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Even though quantum systems in energy eigenstates do not evolve in time, they can exhibit correlations
between internal degrees of freedom in such a way that one of the internal degrees of freedom behaves like
a clock variable, and thereby defines an internal time, that parametrizes the evolution of the other degrees of
freedom. This situation is of great interest in quantum cosmology where the invariance under reparametrization
of time implies that the temporal coordinate dissapears and is replaced by the Wheeler-DeWitt constraint. Here
we show that the emergent character of an internal time variable can be investigated experimentally using the
exquisite control now available on moderate-size quantum systems. We describe in detail how to implement such
an experimental demonstration using the spin and motional degrees of freedom of a single trapped ion.
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Introduction. In classical and quantum mechanics time is
an external parameter. However, this external, absolute time
is not accessible experimentally. Rather time is measured by
clocks, that is dynamical systems whose evolution is related
in a simple way to the external absolute time.

In classical mechanics substituting clock time for absolute
external time is essentially just a change of variables. The
underlying formalism and its interpretation has been recently
investigated by Barbour [1–3].

In quantum mechanics novel features appear. First, in quan-
tum theory clocks are affected by quantum fluctuations, have
inherent uncertainties, and when a clock and a system interact
they necessarily disturb each other [4]. Second, an isolated
quantum system in an energy eigenstate is in a stationary
state. It does not evolve in terms of external time (except
for a physically meaningless overall phase). However, even in
this case internal degrees of freedom can be used as clocks
and define an internal time [4]. Since the state is stationary,
this internal time is totally uncorrelated to the external time.
In fact, one can argue that since external absolute time is
unobservable, the time-dependent Schrödinger equation is just
a mathematical convenience, and that all physical quantities
(states, observables) should be time independent [5].

Related to this is the problem of emergence of an ef-
fective time-dependent Schrödinger equation from the time-
independent Schrödinger equation. This question has a long
history going back to Mott’s seminal investigation of scattering
[6]; see also, e.g., Refs. [7,8]. The case of a radiation field
coupled to an atomic system is treated in Ref. [9].

The above issues reappear more forcibly when one con-
siders the quantization of gravity. Indeed, classical general
relativity is invariant under reparametrization of time and
therefore has no preferred time variable. If one tries to
formally quantize gravity, the invariance of the theory under
reparametrization of time implies that the temporal coordinate
disappears and is replaced by a constraint equation [10].
This constraint equation, the Wheeler-DeWitt equation, is

ill defined mathematically because of the appearance of
second-order functional derivatives. However, it can be used
to study how time emerges in quantum gravity. In particular
in quantum cosmology one generally studies minisuperspace
models in which only one, or a few, gravitational degrees
of freedom are kept. In this context it has been proposed
that some internal degrees of freedom can act as clocks and
parametrize the evolution of the other degrees of freedom
[11–13]. One then recovers an approximate time-dependent
Schrödinger equation. The clock variable should be as “heavy,”
i.e., as classical, as possible, in order that it be affected as little
as possible by quantum fluctuations and be as little perturbed
as possible by the back action of the other degrees of freedom.
For these reasons in quantum cosmology the clock variable is
generally taken to be the radius of the universe.

Formally, the problems of defining internal time for sta-
tionary solutions of the nonrelativistic Schrödinger equation,
and for solutions of the Wheeler-DeWitt constraint in the
mini-superspace approximation, are practically identical. (The
main difference is that the Wheeler-DeWitt constraint is not
positive definite, whereas matter Hamiltonians are.) For this
reason the issue of internal versus external time in matter
systems can be viewed as a proxy for the more fundamental
issue of time in quantum cosmology [4,5,14]. Further works
addressing this question can be found in, e.g., Refs. [15–19].

Motivated by the above considerations, in the present work
we study how the emergence of time in stationary solutions
of the nonrelativistic Schrödinger equation can be studied
experimentally. The exquisite control that is now available
over moderate-size quantum systems enables an increasing
number of foundational questions in quantum mechanics
to be investigated experimentally (instead of analytically or
numerically). For examples, see the recent review articles,
Refs. [20–25].

Thus, a first experiment illustrating some aspects of the
origin of time in quantum cosmology using two photons was
recently reported in Ref. [26]. This experiment, however, used
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propagating photons (therefore time evolving) and implements
external time evolution by varying the thickness of wave plates
(rather than actually waiting for an interval of external time),
and the clock variable only had dimension 2. Here, we focus
on trapped ion systems and present in detail how such an
experiment could be realized in the case where the clock
variable is the vibrational degree of freedom of the ion, and the
internal state is a spin degree of freedom. Excitation numbers
of the order of 10 for the clock variable should be readily
attainable.

Model based on spin and vibrational degrees of freedom.
We consider the simple model in which the clock is realized
by a harmonic oscillator and the other degrees of freedom are
realized by an angular momentum degree of freedom (a spin
S particle); see Refs. [4,5,9,14]. The Hamiltonian is

H = ωa†a + ω

2S∑
m=0

m|m〉〈m| , (1)

where a†,a are the creation and destruction operators for the
harmonic oscillator. We have adjusted the potential of the
oscillator and an external magnetic field that couples to
the spin’s magnetic moment and thus lifts its degeneracy, such
that the frequencies ω of the oscillator and spin are equal.

The harmonic oscillator acts as clock. In classical mechan-
ics time is therefore given by the phase of the oscillator, which
can be deduced from the position and momentum through
t = 1

ω
arctan q/p. However, this procedure cannot be applied

to a quantum model because there does not exist a well-defined
time operator, equivalent in this case to a well-defined phase
operator. But if the total excitation number of the oscillator
is less than N , then we can use the Pegg-Barnett phase states
[27–29]:

|�k〉 = 1√
N

N−1∑
n=0

e−i2πnk/N |n〉, k = 0, . . . ,N − 1, (2)

where |n〉 = a†n|0〉/√n! are the number states. The phase
states sum to the identity over the subspace a†a < N :

N−1∑
k=0

|�k〉〈�k| =
N−1∑
n=0

|n〉〈n|. (3)

We can therefore define a phase operator,

� = 2π

N

N−1∑
k=0

k|�k〉〈�k|, (4)

whose measurement yields a discretized approximation of the
phase of the harmonic oscillator, and therefore of time.

Time dependent states. Consider that the spin is initially
in the normalised state |ψ〉 = ∑2S

m=0 am|m〉 with am arbitrary
complex amplitudes satisfying

∑
m |am|2 = 1. If we evolve

this state according to the time-dependent Schrödinger equa-
tion we find

|ψ(text)〉 =
2S∑

m=0

ame−iωmtext |m〉, (5)

where text denotes the external time (i.e., the laboratory time).
Suppose that the clock is in a phase state |�k〉 corresponding to,

say, k = 0. The overall state at time text = 0 is |�〉 = |ψ〉|�0〉.
If we evolve this state according to the time-dependent
Schrödinger equation, the spin and the oscillator evolve
independently:

|�(text)〉 =
(

2S∑
m=0

e−iωmtextam|m〉
)(

N−1∑
n=0

e−iωntext

√
N

|n〉
)

. (6)

Stationary state. Now let us consider a particular energy
eigenstate for the system formed by the spin and the clock.
We project the state |�(text)〉 onto the subspace of energy E =
ωM , for some integer value of M . This yields the stationary
entangled state

|�M〉 =
min{2S,M}∑

m=0

am|m〉|M − m〉. (7)

In order to exhibit the evolution in internal time, we carry
out the joint measurement of both the phase operator � on
the state |�M〉 (in order to measure the internal time) and
of an operator acting only on the spin degrees of freedom.
Suppose the measurement of the phase operator � yields the
result 2πk

N
. The unormalized state of the spin conditional on

this measurement outcome is

|ψ(k)〉 = ei2πkM/N

√
N

min{2S,M}∑
m=0

ame−i2πkm/N |m〉. (8)

The interpretation of Eq. (8) is that each value of internal time
(i.e., of k) occurs with equal probability (since the norm of
|ψ(k)〉 in Eq. (8) is the probability of finding outcome k, and
is independent of k), and that the state of the spin conditional
on phase k being measured is identical to the spin having
evolved for a time tint = 2πk/(ωN ), where tint is the internal
time [compare with Eq. (5)].

(Note that the use of Pegg-Barnett phase states to
parametrize time evolution circumvents the problems encoun-
tered in other approaches to treat classical turning points of
the clock variable; see, e.g., Refs. [9,18].)

Experimental implementation using a trapped ion. The
basic requirements for any experiment that wishes to illustrate
the emergence of time in stationary quantum states, using the
above states are: (1) One needs a system with two degrees
of freedom described by the Hamiltonian Eq. (1); this can
be realized by trapping a single atomic ion in a harmonic
potential where the ion’s effective spin (suitable internal ionic
states) only interacts with the motional degree of freedom
when additional fields are applied. (2) At (external) time
text = 0 one initializes the system in state |�M〉; (3) at a
later (external) time text, one carries out a measurement of
the operator AS ⊗ |�k〉〈�k|, where AS is an operator acting
on the spin particle degree of freedom. However, such a
measurement of correlations between spin and motion of a
trapped ion is not always easy to realize experimentally (for
instance the proposals of Refs. [30,31] could possibly be used,
but to our knowledge have so far not been implemented in
the laboratory). Note that the measurement of operator � in
Eq. (4) will not permit a full tomography of the quantum state
of the spin and oscillator, but it is of course enough to check the
validity of Eq. (8). We will focus here on measurements that
require short total interaction times between electromagnetic
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fields and ion and thus are less susceptible to decoherence
during the measurement process. They allow one to deduce at
least approximately the expectation of AS ⊗ |�k〉〈�k|. (4) One
verifies that the results of the measurement are consistent with
the predictions of Eq. (8): namely that all values of internal
time tint are equally probable, that the spin state has evolved
in internal time, and that the results are independent of the
external time text at which the system is measured.

In order to realize the Hamiltonian Eq. (1), we consider as
spin degree of freedom the hyperfine levels of a trapped ion,
and as position degree of freedom the motion along one axis
of the trap. By adjusting the magnetic field and/or the trap
spring constant, one can adjust the energy hyperfine splitting
and/or the trap vibration frequency. In this way one can realize
the degenerate Hamiltonian Eq. (1). The hyperfine levels of
the ions frequently used in experiments (e.g., 9Be+, 43Ca+,
171Yb+) could be used to implement moderate values spin
S = 1/2,1,3/2, etc. In what follows we focus on the situation
where we only use two hyperfine states, corresponding to an
effective spin S = 1/2. We denote by |↑〉 and |↓〉 these two
hyperfine states.

A key procedure is measurement of the internal states of
the trapped ion, which is usually carried out by registering
resonance fluorescence. Depending on the internal state of
the ion it will either scatter light or not when subjected to an
appropriate light beam [32–34]. Thus, one can detect with near
unity efficiency whether the ion is in a specific hyperfine state,
say |m = 0〉. One can also detect with near unit efficiency
whether the ion is in the ground vibrational state |n = 0〉 [35]:
by tuning the laser to the red sideband, the ground state will
not fluoresce, as opposed to any other excited vibrational state.

Using the above measurement procedure, one can initialize
the system (by projection) in the state |↓〉|n = 0〉 [36]. Unitary
transformations between the states |↑〉,|↓〉 can readily be
carried out. And the vibrational state of motion of the atom
can be manipulated with high precision to generate Fock,
coherent, or squeezed states [35]. These techniques can be
used to produce the state

|�M〉 = a↑|↑〉|n〉 + a↓|↓〉|n + 1〉, (9)

for moderate values of n (say n � 10), where a↑,a↓ are
arbitrary complex numbers satisfying |a↑|2 + |a↓|2 = 1. This
is a particular realization of a state of the form given in Eq. (7).

Following this preparation procedure, one waits a time text,
and then measures the ion. To this end recall that arbitrary
unitary transformations can be carried out on the spin degree
of freedom, and that displacement and squeezing operations
can readily be carried out on the vibrational degree of freedom
[35,37]. It is thus possible, using the resonance fluorescence
measurement described above, to measure the probability to
be in the state

(μ|↑〉 + ν|↓〉) ⊗ D(α)S(z)|n = 0〉, (10)

where μ,ν are arbitrary complex parameters satisfying |μ|2 +
|ν|2 = 1, D(α) = exp (αa† − α∗a) is the displacement opera-
tor, and S(z) = exp ((za†2 − z∗a2)/2) the squeezing operator,
with arbitrary complex numbers α,z.

By varying the parameters μ,ν,α,z one can determine how
the spin is evolving in terms of the internal time. There
are different possibilities that we sketch, the first being the

projection onto coherent states. To this end, consider the
information obtained by measuring the probability to be in
the state

|φμνα〉 = (μ|↑〉 + ν|↓〉) ⊗ |α〉, (11)

where |α〉 = D(α)|n = 0〉 is a coherent state (displaced vac-
uum state). Projecting onto the coherent state |α〉 gives us
information both on the phase and amplitude of the vibrational
degree of freedom. On the other hand, the ideal measurement
(of the phase states) gives us only information about the phase.
We thus expect that projecting onto a coherent state should
be less precise than projecting onto a phase state. This is
confirmed by calculation. The probability to find the state
|φμνα〉 is

P (μ,ν,α) = e−|α|2
∣∣∣∣μ∗a↑

α∗n

√
n!

+ ν∗a↓
α∗(n+1)

√
(n + 1)!

∣∣∣∣
2

= e−|α|2 |α|2n

n!

∣∣∣∣μ∗a↑ + ν∗a↓e−iθ |α|√
n + 1

∣∣∣∣
2

, (12)

where α = eiθ |α|. It is thus as if the spin had evolved for
internal time tint = θ/ω. Note that the sum of the probabilities
of finding the spin in state μ|↑〉 + ν|↓〉 and the orthogonal state
ν∗|↑〉 − μ∗|↓〉, P (μ,ν,α) + P (ν∗, − μ∗,α), is independent of
θ , corresponding to the fact that all values of internal time, i.e.,
of θ , are equally probable.

Note that the measured value of |α| will fluctuate (since
in the Fock state |n〉, |α| has average

√
n and standard

deviation 1/2). The fluctuations disrupt the measurement
through the factor |α|√

n+1
on the right-hand side. Indeed only

when |α| = √
n + 1 does θ act exactly like the external time,

as in Eq. (5). The effect of these fluctuations will decrease as
the excitation number n of the harmonic oscillator increases.
This shows that as the clock variable becomes more and more
classical (large n), the way it is measured becomes less and
less relevant, provided some information about the phase of
the clock variable is obtained by the measurement.

In the procedure leading to Eq. (8) one determines the spin
state conditional on the phase of the oscillator. However, the
constraints in ion systems imply that the oscillator state is in
fact measured conditional on the measured spin state. By using
Bayes theorem, one can recover the time evolution of the spin
in terms of the oscillator. In fact, the procedure outlined above
can be rephrased as a measurement of the positive Q function
of the oscillator conditional on the spin being found in the
state μ|↑〉 + ν|↓〉. By extension one could also measure other
quasiprobability distributions of the oscillator conditional on
the spin being found in state μ|↑〉 + ν|↓〉. One possibility
would be to determine the Wigner function.

Instead of measuring the whole Wigner function, one could
measure the expected value of the generalized quadrature
Yθ = (aeiθ − a†e−iθ )/2i for a set of values of θ . In general, this
does not allow full tomography of the vibrational state of the
ion but will be enough to verify—with some errors—that the
spin and motion are correlated according to Eq. (8). Efficient
methods to measure Yθ for a trapped ion have been proposed,
for example, in Refs. [38–40] and applied to detect motional
states correlated with internal states of trapped ions, for
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MASSAR, SPINDEL, VARÓN, AND WUNDERLICH PHYSICAL REVIEW A 92, 030102(R) (2015)

example, in Ref. [41]. One could also carry out full tomography
of the ion motional state using the procedure of Ref. [42].

Concrete proposal using an Yb ion. As a concrete proposal
for such an experiment we outline its implementation using a
single Ytterbium ion trapped in an harmonic potential and ex-
posed to a spatially varying magnetic field. First, we define two
internal levels, namely two hyperfine states of 171Yb+: |↓〉 ≡
|S1/2,F = 1,mF = −1〉 and |↑〉 ≡ |S1/2,F = 1,mF = 0〉. In
the presence of a bias magnetic field B, these two levels
are no longer degenerate, and their energy-splitting � can
be controlled by adjusting B. The energy-splitting � needs
to be chosen as an integer number of the harmonic trap
energy-level separation �ω. We choose � = �ω, making the
levels |↓〉|n + 1〉 and |↑〉|n〉 degenerate.

The states |↓〉 and |↑〉 can be individually addressed using
an auxiliary internal state |aux〉 ≡ |S1/2,F = 0〉 [43] separated
from levels |↓〉 and |↑〉 by about 12.6 GHz. Population
transfer between |aux〉 and any of the levels |↓〉 and |↑〉 is
done using microwave pulses at the corresponding frequency
and polarization. The qubit {|↓〉,|↑〉} can be rotated using
either a resonant radio-frequency field or two microwave
fields via state |aux〉. A magnetic field gradient allows us to
couple vibrational and internal levels using RF or microwave
radiation [44–46], and, therefore, resonances between internal
states are accompanied by blue and red sideband transitions.
Driving these sidebands allows for generating a wide range of
effective Hamiltonians coupling internal and vibrational states
[38–40,47,48]. Alternatively, laser driven Raman transitions
can be employed for this purpose [35].

The proposed experiment consist of three concrete steps.
Step 1: prepare the ion state given in Eq. (9). First, using side-
band cooling the ion is brought to the state |aux〉|n = 0〉. Then,
a circularly polarized microwave π pulse on the blue side-
band of the |aux〉 − |↓〉 resonance prepares state |↓〉|k = 1〉.
Then, a subsequent π pulse applied on the red sideband
of the |aux〉 − |↓〉 resonance (or on the carrier of this
resonance) yields state |aux〉|k = 2〉 (or |aux〉|k = 1〉). This
procedure can be repeated until the desired motional state
|↓〉|k = n〉 is reached. Finally, an effective π/2 pulse on the
red sideband of the |↓〉 − |↑〉 resonance (microwave Raman
transition via state |aux〉) generates the superposition state

1√
2
|↑〉|n〉 + 1√

2
|↓〉|n + 1〉 (where for definiteness we have

chosen a↑ = a↓ = 1√
2
). Using this procedure it should be

possible to prepare the desired superposition for moderate
values of n, say n = 10. By way of example: For currently
used experimental parameters [49], the preparation procedure
should take external time ≈ n×3×10−4 s. Step 2: After having
prepared the initial state one waits for an interval of external

time text. The duration of the waiting time will be limited by
the coherence time of the internal and motional states that can
be of order 10−1 s in a well-shielded macroscopic ion trap.
Internal states insensitive to magnetic field fluctuations to first
order could also be used with coherence times on the order
of minutes. In that case Raman transitions would be used for
state preparation.

In step 3 the internal state and the motional state of the
ion are measured. The measurement scheme is based on
collecting state-selectively scattered resonance fluorescence
on the |S1/2,F = 1〉 ↔ |P1/2,F = 0〉 resonance near 369 nm
[50]. By preceding the scattering of resonance fluorescence
by a microwave π pulse transferring the population from state
|↓〉 (or |↑〉) to |aux〉, one can measure the internal state of
the qubit {|↓〉,|↑〉} in the σz basis. The absence of resonance
fluorescence in the subsequent measurement indicates initial
population of |↓〉 (or |↑〉). A detection of the qubit state in
an arbitrary basis is attained by an appropriate rotation of
the qubit {|↓〉,|↑〉} preceding the detection process described
above [51]. Importantly, if no light is scattered, the motional
state is not altered during the measurement. Therefore, after
a null detection event, the motional state correlated to |↓〉 (or
|↑〉) is measured by mapping the motional states onto two
internal states of the ion [38–41,47,48], such as |S1/2,F = 0〉
and |S1/2,F = 1,mF = +1〉), and then measuring the internal
states as described above. This mapping again is achieved by
using red and blue sideband transitions that accompany the
resonance between the ion’s internal states.

In future work it would be interesting to consider clock
variables that are even closer to those encountered in quantum
cosmology. The difficulty is that the clock variable in mini-
superspace would have to be modeled as a system with negative
kinetic energy. At first sight this seems impossible. It could,
however, possibly be realized in atomic lattices, using ideas
borrowed from a recent experiment that demonstrated negative
temperatures [52]. This would allow the investigation of many
additional phenomena, including the back reaction of the clock
on the matter degrees of freedom, and possible violations of
unitarity in the evolution of the matter degrees of freedom
when the clock is not classical enough.

Acknowledgments. We thank Marianne Rooman and
François Englert for many stimulating discussions. This
work has been partially supported by the “Communauté
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