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Ion-trajectory analysis for micromotion minimization and the measurement of small forces
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For experiments with ions confined in a Paul trap, minimization of micromotion is often essential. In order to
diagnose and compensate micromotion we have implemented a method that allows for finding the position of the
radio-frequency (rf) null reliably and efficiently, in principle, without any variation of direct current (dc) voltages.
We apply a trap modulation technique and focus-scanning imaging to extract three-dimensional ion positions
for various rf drive powers and analyze the power dependence of the equilibrium position of the trapped ion.
In contrast to commonly used methods, the search algorithm directly makes use of a physical effect as opposed
to efficient numerical minimization in a high-dimensional parameter space. Using this method we achieve a
compensation of the residual electric field that causes excess micromotion in the radial plane of a linear Paul
trap down to 0.09 V m−1. Additionally, the precise position determination of a single harmonically trapped ion
employed here can also be utilized for the detection of small forces. This is demonstrated by determining light
pressure forces with a precision of 135 yN. As the method is based on imaging only, it can be applied to several
ions simultaneously and is independent of laser direction and thus well suited to be used with, for example,
surface-electrode traps.
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I. INTRODUCTION

Trapped laser-cooled ions are a prolific starting point
for many experiments related to quantum information sci-
ence [1,2] and precision spectroscopy, yielding some of the
most accurate clock standards to date [3–5]. Ions can be
trapped for long times and laser-cooled, even to the motional
ground state [6–8]. They are one of the most promising
candidates for quantum computation [2] and for quantum
simulations where the quantum mechanical properties of a
system difficult to investigate directly is simulated using the
well-understood and -controlled quantum system of trapped
ions [9–14]. The size of this quantum system can be scaled up
by entangling few-ion systems in complex segmented trapping
architectures [15–17].

The conceptual starting point for all this research is one
or several ions at rest, more accurately, close to the motional
ground state of an effective, approximately harmonic trapping
potential [18,19]. The Laplace equation forbids the existence
of electrostatic potential minima in vacuum (Earnshaw the-
orem). This limitation is bypassed in radio-frequency (rf)
quadrupole (Paul) traps, where the ions are confined by an
inhomogeneous oscillating field [18,19], and the oscillation
energy of the forced oscillation becomes position dependent.
Upon the presence of a cooling mechanism such as laser
cooling, an ion comes to rest at the minimum of the oscillating
field amplitude. Additional direct current (dc) fields from
biased electrodes or surface charges, e.g., created by the
loading process, can add forces which push the ion away from
the rf null; in addition, a phase mismatch between rf electrodes
might even prevent the existence of a time-independent rf
null. In both cases, the ion will carry out a forced oscillation
at the drive frequency, the so-called micromotion, with an
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amplitude depending on dc and phase mismatch. Micromotion
plays an important role in excess heating of trapped ions, e.g.,
through unwanted Doppler shifts [20–23] and in conjunction
with inevitable anharmonicities or stochastic changes of the
trapping potential [24–26].

Renewed interest in micromotion minimization comes from
recent research with combined traps of neutral and charged
atoms [27–29] where excess micromotion is a detrimental
source of neutral atom loss and has prevented collisional
cooling of ions by a cold neutral atom cloud to the fundamental
limits [30]. Here as an initial stage of combined traps,
micromotion is carefully compensated and the neutral atom
loss can be used as a figure of merit for optimization [31].
Micromotion can be overcome altogether by using a dipole
trap for the ion. As the light interacts with the dipole moment
of the ion instead of the charge, dipole traps are much
softer and shallower and themselves require carefully balanced
dc offset fields as a prerequisite [32]. Another motivation
for low micromotion comes from precision spectroscopy
and frequency standards: micromotion sidebands spoil the
accuracy of the determination of atomic resonance frequencies
due to Doppler shifts, and thus micromotion minimization is an
essential prerequisite for accurate ion trap frequency standards.
One disadvantage, though not a matter of principle, is that ion
clocks suffer in short-term stability, as just one atom is probed.
Massively parallel interrogation of many ions in common or
separate traps, all micromotion compensated, is an important
step to improve the short-term stability of ion-based frequency
standards [33].

Micromotion minimization can thus be regarded as a
common crucial initial step and prerequisite for good trap
performance. Micromotion causes diverse signatures, for
which several minimization methods have been developed:

(1) The ion’s absorption and emission spectra are altered
due to the periodic Doppler shifts caused by micromotion
directly or by mechanisms conditioned on the presence of
excess micromotion.
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Micromotion minimization is performed by exploiting
the Doppler-shift-induced temporal correlation between the
scattering rate and the rf trapping voltage [33–35] and by
measurement of micromotion sidebands in the absorption
spectrum [35–39] or the emission spectrum [40] spaced
by the trap drive frequency. For ion crystals the normal
mode spectrum can be altered by excess micromotion and
compensation of stray electric fields can be performed by
minimization of these frequency shifts [41].

(2) The ion’s equilibrium position depends on the strength
of the effective trapping potential if the dc fields are not nulled
at the rf node.

Excess micromotion is detected by monitoring the ion’s
average position while changing the strength of the effective
trapping potential using either dc fields [42] or changing the
rf voltage amplitude [35].

(3) Parametric resonances of the ion’s motion can be
excited by a modulation of the rf trapping voltage, if the dc
fields are not nulled at the rf node.

The excitation of such a resonance causes a change in the
ion’s scattering rate, which is then minimized [43–45].

(4) Micromotion causes an collisional transfer of kinetic
ernergy from the ion’s micromotion to neutral atoms when
trapped simultaneously.

Micromotion minimization is performed by measurements
of the loss rate of the atom trap [31].

In this paper, we revisit the trap modulation technique, (2).
For different rf levels, we determine the three-dimensional
(3D) ion position from a tomographic imaging procedure.
This position can be determined with an uncertainty far below
the wavelength of light scattered off the ion for observation.
From the ion positions measured at different rf powers, we
can extrapolate the ion trajectory to infinite rf power, which
ends at the rf null. With the knowledge gathered from a single
trajectory, the ion can be moved to the rf null by changing
the dc electric fields, which requires accurate a priori charac-
terization of the trapping fields. As an alternative, trajectories
recorded at different dc settings readily yield this characteri-
zation, together with the optimized compensation voltages.

The time required for the minimization process can be
crucial if the dc fields are fluctuating. This can happen as a
consequence of stray charges and, usually to a lesser extent,
by drifting fields from unstable voltage supplies [44,46]. For
surface traps trapping times can be in the second or minute
range owing to smaller trap depths and might require frequent
reloading and patch potentials may change on a short time
scale. In such cases it is desirable to carry out the minimization
fast and repeatedly to track or compensate time-dependent
effects.

The method discussed here relies on position determination,
which can be carried out with a high precision and does
not require any narrow transition and ultrastable lasers for
sideband spectroscopy. A single position determination in
two dimensions requires only milliseconds of measurement
time, accumulating to a few hundred milliseconds of data
acquisition for the complete minimization process. If position
determination and the minimization are carried out in three
dimensions, we need to use a tomographic method and the
approach is slowed down by about an order of magnitude. On
the other hand, even then, no constraints on the propagation

direction of the laser limit the optimization procedure. As the
position determination is based on imaging, the optimization
might even be carried out for several ions in parallel, which
is of particular interest for frequency standards. The method
discussed here is fast, has a sensitivity comparable to that of
other approaches and is yet general, simple, and economic.

The paper is structured as follows: in Sec. II, we model
the displacement of the ion’s equilibrium position. The
experimental setup is detailed in Sec. III. The measurement
procedure and results are presented in Sec. IV. As the position
determination can be precise to the nanometer level, we use
this for the measurement of small forces in the example of the
light pressure in Sec. VI.

II. THEORY

This section starts with an overview of the mathematical
treatment of a single ion confined in a Paul trap in the presence
of an electric stray field, both by solving the respective Mathieu
equations [35] and by using the pseudopotential approach [18].
Readers familiar with this treatment might be referred to
Eq. (4) and Eq. (9) as the main results and proceed from
Eq. (10) for a discussion of the signature ion trajectories
evolving from this models.

An ion (mass m, charge Q) trapped in a Paul trap (operated
at an rf voltage V cos �t and a dc voltage U ) in the presence
of an electric stray field obeys the inhomogeneous Mathieu
equations [35],

r̈k + [ak + 2qk cos(�t)]
�2

4
rk = Qεstray,k

m
, (1)

where r = ∑
rkk̂ (k = x,y,z) is the ion position, k̂ = x̂,ŷ,ẑ

are the Cartesian unit vectors, ak and qk are the commonly
called trapping parameters, and the electric stray field εstray =∑

εstray,kk̂ is approximated to be static and uniform over the
small volume occupied by the ion trajectory.

This stray field might be a real physical field (e.g.,
originating from charged insulators near the trap), but also
effects lifting ideal symmetry and displacing the dc origin with
respect to the rf (e.g., misaligned trap electrodes or machining
imperfections) as well as other homogeneous static forces
(e.g., the light pressure force exerted by a cooling laser) can
effectively be treated as contributions to the stray field.

Solving Eq. (1) using the adiabatic approximation
(|ak|,q2

k � 1) yields the approximate motion of the ion [35],

rk(t) ≈ [rε,k + r0,k cos(ωkt + ϕk)]

(
1 + qk

2
cos(�t)

)
(2)

= [r0,k cos(ωkt + ϕk)]

(
1 + qk

2
cos(�t)

)

+ rε,k + qkrε,k

2
cos(�t), (3)

where r0 and ϕk depend on the initial conditions and ωk =
�
2

√
ak + q2

k /2. Equation (3) describes a motion characterized
by two frequency components: the secular motion component,
oscillating at frequency ωk , and the micromotion component,
oscillating at the much higher frequency � and much lower
amplitude qkr0,k/2. The secular motion can be reduced by
cooling mechanisms as, e.g., laser cooling. This reduces
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the micromotion amplitude as well, as it is proportional to
the secular motion. The last two terms in Eq. (3) describe the
effects of the additional electric field. The field εstray shifts
the average position of the ion out of the rf potential node to
the position

rε ≈ Q

m

∑
k

εstray,k

ω2
k

k̂, (4)

at which the rf electric field causes oscillations with amplitudes
qkrε,k/2—the excess micromotion. This motion is a driven
motion and thus cannot be significantly reduced by cooling
techniques.

In the pseudo- or ponderomotive potential approach [18],
the motion of the ion due to the rf electric field is averaged over
one period of micromotion and the so-called rf pseudopotential
represents the kinetic energy due to micromotion,

φeff
rf (r) = m

2

∑
k

ω2
rf,kr

2
k , ω2

rf,k = �2

4

q2
k

2
. (5)

The ωrf,k are called the rf trap frequencies and represent the rf
contribution to the secular frequencies ωk .

The ion can then be treated as being confined in an effective
potential that is the sum of the rf pseudopotential φeff

rf and all
dc potential contributions [including dc electrodes (φdc,i) as
well as stray potentials (φstray)],

φeff(r) = φeff
rf (r) + Q

∑
i

φdc,i(r) + Qφstray(r), (6)

where −∇φstray(r) = εstray. Here the φdc,i are taken to be ideal
potentials in the aforementioned sense: contributions causing a
shift of the dc origin relative to the rf node (that is, contributions
linear in the ion’s position) are absorbed into φstray.

Near the center of the confining potential (e.g., along
the axis of a linear trap) the sum of dc potentials can be
approximated as a quadrupole potential:

Q
∑

i

φdc,i(r) = m

2

∑
k

ω2
dc,kr

2
k . (7)

Similarly to the ωrf,k , the ωdc,k are the dc trap frequencies at
a specific setting of all dc trapping voltages (ω2

dc,k = �2ak/4
in the case of an ideal linear trap). For the sake of simplicity
the principal axes of the rf and dc potentials have been chosen
here to be parallel and equal to the Cartesian axes.

The equilibrium position of the ion is then given by zero
net force

0 ≡−∇φeff(r) = −∇
[

m

2

∑
k

(
ω2

rf,k + ω2
dc,k

)
r2
k + Qφstray(r)

]

(8)

⇒ r0 = Q

m

∑
k

εstray,k

ω2
rf,k + ω2

dc,k

k̂ = Q

m

∑
k

εstray,k

Prf
P0

ω2
rf0,k

+ ω2
dc,k

k̂,

(9)

which is equivalent to the average displacement rε from
Eq. (4), as ω2

k = ω2
rf,k + ω2

dc,k . Here Prf/P0 has been introduced
as a convenient scaling factor. Prf is the applied rf power, and
ωrf0,k the rf trap frequencies at an applied rf power of P0

FIG. 1. (Color online) Left: In the presence of a stray field εstray,
for example, an electric stray field from misaligned electrodes or the
effective field of a light pressure force, the ion is pushed out of the
minimum of the effective rf potential (thin blue line) to r0, where it
experiences a nonvanishing rf field and thus is subject to micromotion.
Right: When the applied rf power is changed, the curvature of the
effective rf potential and the equilibrium position r ′

0 of the ion change.
As the stray fields in the left and right plots are of identical strength,
the equilibrium condition as given in Eq. (8) is fulfilled for identical
slopes (dashed gray lines) of the effective rf potential at the ion’s
position.

(P ∝ V 2 ∝ q2
k ). The shift of the equilibrium position out of

the rf potential minimum depends on the stray field and the
applied rf power (see Fig. 1).

As an intuitive point of view, it is also useful to combine
the effects of all stray fields (real as well as effective fields) as
a translation δ(εstray) of the dc potential origin explicitly and
rewrite the effective potential as

φeff(r) = m

2

∑
k

Prf

P0
ω2

rf0,k
r2
k + m

2

∑
k

ω2
dc,k[rk − δk(εstray)]2.

(10)

In a 1D trap, the electric stray field would shift the dc potential
by

δ = −Qεstray

mω2
dc

, (11)

and the ion’s position in the trap by

r0 = Q

m

εstray
Prf
P0

ω2
rf0

+ ω2
dc

. (12)

As the applied rf power is increased the ion’s position will then
approach the minimum of the rf pseudopotential (r0 = 0). By
monitoring r0 as a function of the rf power an extrapolation of
the rf node in the limit of Prf → ∞ is possible.

Instructive cases of 2D potential configurations displaying
characteristic features of the ion’s movement are shown in
Fig. 2. The electric stray potential has been included as a
shift of the dc potential’s origin [see Eq. (10)]. Rf potential
isolines are drawn in yellow; dc potential isolines in blue.
Filled colored circles indicate the respective potential’s origin.
The thick black line marks the equilibrium positions of the ion
while tuning the applied rf power from ∞ to 0.

Figure 2(a) displays a configuration of confining rf and dc
potentials with degenerate trap frequencies (ω2

rf,x = ω2
rf,y > 0,

ω2
dc,x = ω2

dc,y > 0), as it can be realized in the central hor-
izontal plane of a ring trap with a positive dc bias on the
ring electrode. Due to radial symmetry, the ion’s equilibrium
positions will move in a straight line between the rf and the dc
node as the rf power is varied.
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FIG. 2. (Color online) Two-dimensional potential configurations of the dc (blue isolines) and rf (thick yellow isolines) (pseudo-)potentials.
The potentials’ origins are indicated by respectively colored filled circles. The thick black line represents the ion’s trace as the strength of the
rf potential is tuned from ∞ to 0. The dashed gray line shows the full hyperbola and its asymptotes describing the ion’s movement. (a) A
configuration of degenerate trap frequencies (ω2

rf,x = ω2
rf,y > 0, ω2

dc,x = ω2
dc,y > 0). Due to radial symmetry, the ion’s equilibrium positions will

move in a straight line. (b) For broken dc radial symmetry (ω2
dc,x < ω2

dc,y) the ion’s trace changes to a hyperbola. (c) A potential configuration
with an unstable dc trapping in the x̂ direction (ω2

dc,x < 0) as realized in the transverse plane of a linear Paul trap. (d) Additionally broken rf
radial symmetry (ω2

rf,x > ω2
rf,y) and a rotation of the dc potential’s principal axes cause a shearing and rotation of the hyperbolic trace, featuring

nonperpendicular asymptotes.

When radial symmetry is broken (e.g., ω2
dc,x < ω2

dc,y) the
ion’s trace changes to a hyperbola [Fig. 2(b)]. The dashed
line indicates the full hyperbola and its asymptotes. As the
rf potential still features rotational symmetry, the hyperbola’s
asymptotes are parallel to the dc potential’s principal axes.

For now we have assumed the rf and dc potentials to be
confining in all directions. In a typical linear Paul trap, the
dc potential will be used to create dc confinement in the
axial direction. Since the dc potential has to obey Laplace’s
equation [�φdc(r) ≡ 0], it must be repulsive in at least one of
the radial directions. Figure 2(c) shows the same configuration
as Fig. 2(b), but with an unstable dc trapping in the x̂ direction
(ω2

dc,x < 0), resembling the potentials in the transverse plane
of a linear Paul trap. The extreme values of the two potentials
do not reside on the same branch of the hyperbola but are
separated by its pole. When decreasing the rf power and thus
lowering the rf confinement, the ion’s equilibrium position
will move away from both the rf minimum and the dc saddle
point, finally escaping from the trap when the rf confinement
becomes weaker than the dc repulsion.

In the most general case [Fig. 2(d)] also the rf po-
tential’s radial symmetry is broken (ω2

rf,x > ω2
rf,y) and the

directions of the dc potential’s principal axes are rotated
with respect to the rf potential. This causes a shearing and
rotation of the hyperbolic trace, featuring nonperpendicular
asymptotes.

A particularly interesting consequence of nondegenerate
radial rf trap frequencies is the existence of a nonvanishing
axial rf component. In the quadrupole approximation the rf
potenial can be written as

φreal
rf (r,t) =

∑
k

αk(V ) cos(�t)r2
k , (13)

where the αk depend on the actual geometry of the trap and
the rf voltage V . Using Eq. (5) and qk = 2Q

m�2 αk the rf trap
frequencies are given by

ω2
rf,k = Q2

2m2�2
α2

k . (14)

Since the rf potential fullfills Laplace’s equation �φreal
rf (r,t) ≡

0 ∀t , it follows that

�φreal
rf (r,t) = 2 cos(�t)

∑
k

αk ≡ 0 ⇒
∑

k

αk ≡ 0. (15)

A vanishing axial rf component ωrf,z requires αz = 0, which
immediately yields the degeneracy of the radial rf trap
frequencies,

αx = −αy ⇒ ω2
rf,x = ω2

rf,y . (16)

The above considerations allow us to detect excess micro-
motion by monitoring the ion’s position while varying the
applied rf power. Using Eq. (9) (adjusted for a rotation of the
dc potential’s principal axes), in principle, the measurement
of a single trace of the ion’s movement during an rf variation
without any variation of dc voltages is sufficient to extrapolate
the location of the rf node and therefore the location of zero
excess micromotion.

In practice, insufficient knowledge of the trapping parame-
ters (e.g., relative rotation of the rf and dc potential’s principal
axes, electric field generated by compensation electrodes)
might require the combination of variations of the rf power and
several dc voltage settings. An example of such a combination
is shown in Fig. 3. The rf and dc potential configuration is the
same as in Fig. 2(d), with three additional settings for compen-
sation voltages, shifting the origin of the original dc potential
(yellow lines) to (1.0,−0.5) (blue lines), (−0.5,−0.5) (green
lines), and (−0.5,1.0) (red lines). The dc potential’s origins
are marked by the respective filled colored circles. The ion’s
traces (thick lines) for all of these settings converge to the rf
node in the limit of infinite rf power. A parallel analysis of
the measurements for different dc configurations then yields
the position of the rf null as well as the required dc
compensation voltages.

III. EXPERIMENTAL SETUP

A schematic of the region of the microstructured segmented
linear Paul trap used in the experiments presented here is
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FIG. 3. (Color online) A combination of different dc potential
shifts for a potential configuration as shown in Fig. 2(d). Rf
(pseudo-)potential isolines are shown in gray. The ion’s traces (thick
lines) are shown for the original dc potential (yellow lines) and the
shifts of its origin to (1.0, − 0.5) (blue lines), (−0.5, − 0.5) (green
lines), and (−0.5,1.0) (red lines). Dashed lines show the respective
full hyperbolas; respectively colored filled circles, the dc potentials’
origins. All traces converge to the rf node (filled black circle) in the
limit of infinite rf power. Near the rf node, the set of all trajectories
resembles a star, as expected by intuition. The directions of the
hyperbola’s asymptotes are unchanged by the shifts.

shown in Fig. 4. The trap electrodes have a separation of
500 μm in the ŷ direction and 350 μm in the x̂ direction. The dc
electrodes are divided into segments of 250-μm width (labeled
DCUp,i and DCLow,i in Fig. 4). The full trap features 33 pairs
of dc electrodes composing a wide section (described above)
and a narrow section (electrode width, 100 μm; ŷ separation,
250 μm) that are connected by a tapered transfer section. The
trap and the supporting experimental setup have been described
in detail in [36,47,48].

For this work we trapped single 172Yb+ ions, which are
produced by a two-photon ionization process from neutral
ytterbium vapor emitted from the atom oven [49]. The ion
is Doppler cooled at the S1/2-P1/2 transition. The ionization
laser (399 nm), the cooling laser (369 nm), and two additional
repumpers (638 and 935 nm) are overlapped outside the
trap [47] and propagate through the center of the trapping
region, enclosing angles of approximately 35 ◦ with the x̂
direction and 89 ◦ with the ŷ direction [see Fig. 4(a)].

For basic trapping the central electrode pair (DCUp/Low,0)
is set to −1 V, providing axial confinement, whereas all other
dc electrodes are set to ground. The rf electrodes are driven
through a helical resonator with a voltage of 210 Vpp at a
frequency of 13.2 MHz. The secular frequencies of an ion
trapped with this configuration are ωx ′ = 2π × 1.054 MHz,
ωy ′ = 2π × 1.112 MHz, and ωz = 2π × 199 kHz. The prin-
cipal radial axes of the trapping potential (x̂′ and ŷ′) are rotated
by about 64 ◦ with respect to the x̂ and ŷ axes.

Static and approximately uniform fields for micromotion
minimization are created using three compensation voltages
UC [see Fig. 4(b)]. UC1 is added as an antisymmetrical
bias voltage to all upper (+UC1/2) and lower (−UC1/2) dc
segments, causing a field roughly along the x̂ + ŷ direction
near the trap axis. A second compensation voltage, UC2, is
applied to the aperture of the nearby atom oven. The aperture

FIG. 4. (Color online) Experimental setup (not to scale): (a) Top
view (along the −ŷ direction) including laser beams crossing the
trap (enclosing angles of approximately 35 ◦ with the x̂ direction)
and showing the bend of the oven aperture. The oven aperture is not
shown in (c). (b) Side view (along the ẑ direction) showing the upper
and lower electrode layers (dc and rf) and the Yb oven aperture used
as a compensation electrode (voltage UC2). The second compensation
voltage is applied by antisymmetrically biasing all upper and lower
dc electrodes (voltage UC1). Additionally a schematic of the focus-
scanning 3D determination of the ion’s position (see Sec. IV A) is
shown. The light gathering objective is mounted on a motorized
traveling stage, which is used to sweep the focal plane (vertical dashed
black lines) while imaging a series of intensity distributions (solid
blue lines). The ion’s x coordinate is determined from the fit of a
Gaussian beam waist to the spot sizes at different focus settings (thick
dashed red lines). The y and z coordinates are taken as the center of
a 2D Gaussian fitted to the intensity distribution imaged closest to
the x coordinate. (c) Frontal view (along the x̂ direction) of the upper
and lower dc electrodes (colored) and rf electrodes (semitransparent
gray).
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extends mainly in the y-z plane and its size largely exceeds
the dimensions of the central trap slit, creating a field mainly
along the x̂ direction. A bend of the aperture along the ŷ
direction near the trapping site causes a non-negligible z

component of the compensation field created by UC2 [see
Fig. 4(a)]. Therefore a counteracting field is created by adding
a calibrated bias voltage UB(UC2) antisymmetrically to all
outer left (DCUp/Low,i , i � −2) and outer right (i � 2) dc
electrodes (colored yellow), which cancels the unwanted z

component of the aperture’s field. The third compensation
voltage UC3 is applied antisymmetrically to the same outer
electrodes if control of the ion’s axial position is desired.

The ion is detected by imaging fluorescence of the cooling
transition along the −x̂ direction on an EMCCD (Andor
iXon X3 Blue) [see Fig. 4(b)]: The light gathering objective
(numerical aperture of 0.4) [50] is mounted on a motorized
traveling stage and allows a positioning of the focus of the
imaging system with a resolution of 8 nm along the x axis. The
objective collects the ion’s fluorescence with a magnification
of approximately 12.5 onto the chip of the EMCCD, consisting
of 512 × 512 pixels with an edge length of 16 μm × 16 μm.

IV. METHOD AND RESULTS

A. Focus-scanning position determination

Since our experiment features imaging of the ion only from
a single direction, we determine the full 3D position of the
ion in our trap during the rf and dc variation by employing
focus-scanning imaging [see Fig. 4(b)]. For every position
determination, we take several images of the ion with the focus
swept over ±15 μm. For every single image a 2D Gaussian
is fitted to the intensity distribution, yielding (y,z) center
coordinates of the distribution as well as the Gaussian spot
size. The x coordinate of the ion is then deduced by fitting the
spot size of a Gaussian beam to the spot sizes obtained from
the single images (see Fig. 5). Then the center coordinates of
the intensity distribution imaged with the focus setting closest
to the ion’s x coordinate are taken as the y and z coordinates
of the ion. Using this procedure, one is able to determine
the average ion position with a precision that is significantly
below the wavelength of the fluorescence light. In principle,
the precision scales as the inverse square root of the observed
fluorescence and is limited only by its signal-to-noise ratio
and the mechanical stability of the imaging system. For an
average number of about 7000 photons per image (observed
scattering rates of about 200 to 400 kHz) and images taken
at 25 focal positions, we routinely achieve a precision of
(σx,σy,σz) = (98 nm,39 nm,35 nm).

B. Micromotion minimization in two dimensions

To minimize micromotion in the radial plane at a specific
axial position we choose a set of voltage settings {(UC1,UC2)i}
and apply a set of rf powers {Prf,j }. For all combinations
(i,j ) a focus-scanning position determination is carried out,
yielding the ion’s equilibrium positions {r0,i,j }. To suppress
possible systematic effects of a quasicontinuous change in
the rf power, we iterate over the different rf powers not in
ascending or descending order, but over some permutation of
the chosen set.

FIG. 5. (Color online) Focus-scanning 3D determination of the
ion’s position. (a) Fitting 2D Gaussians to the intensity distributions
taken at different focus displacements yields the center coordinates
(y, z) of the distribution as well as the spot size. Exemplary fits
are given for focus displacements of ±13.5 and 0 μm. White lines
indicate the distribution isolines at one and two FWHM. (b) The ion’s
x coordinate is deduced by fitting the spot size of a Gaussian beam
waist to the spot sizes obtained from the single images. Error bars for
large focus displacements are overestimated, as the assumption of a
Gaussian beam only holds near the focus. The center coordinates of
the intensity distribution imaged with the focus setting closest to the
ion’s x coordinate are taken as the ion’s y and z coordinates.

We then model our effective trapping potential as a
superposition of the rf pseudopotential, the unshifted dc
potential, and two additional linear potentials as created by
our compensation electrodes,

�
(i,j )
eff (x,y) = m

2

Prf,j

P0
(r − rrf )

T Rαrf Mω2
rf
R−1

αrf
(r − rrf )

+ m

2
(r − rrf)

T Rαdc Mω2
dc

R−1
αdc

(r − rrf )

+ sC1(UC1,i − ŨC1)ŷT RαC1 (r − rrf )

+ sC2(UC2,i − ŨC2)x̂T RαC2 (r − rrf ), (17)

where Rα is a rotation by α, Mω2
rf

and Mω2
dc

are the diagonal
matrices of the squared rf and dc trap frequencies (ω2

rf0,k
and

ω2
dc,k), and sC1 and sC2 are geometrical factors depending on the

compensation electrode shape and placement. ŨC1 and ŨC2 are
the compensation voltages that cancel the stray potentials and
shift the origin of the dc potential to the position of the rf null
(rrf ). The trap frequencies are determined from independent
measurements by excitation of the ion’s motion with a voltage
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modulation of one dc segment for various settings of the
applied rf power Prf . All remaining parameters are determined
by fitting the equilibrium positions obtained from Eq. (17) to
the {r0,i,j }.

Figure 6 shows the results of an optimization procedure
with 12 settings for the compensation voltages (UC1,UC2) and
variation of the applied rf power over 12.5 dB in 25 steps
(varying the rf voltage from 420 Vpp to 99 Vpp). The circles
represent the ion’s positions r0,i,j with color-coded rf power,
the dashed line represents the fit, and the position of the rf
node rrf is marked by the central black circle. After applying
the optimized compensation voltages as yielded by the fit, we
perform a similar measurement but without any variation of
the compensation voltages. While lowering the rf confinement,
we detect no change in the ion’s average position before it
escapes the trap (at an rf voltage of about 62 Vpp), where
the escape happens more rapidly than the time resolution of
our position determination. Using Eq. (9) and the weighted
standard deviation of the ion positions along the principal
radial axes of our trapping potential, we derive a resid-
ual electric stray field uncertainty of (�εstray,x ′ ,�εstray,y ′ ) =
(0.09 Vm−1,1.09 Vm−1) at respective trap frequencies of
ωx ′ = 2π × 132.5 kHz and ωy ′ = 2π × 387.0 kHz, where
the principal axes of the trapping potential (x̂′, ŷ′) are
rotated by 64.8 ◦ counterclockwise with respect to the x̂ and
ŷ axes.

FIG. 6. (Color online) A 2D micromotion minimization per-
formed in the radial plane perpendicular to the trap axis. The x axis is
along the line of sight of our imaging optics. Optimization was carried
out using 12 settings of compensation voltages (UC1, UC2) and 25 rf
power settings. Colored filled circles represent the ion’s positions
with their respective rf powers, and example error bars indicating
±σx and ±2σy are given for four points in the upper-right quadrant.
Fit results of the ion’s trajectories are indicated by dashed lines and the
rf node is marked by the filled black circle. The residual electric stray
field uncertainty along the principal radial axes after optimization
is determined to (�εstray,x′ ,�εstray,y′ ) = (0.09 Vm−1,1.09 Vm−1) at
respective trap frequencies of ωx′ = 2π × 132.5 kHz and ωy′ =
2π × 387.0 kHz, where the principal axes of the trapping potential
(x̂′, ŷ′) are rotated by 64.8 ◦ counterclockwise with respect to the x̂
and ŷ axes.

Rf power dependence of the trap structure

During the measurements the rf drive power is varied, so
the energy deposition at the trap structure will be changed.
The accompanying change in temperature might affect the
trap geometry due to thermal expansion and might result in an
rf power dependence of the rf node. The rf node yielded by
the trajectory analysis might then be different from the rf node
present during normal trap operation.

If the time between changes in the rf power is short
compared to the time constant for temperature changes in the
trap structure, the rapid changes in the rf drive will average
to an effective rf power throughout the measurement. Thus
the temperature of the system does not change significantly if
the effective power during the measurement is matched to the
constant rf power during normal operation. This matching can
always be achieved by the choice of rf powers that are sampled
during the minimization process.

In our particular setup the trap is composed of gold-plated
aluminium oxide glued and wire-bonded to an actively cooled
aluminium oxide holder [47]. Given the low thermal resistivity
of our trap-holder setup and its good thermal coupling
to the cooling system, we estimate the time constant for
temperature changes of the trap-holder system to be large
compared to the time between changes in the rf power for
our measurements (a few tens of milliseconds). Also, our
comparatively low maximal rf trapping voltage (420 Vpp)
(and, thus, low heating power) limits the system to only
small temperature changes. In addition, the order in which
measurements at different rf powers are carried out adds to the
averaging effect. Thus, the conditions for an effective constant
rf drive power are fulfilled in the experiments presented
here.

A non-negligible change in the trap geometry caused by the
changes in the rf power would manifest itself in a discrepancy
between model and measurement data. A change in the trap
geometry would yield both a change in the rf trap frequencies
ωrf,k [Eq. (5)] not compatible with the changes predicted by the
model and a change in the dc trap frequencies ωdc,k [Eq. (7)]
that are assumed constant. These effects would alter the ion
trajectory as a function of the rf power [Eq. (9)], which is not
observed in the experiment (Fig. 6).

In general, even if a trap structure exhibits a time constant
for rf-drive-induced temperature changes that is comparable
to the time required to take a single image of the ion, and if
thermal deformation of the trap geometry is of concern, the
latter can be avoided. The single-image exposure can always
be shortened such that the averaging condition mentioned
above is fulfilled. The whole measurement sequence will
then be executed repeatedly and the single-image position
determination is performed by averaging over repetitions of the
measurement sequence, with only a minor effect of increased
readout noise.

If constant rf power is mandatory, the method presented
here can also be carried out by a variation of a dc voltage
bias applied to the rf or dc electrodes instead of the rf power
variation [42]. Under variation of a dc bias symmetrically
applied to the rf or dc electrodes, the rf trap frequencies will
remain constant, while the dc trap frequencies change. As in
the case of an rf power variation the ion’s equilibrium position
will follow hyperbolic trajectories [Eq. (9)].
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FIG. 7. (Color online) Results of a 3D optimization procedure
performed in a trap region with non-negligible axial rf field strength.
Minimization was performed using 4 (UC1,UC2) × 3 (UC3) settings
of compensation voltages. Filled circles represent the average ion
positions obtained from focus-scanning imaging, with their colors
indicating the respective rf powers. Example error bars indicating
±σx and ±2σy,z are given for four points. A fit of the trajectories is
indicated by dashed lines. The filled black circle shows the position
of the rf node.

C. Micromotion minimization in three dimensions

By construction, an ideal linear trap features no axial rf
electric field component and therefore no axial micromotion.
For all realizations with finite-size electrodes, particularly
for segmented traps, regions of non-negligible axial mi-
cromotion cannot be avoided, although recent results have
demonstrated trap designs with small residual axial rf field
components [33,44,51,52].

The focus of segmented traps, such as the one used here,
often lies in the storage and manipulation of ion crystals.
Such operations, e.g., shuttling, splitting, and merging, make
use of an extended region along the almost-micromotion-free
symmetry axis of the linear trap. In these cases a space curve
of positions of minimized radial micromotion along the axial
direction may be used to optimize the operation of the trap.
In a similar sense, when experimenting with extended linear
ion crystals oriented along this axis, finding a single point
of vanishing axial micromotion is not meaningful. Any axial
offset from this ideal position, as long as it is much smaller
than the extent of the crystal will have a small effect. So
the level of precision aimed for in the determination of the
axial position will be of the order of a micrometer or slightly
less.

If the axial positions of trapped ions are not constrained
by other experimental requirements, minimization of axial
as well as radial micromotion can be performed. A 3D
micromotion minimization is demonstrated qualitatively by
extending the procedure for 2D minimizations by a variation
of the axial compensation voltage UC3. The model of the
effective trapping potential given in Eq. (17) is complemented
by adding the respective terms for axial components of the
rf pseudopotential, dc potential, and linear potential created
by UC3. Figure 7 demonstrates a 3D optimization procedure

performed in a region of our trap suffering from significant
axial rf electric field strength. The minimization was per-
formed with 4 different settings for the radial compensation
voltages (UC1,UC2) and 3 different settings for the axial
compensation voltage UC3, yielding 12 ion trajectories of
varying rf powers. Filled circles represent the average ion
positions, with their colors indicating the respective rf powers.
A fit of the trajectories from the 3D effective trapping potential
are given by dashed lines. As described in Sec. II all trajectories
approach the rf node (filled black circle) for increasing rf field
strength.

V. PERFORMANCE

In [31] a comparison of several micromotion minimization
approaches is given in terms of various figures of merit, such
as the residual electric stray field uncertainty, the micromotion
amplitude, and the average kinetic energy of micromotion,
which relates to the second-order Doppler shift. For a specific
experiment, one of these numbers might be more suitable or
relevant than the others. The micromotion amplitude and the
average kinetic energy depend, to different extents, on the ion
mass and on the drive and secular frequencies. These numbers
vary substantially throughout the ion trapping community,
therefore the residual electric stray field uncertainty �ε, from
which the other quantities mentioned above can be derived,
is the relevant quantity that can easily be compared among
experiments. In general, by increasing the rf drive power, one
can, within the constraints given by the experiment, reduce the
effect of micromotion.

In Table I the outcomes of several minimization meth-
ods are listed. The final level of precision of micromotion
minimization can be scaled in each method by changing the
averaging time for data taking, as long as the stray fields to
be compensated are stable. Ultimately, as our minimization
approach relies on imaging, the position determination and, in
turn, the determination of the rf null location are shot noise
limited. Thus another question to ask is the sensitivity of a
minimization method, that is, on what time scale what level of
precision is obtained. Here, almost no information was found
in the literature.

The observed fluorescence rate is limited by the S1/2-P1/2

transition of 172Yb+ and its line width  = 2π × 19.2 MHz,

TABLE I. Comparison of micromotion minimization methods in
terms of the residual electric stray field uncertainty �ε. The first six
rows of data are an extension of the values given in [31]; the last row
states the results obtained in this work. If different residual electric
stray fields for different trapping directions are reported, only the
lowest value per reference is given.

Ref. Method �ε (V/m)

[33] Photon-correlation spectroscopy 0.9
[3]/[38]/[37] Micromotional sideband spectroscopy 7/1/0.4
[40] Ion-cavity emission spectroscopy 1.8
[45]/[44] Parametric excitation of secular motion 6/0.4
[31] Neutral atom loss 0.02
[42] Monitor displacement � 11.8
This work Trajectory analysis 0.09
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the solid angle covered by our light gathering optics (4% of
4π ) and its transmission, and the quantum efficiency of our
camera (55%). With these constraints and the time required for
the translation of our optics (about 400 s), recording a data set
such as shown in Fig. 6 takes about 620 s and directly yields all
compensation voltages. We achieve a sensitivity of the residual
electric field in the radial directions of (sεstray,x ′ ,sεstray,y ′ ) =
(2.3 Vm−1

√
Hz, 27.1 Vm−1

√
Hz).

VI. POSITION DETERMINATION APPLICATION:
LIGHT PRESSURE MEASUREMENT

Another application of precise position measurements is
the determination of small forces, where trapped ions have
been proven to be excellent probes [53,54]. We demonstrate
this with the example of the light pressure force [55] acting on
a laser-cooled ion in a Paul trap.

When micromotion is minimized using any scheme that
utilizes a signal from an incoherent scattering process, the
light pressure force due to the fluorescence-inducing laser is
compensated automatically. As a consequence, the settings
obtained from the minimization are only valid at the scattering
rate used during the process and will be different if the
interaction is changed (e.g., change in laser intensity or use
of a different transition). This is especially true for coherent
manipulation of the ion, as there is no light pressure force
present.

If minimized micromotion is required for situations without
photon scattering, it is neccessary to perform the minimization
for several scattering rates and extrapolate the minimization
settings to the zero-scattering level. Given sufficient knowl-
edge about the dc potential, one can monitor the ion’s position
as a function of the scattering rates and counteract solely the
light-pressure-induced shift.

The force corresponding to the time-averaged momentum
transfer of absorbed laser photons (or light pressure force) Flp

is given by

Flp = 〈 ˙pph〉t = �κ, (18)

with rate of absorption , Planck constant �, and laser wave
vector κ . This force can effectively be treated as originating
from a stray potential and adds as Flp,k/m to the right-hand
side of Eq. (1). In analogy with Eq. (4), the light pressure force
shifts the ion’s average position by

rlp = 1

m
M−1

ω2 Flp, (19)

with M−1
ω2 being the inverse matrix of the squared secular

frequencies. In the frame of the potential’s principal axes
M−1

ω2 is diagonal and Eq. (19) reduces to rlp = 1
m

∑
k

Flp,k

ω2
k

k̂′

[see Eq. (4)].
When the light field interacting with the cooling transition

is detuned by δ from resonance, the scattering rate  and hence
the rate of absorption of the ion are given by

 = s0

1 + s0

γ /2

1 + (2δ/γ ′)2
, (20)

with the on-resonance saturation parameter s0 = 2�2/γ 2, the
Rabi frequency � of the interaction, the natural line width

of the transition γ , and the saturation broadened line width
γ ′ = γ

√
1 + s0.

The expected light pressure force of a laser saturating (s0 =
1) the S1/2-P1/2 transition of 172Yb+ red detuned by γ /2 is
|Flp| ≈ 35 zN. For the parameters given as setting (a) in Fig. 8,
this force would cause a shift of rlp ≈ (4 nm,1 nm,−50.0 nm),
which is of the order of the level of precision of the
position determination reported above for the z component
and significantly below for the x and y components. To be
able to observe the light pressure shift, averaging over several
position determinations is a necessity in our present setup.
Furthermore, the mechanical stability of our imaging system
requires differential measurements to cancel slow movements
of the objective mount causing a virtual shift of the ion’s
position.

We measure the shift of the ion’s center coordinates in the
z-y plane as a function of the change in the observed scattering
rate for different sets of trap frequencies. The ion’s scattering
rate is varied by tuning the intensity of the 369-nm light field
using an acousto-optic modulator in 15 steps. Exposure times
are adjusted such that the amount of collected photons for each
intensity setting is approximately constant to avoid systematic
effects in the position determination. We obtain the shifts of
the ion’s central positions (�y,�z) with respect to the lowest
intensity setting and average these shifts over 500 repetitions of
the intensity variation for each trapping configuration, which
improves the precision to the nanometer range. The change
in observed scattering rate �obs is determined by extracting
the number of collected fluorescence photons from the ion

FIG. 8. (Color online) Shifts of the ion’s y (blue symbols) and z

(yellow symbols) position as a function of the change in observed
scattering rate for three trap configurations. Corresponding symbols
and trap frequencies (in kHz) are specified in the legend. Set (a) gives
strong confinement in all three directions; set (b) features weakened
axial confinement resulting in an increased shift along the ẑ direction.
Set (c) is weakened in terms of radial confinement and causes a
substantial shift along the ŷ direction. Inset: Zoom-in on the region
of small shifts. Straight lines are fits of the linear dependence of the
position shift on the change of the light pressure force (see text).
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TABLE II. Comparison of the ratios of αz as obtained from our
fits and the squared inverse ratios of the trap frequencies ωz (αz ∝ 1

ω2
z
)

for three trapping configurations, (a), (b), and (c) (see text and Fig. 8).

(i), (j ) (a), (b) (c), (b) (c), (a)

(ω(i)
z /ω(j )

z )2 0.046(3) 0.046(3) 0.9947(15)

α(j )
z /α(i)

z 0.041(5) 0.044(5) 0.92(16)

images and referencing to the lowest intensity setting as well.
Using a part of the image with negligible contributions from
the ion’s intensity distribution we monitor and correct for the
background.

Figure 8 shows the shifts of the ion’s average position in
ŷ (blue symbols) and ẑ direction (yellow symbols) versus
the change in observed scattering rate for three sets of trap
frequencies: (a) strong confinement in all three directions,
(b) weakened axial confinement, and (c) weakened radial
confinement. Detailed trap frequencies and corresponding
symbols are given in the legend in Fig. 8. The inset shows
a zoom-in where data from the weak axial confinement have
been left out for clarity. The linear dependence of the ion’s
position shift on the observed scattering rate and thus the light
pressure force given by Eq. (19) and Eq. (18) is clearly visible.

We fit a linear model, �rlp,k = αk · �obs + βk (k = y,z),
to the data, where αk = γ �

m
(M−1

ω2 κ)
k

and γ is a scaling
factor accounting for the overall efficiency of our imaging
system ( = γ · obs). When we weaken the axial confine-
ment of the ion but keep a comparable radial confinement
[going from case (a) to case (b)], the movement in the ẑ
direction increases from α(a)

z = −0.19(3) nm kHz−1 to α(b)
z =

−4.66(4) nm kHz−1, whereas the shift in the ŷ direction
(α(a)

y = −0.01(1) nm kHz−1) changes only negligibly. Keeping
the axial confinement but lowering the radial confinement
[going from case (a) to case (c)], we observe no change
in the shift along the ẑ direction but an increased shift
along ŷ of α(c)

y = 0.144(13) nm kHz−1, which agrees with the
approximate orientation of the trapping potential’s principal
axes.

Since M−1
ω2 is not diagonal in our frame of observation, the

ion’s displacements cannot in general be associated with only
one of the trap frequencies, and as the principal axes of the dc
and rf effective trapping potentials differ, changing the radial
confinement also changes the orientation of the radial trapping
axes. For the shifts of the ion position along the ẑ direction,
however, αz = γ �

m

κz

ω2
z
, as the axis of our linear trap is aligned

in parallel with ẑ. So the ratio of αz for two different axial
confinements should be equal to the squared inverse ratio of the
trap frequencies ωz. Ratios obtained from the measurements
displayed in Fig. 8 and the respective trap frequency ratios for
the axial position shifts are listed in Table II, yielding a good
agreement.

The best sensitivity and uncertainty are achieved for
lightweight particles and low trap frequencies along the
direction of the scattering force [see Eq. (19)]. As the
sensitivity depends on position accuracy, the measurement
can again be optimized for either precision or speed. For our
setup we report a sensitivity for the measurement of the light

pressure force along the ẑ direction of sFlp = 633 yN/
√

Hz
(total exposure of a differential measurement: 38 ms), with
our minimal absolute uncertainty being σFlp = 135 yN.

VII. CONCLUSION AND OUTLOOK

In our present setup, fluorescence is detected normal to
the plane of the trap chip and, thus, perpendicular to the
soft trapping axis along which confinement is almost purely
realized by dc fields, labeled as the axial direction of our linear
segmented trap (compare Fig. 4). In an ideal linear trap, the rf
effective potential and thus micromotion depend exclusively
on the radial coordinates, perpendicular to the axial direction.
In this case position changes upon rf variation will occur only
in radial directions and thus partially in the direction of our line
of sight. In real traps, there might be a residual axial rf electric
field, which is minimized by careful design and typically much
smaller than the radial rf field strength. In segmented traps,
the intention is usually to exploit the entire axial span of the
linear trap by shuttling, etc., and thus axial micromotion might
be present but potentially cannot be minimized. Micromotion
minimization always requires a determination of the radial ion
displacement or motion, in our case also along our line of sight.
We realize this with focus-scanning imaging as detailed above.
In our present setup this is one of the main limitations, in both
precision and speed. As our detection of excess micromotion
is based on a shift of the ion’s average position, the method as
presented is insensitive to micromotion induced by a phase
difference between the rf trap electrodes or an rf pickup
of the dc electrodes that is phase-shifted by nearby filter
circuits. These effects can be avoided by design to a great
extent, especially in surface traps, and are often of negligible
size.

Detection along the axial direction of the trap would allow
us to obtain the relevant displacements without the time-
consuming physical translation of massive light gathering op-
tics and reduces the number of required images considerably:
right now, we take 25 focal steps and need to include additional
times to wait for the completion of a translation action.
Additionally, omitting a translation stage further improves the
mechanical stability and thus the precision of the position de-
termination. Taking into account translation and settling times
as well as the reduction in the number of images, the speed
of acquisition would increase by a factor of approximately 70,
meaning that the entire minimization as shown in Fig. 6 would
be finished in two dimensions in roughly 9 s and the sensitivity
of this method would increase to about 0.3 V/m

√
Hz for a

2D minimization. Speed not only is relevant to keep the time
for calibration, etc., low and leave most for the experiment
of interest, but also allows to compensate more often and
characterize and counteract time-dependent drifts of the power
supplies and patch potentials. In principle, when the effects of
dc field changes of each electrode are well characterized, a
single trajectory will suffice, and this might further improve
the performance of the method in terms of speed.

Utilizing the same technique, precise position determina-
tion of a harmonically trapped ion may also be used for the
simple detection of small forces. We have demonstrated the
detection of forces on the yoctonewton (10−24 N) scale in
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the example of the light pressure force exerted on the ion
by the cooling laser. Depending on the experiment, precise
knowledge of the light pressure force might be desirable to
counter its effects and maintain minimal micromotion also
under experimental conditions without incoherent scattering.

In conclusion, we have presented a method which allows
us to compensate micromotion due to dc stray fields in
three dimensions using focus-scanning imaging as well as
the detection of rather small forces. The method is general
and does not require spectroscopy of a narrow transition or
a specific orientation of laser beams, which is of particular
interest for surface-electrode traps. If imaging is carried out
along the symmetry axis of a linear trap and the optimization
is carried out in the transverse direction only, no additional

components and no focus-scanning imaging are required and
the optimization can be carried out within seconds.
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