Ji,i+1=3.0 kHz for preparation of the
linear cluster state which yields the gate times tj =

�

2Ji,i+1
=0.52 ms,

j=1,2. In the case of four ions sharing a common potential well
J1,4 , J3,6 , J5,8 are given by 1.2 kHz and we have tj =

�

2Ji,i+1

=1.3 ms, j=3,4 ,5. The time scale for adiabatically transporting
ions is tT
2� /�1�5 	s. The time scale for adiabatically turning
on and off the magnetic field is tB
2� /�. When using 171Yb+ ions
the relevant � indicates the Zeeman splitting of the �S1/2 ,F=1�
state and 2� /� is typically of order 0.1 	s.

Step Operation

1 Transporting ions 1/2, 3/4, 5/6, 7/8 in common
trap potentials

Entangling ions 1/2, 3/4, 5/6, 7/8

2 Transporting ions 2/3, 4/5, 6/7 in common trap
potentials

Entangling of ions 2/3, 4/5, 6/7

3 Recombination of ions 1–4 and 5–8

Entangling ions 1 and 4 using selective recoupling

4 Recombination of ions 3–6

Entangling ions 3 and 6 using selective recoupling

5 Recombination of ions 5–8

Entangling ions 5 and 8 via selective recoupling
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ample, in the case of 171Yb+ ions and choosing �0�
��S1/2 ,F=0� and �1���S1/2 ,F=1,mF=1� one would require
tB


2�
� to avoid transitions between Zeeman states, where �

indicates the Zeeman splitting of the �S1/2 ,F=1� state. In
order to avoid zero crossings of the states, while the
magnetic-field gradient is changed, a constant offset field is
used, e.g., such that �=2��10 MHz without gradient, so
that we estimate tB�1 	s.

During this switching process the qubits’ phases are af-
fected due to the spin-spin coupling and the evolution of the
Zeeman state. Applying the decoupling scheme described in
�34� with appropriate time intervals removes changes in the
qubits’ phases due to this Zeeman evolution together with the
undesired spin-spin couplings as described above.

III. CONCLUSION

We propose methods to generate cluster states of trapped
ions confined in state-of-the-art segmented linear ion traps
by engineering their spin-spin coupling constants. Based on
the idea of simulating a n�m cluster by a n�2 cluster
within the one-way model of quantum computing, we exam-
ined in Sec. II A a method previously suggested �17� to pre-
pare n�2 clusters, and an idea based on creating individual
potential wells for each ion. In addition, the superposition of
harmonic potentials is discussed in order to engineer J cou-
plings fulfilling suitable periodicity relations to create small
cluster states in one time-evolution step. In order to achieve
sizable coupling constants �in the kilohertz range�, all these
methods require control over local electrostatic potentials
with a spatial resolution of the order 10 	m—a typical in-
terion distance in usual Paul traps. Therefore, it is of interest
to investigate how suitable a trap with larger electrode struc-
tures is for generating 2D cluster states.

In Sec. II B a scheme for preparing n�2 clusters is de-
scribed for which larger trap electrode structures �of the or-
der 100 	m� are sufficient. Here, n�2 clusters are prepared
by first creating a linear cluster and subsequently enabling
third-neighbor couplings. We showed that the generation of
the linear cluster state can be accomplished with modern
segmented ion traps by locating pairs of two ions in common

harmonic oscillators, thus resulting in uniform NN cou-
plings. After separating the ions and subsequently merging
them with the other nearest neighbors, the second half of NN
couplings are realized. The required third-neighbor couplings
are achieved via selective recoupling techniques.

Common to all schemes described in this paper is that
entanglement is achieved solely by controlling dc voltages
and currents; no coherent interaction between laser light and
trapped ions is required. Refocusing pulses applied to indi-
vidual ions consist of radio-frequency or microwave radia-
tion depending on the choice of qubit �22,23,42,43�.

The method described in Sec. II B is explicitly worked
out for the generation of an eight-qubit 2D cluster state. This
scheme is also applicable to the generation of n�2 cluster
states where n=k�4, k=2,3 ,4 , . . .. The recipe would then
be to create in parallel k 2D cluster states of size 4�2. Then
in, one additional step, ions at the edges of neighboring 4
�2 clusters are entangled. For example, generating a 8�2
cluster proceeds as follows: first create two 2D cluster states
of size 4�2, then by combining ions number 7, 8, 9, and 10
in one potential well, simultaneously entangle ion pairs 8/9
and 7/10 to complete a 16-qubit 2D cluster state.

The physical arrangement of a 2D cluster state of size n
�2 is not required to be a linear ion string as was assumed
so far. For instance, eight ions could reside in one area of a
large 2D trap array �44� and communication between differ-
ent areas, and thus entanglement, could be achieved by shut-
tling only the ions at the ends of each ion string.

The spin-spin coupling that is used here does not require
cooling of the ion string to its motional ground state. De-
tailed calculations show that cooling to the Doppler limit is
sufficient for suppressing unwanted effects of thermal mo-
tion. This is beyond the scope of this paper and will be the
subject of a separate publication.
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