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Abstract. We present a laser cooling scheme for trapped ions and atoms
using a combination of laser couplings and a magnetic gradient field. In a
Schrieffer–Wolff transformed picture, this setup cancels the carrier and blue
sideband terms completely (up to first order in the Lamb–Dicke parameter),
resulting in an improved cooling behaviour compared to standard cooling
schemes in the Lamb–Dicke regime (e.g. sideband cooling) and allowing cooling
to the vibrational ground state. A condition for optimal cooling rates is presented
and the cooling behaviour for different Lamb–Dicke parameters and spontaneous
decay rates is discussed. Cooling rates of one order of magnitude less than the
trapping frequency are achieved using the new cooling method. Furthermore,
the scheme exhibits fast rates and low final populations, even for significant
deviations from the optimal parameters, and provides good cooling rates also
in the multi-particle case.
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1. Introduction

Cooling of atoms/ions is an important precondition for quantum logic and computation
[1, 2], wherein an initial ground state preparation of the vibrational state is required, for high-
resolution spectroscopy beyond the Doppler limitations and for the analysis of low-temperature
phenomena (e.g. Bose–Einstein condensates (BEC)). Cooling by light (laser cooling) for atoms
and ions was originally proposed in [3, 4]. For trapped ions, sideband cooling [5, 6] is the
standard cooling method, achieved by tuning the laser frequency to the red sideband of the
bare atomic frequency, which leads to a resonant cooling contribution, whereas heating is
only induced by off-resonant carrier and blue-sideband excitations. To obtain well-resolved
sidebands requires the linewidth of the atomic transition to be much smaller than the trapping
frequency 0 � ν (strong confinement). Furthermore, taking into account that off-resonant
heating excitations increase with increasing laser intensity, the coupling Rabi frequency has
to be smaller than the trapping frequency � � ν (weak coupling) [2]. Cooling to lower
temperatures was reached using the concept of Raman sideband cooling [7], applicable for
atoms [8] and ions [9, 10], which allows the realization of very small cooling linewidths by
Raman two-photon transitions. Further improvements on the way to reach the ground state are
achieved with dark state concepts based on eliminating off-resonant excitations via quantum
interference. In electromagnetically induced transparency (EIT) cooling [11, 12], the concept of
electromagnetically induced transparency [13] is used to eliminate the carrier transition, which
gives the main heating contribution in the sideband schemes. It uses a three-level system coupled
by two lasers, wherein one of the lasers (the stronger one) creates the absorption spectrum, a
Fano-like profile with a zero at the carrier transition and a peak at the red sideband transition.
Therefore stronger couplings can be realized, no strong confinement is required due to the three-
level nature of the system and a large cooling bandwidth (i.e. frequency range for cooling)
allows simultaneous cooling of several modes. An alternative approach, based on the Stark shift
gate [14], is Stark shift cooling [15], cancelling the carrier transition for a correctly tuned Rabi
frequency, which is of the order of the trapping frequency. This is achieved in the dressed state
picture, i.e. taking the Stark shift of the laser interaction (originating from the zeroth order in the
Lamb–Dicke parameter contributions of the resonant coupling laser) into account. The robust
laser cooling scheme [16] combines the methods of EIT and Stark shift cooling, resulting in a
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dark state for the combination of EIT and Stark shift Hamiltonian contributions and leading to an
elimination of both the carrier transition and the blue sideband heating transition by interference.

The scheme presented here also eliminates the carrier and blue sideband transitions in
lowest order in the Lamb–Dicke parameter, using an atomic three-level system, a combination of
four laser beams and applying a magnetic field gradient. The application of an inhomogeneous
magnetic field to trapped ions resulting in a position-dependent resonance shift and mediating
the coupling between internal and external degrees of freedom (e.g. allowing the coupling by
microwaves with a non-vanishing effective Lamb–Dicke parameter) was discussed in [17, 18].
For our method, only the proper choice of the gradient strength and the phase relations of the
laser beams form the conditions for a pure red sideband interaction up to first order in the
Lamb–Dicke parameter.

This paper is organized as follows. In section 2, the cooling scheme is presented and the
influence of the magnetic field gradient is analysed. It turns out that in a Schrieffer–Wolff
transformed picture, both the carrier and the blue sideband transitions are eliminated by
interference, and thus cooling to the vibrational ground state in the zeroth order is achieved.
In section 3, the resonance condition for the cooling process is derived. Moreover, it is shown
that the maximal cooling amplitude is limited by the trapping frequency, a fact that arises
from the amplitudes of the dressed states, which are tuned to resonance. Section 4 presents an
analytic formula for the cooling rate obtained by the method of adiabatic elimination and valid
in the weak coupling case. Indeed, a comparison of numerical results shows good agreement
in the range of small Rabi frequencies. In section 5, the dependence of the cooling rate on the
spontaneous decay rate as well as on the magnitude of the Lamb–Dicke parameter is analysed.
Furthermore, the dependence of the cooling rate and final population on phase fluctuations of the
coupling lasers is presented, resulting in the conclusion that the scheme, albeit becoming slower,
still provides fast cooling and low final populations, even for relatively large deviations from the
optimal phase relation. Section 6 deals with the cooling of multiple vibrational modes, i.e. with
multiple trapped ions. Only for the centre-of-mass (COM) mode is a complete elimination of
heating terms (carrier and blue sideband) possible; however, the strength of the heating terms
for other modes is smaller than in standard cooling schemes.

2. Cooling scheme and Hamiltonian

The scheme presented here is based on a complete elimination of the blue sideband heating
terms in a Schrieffer–Wolff transformed picture (see equations (6) and (7) below) in lowest
order in the Lamb–Dicke parameter, which is achieved by a magnetic gradient field together
with a four laser coupling scheme. It requires an atomic three-level system consisting of a (fast
decaying) excited state |e〉 and a Zeeman split ground state |+ 1〉 and |− 1〉 induced by the
external position-dependent magnetic field. Each of the Zeeman split levels is coupled by two
lasers with Rabi frequency � and opposite Lamb–Dicke parameters η (η = k

√
h̄/(2 mν) cos θ ,

with θ being the angle of the laser beam to the trap axis and k the absolute value of the
wavevector), obtained by irradiating the beams from opposite directions, to the excited level
|e〉 having a phase difference ϕ = π/2 (see figure 1).

The ion is assumed to be trapped in a harmonic trapping potential with frequency ν, and for
simplicity only the motion along the trap axis is taken into account. Moreover, the expansion up
to first order in terms of the Lamb–Dicke parameter requires the atom/ion to be localized on the
scale provided by the laser wavelength (the Lamb–Dicke limit, η � 1). The position-dependent
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Figure 1. Cooling scheme: (a) coupling scheme in the standard basis. Each
of the Zeeman split ground state levels is coupled to the excited level |e〉 by
two lasers with Rabi frequency �, Lamb–Dicke parameter η, phase ϕ and
detuning δ. Note that the external magnetic field gives, besides the position-
independent ω0 splitting, an additional position-dependent energy shift via the
magnetic gradient contribution. (b) Scheme in dressed state basis after the
Schrieffer–Wolff transformation. See also equation (8).

magnetic field B(x) has the form

B(x) ≈ B0 +
dB

dx

∣∣∣∣
x=0

x, (1)

and higher terms are not present or can be neglected in the following expansion in terms of
the effective Lamb–Dicke parameter, respectively. The corresponding energy shift due to the

magnetic Zeeman splitting is (with the position operator x =

√
h̄

2 mν
(b + b†), wherein b† and b

are the phonon creator and annihilator operators, respectively) given by

1E = −µB = h̄ω0 ms + ηeff h̄ν (b + b†) ms, (2)

with µ the magnetic moment, ms the magnetic quantum number and ηeff =

√
h̄

√
2 mν

ω0
νB0

∂ B
∂x ,

providing a coupling between the spatial position and the internal energy, i.e. phonons and
internal atomic states. The effective Lamb–Dicke parameter has a physical meaning as the
energy difference between the left and right bounds of the ground state wavefunction extent in
units of h̄ν. The energy shift of the homogeneous part is given by h̄ω0 = −g µB B0, wherein g
denotes the g-factor and µB the Bohr magneton. Thus, the Hamiltonian of the system (compare
to figure 1) is given by (setting h̄ = 1)

H = ν b† b + ωe |e〉〈e| + ω0 (|+ 1〉〈+1| − | − 1〉〈−1|) + ηeff ν (| + 1〉〈+1| − | − 1〉〈−1|) (b + b†)

+� (|e〉〈+1| + | + 1〉〈e|) · [cos(kx − ωLt) + cos(−kx − ωL t + π/2)]

+� (|e〉〈−1| + | − 1〉〈e|) · [cos(−kx − ω∗

Lt) + cos(kx − ω∗

Lt + π/2)], (3)

with ωe being the energy of the upper level |e〉. In order to end up with a time-independent
Hamiltonian, we assume for the detuning δ = ωe − ω0 − ωL = ωe + ω0 − ω∗

L, wherein ωL is the
frequency of the first laser pair (coupling |+ 1〉 to |e〉) and ω∗

L the frequency of the second pair,
respectively (coupling |− 1〉 to |e〉). In an interaction picture, expanding the Hamiltonian up to
the first order in the Lamb–Dicke parameter η and applying the rotating wave approximation,
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Table 1. Magnetic gradients needed to fulfil condition (5) for different trapping
frequencies. Values are given for the S1/2 to P1/2 transitions of ytterbium-172
ions (369 nm) and calcium-40 ions (397 nm). In this case, the magnetic gradient
is given by ∂ B

∂x =
2 ν h̄

(−ge) µB
k cos θ , wherein θ denotes the angle between the laser

beams and the trap axis (η =
√

h̄ k2/(2 mν) cos θ ), which in the following is
assumed to be zero and ge denotes the electron g-factor.

172Yb+ 40Ca+

Trapping frequency [ν/(2 π)] (Hz−1) 5 × 105 1 × 106 5 × 105 1 × 106

Magnetic gradient ∂ B
∂x (T m−1) 607.6 1215 564.7 1130

The Lamb–Dicke parameter η 0.13 0.09 0.25 0.18

the Hamiltonian takes the form

H = νb†b + δ |e〉〈e| + ηe f f ν (| + 1〉〈+1| − | − 1〉〈−1|) (b + b†)

+

[
�

2
(1 + i) (|e〉〈+1| + |e〉〈−1|) + η

�

2
(1 + i) (b + b†) (|e〉〈+1| − |e〉〈−1|) + h.c.

]
.

(4)

In order to cancel the blue sideband heating contributions completely, it is important to adjust
the magnetic gradient field in a way so that

η = ηeff, (5)

as will be explained later. The values for the necessary magnetic gradient to fulfil condition (5)
for ytterbium-172 and calcium-40 ions are given in table 1.

The basic idea of the cancellation mechanism is that σx(b + b†) + iσy(b − b†) generates
the red sideband and cancels the blue one. Since the phonon coupling introduces a term that
is proportional to b + b+ and the magnetic gradient introduces a term that is proportional to
i(b − b+), we can expect that if the phases are adjusted appropriately, we can obtain a complete
interference of the blue sideband.

The effect of the magnetic field is best seen by applying a unitary Schrieffer–Wolff
transformation U [19] to the Hamiltonian (4)

U = exp{−η (| + 1〉〈+1| − | − 1〉〈−1|) (b − b†)}, (6)

resulting in the following transformations,

b → b − η (|+ 1〉〈+1| − | − 1〉〈−1|) ,

|+ 1〉 → |+ 1〉 exp[−η(b − b†)], (7)

|− 1〉 → |− 1〉 exp[η(b − b†)].

On applying the Schrieffer–Wolff transformation to the Hamiltonian (4) and keeping only terms
up to first order in η, we obtain (figure 1(b), note that η is equal to ηeff)

H ′
= UHU †

= νb† b + δ |e〉〈e| +

[
�
√

2
(1 + i) |e〉〈B| + η �

√
2 (1 + i) b |e〉〈D| + h.c.

]
. (8)
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Herein we have defined

|B〉 =
1

√
2

(|+ 1〉 + | − 1〉) ,

|D〉 =
1

√
2

(|+ 1〉 − | − 1〉) .

(9)

Note that the first-order expansion terms of the Schrieffer–Wolff transformation (ηeff) of
the zeroth-order term in η (Lamb–Dicke parameter) Hamiltonian contributions (see (4)) lead
to a cancellation of the first order in η blue sideband laser interaction contributions under the
assumption (5).

The complete time evolution in the Schrieffer–Wolff transformed picture is given by

∂

∂t
ρ = −i

[
H ′, ρ

]
+Ld ρ. (10)

The Liouvillian superoperator Ld describes the spontaneous decay from the excited level |e〉 to
the levels |+ 1〉 and |− 1〉. It exhibits the following form,

Ld
= Ld

0 +Ld
1 . (11)

Ld
0 ρ describes the general spontaneous decay terms in the zeroth order in the Lamb–Dicke

parameter,

Ld
0 ρ =

∑
i={(+1),(−1)}

γi

2
[2 |i〉〈e|ρ|e〉〈i | − |e〉〈e| ρ − ρ |e〉〈e|]. (12)

Ld
1 ρ is the Schrieffer–Wolff transformation contribution of the spontaneous decay term (in the

first order in η),

Ld
1 ρ =

∑
i={(+1),(−1)}

γi (−1)i η [(b − b†), |i〉〈e|ρ|e〉〈i |]. (13)

Note that recoil only contributes in order η4, leading to a very small correction to the cooling
rate (decreasing it) due to the dark state nature of the cooling scheme, and can therefore be
neglected for small η (which was tested by numerical simulations). This is due to the fact that
the probability of being in the excited state is given by η2, and the spontaneous decay including
recoil from this state is a process in second order in η, and therefore recoil only contributes with
a strength ∝ η4.

If the final phonon population |n = 0〉 is reached, the system will be decoupled from the
laser interaction and will end up in the state |D, n = 0〉 (‘dark state’). Note that due to the
presence of only red sideband terms, the phonon state |n = 0〉 will always be reached (unless
� = 0). In the original (i.e. non-Schrieffer–Wolff transformed) picture, this final state has the
form

U †
|D, n = 0〉 = |D, n = 0〉 − η |B, n = 1〉 +O(η2). (14)

Therefore, the presented scheme cools to the vibrational ground state (n = 0) in zeroth order
in η. Furthermore, the Schrieffer–Wolff transformation preserves pure states and thus does not
increase the entropy (which remains zero). A simple (projective) measurement of the internal
state |D〉 as well as a unitary rotation could further improve the achieved final population; that
is, they would result in a state with n = 0 up to second order in η.
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3. Conditions for optimal cooling rates and limitations

At first sight, it might seem possible to increase the cooling rate by an arbitrary amount just by
increasing the laser Rabi frequency �. However, a detailed analysis of the � |e〉〈B|-coupling
terms (cf Hamiltonian (8)) shows that this is not the case. These terms are changing the |e〉-state
(shifting it and mixing it with the |B〉-state) and therefore crucially influence the cooling term
(∼η�b|e〉〈D|). Optimal rates are achieved for tuning the cooling interaction in resonance with
one of the dressed states of the � |e〉〈B| interaction. The Hamiltonian (8) in the dressed state
basis takes the form

H ′
= ν b† b + ωu |u〉〈u| + ωd |d〉〈d| + η �

√
2 (1 + i) b

{(
au

e |u〉 + ad
e |d〉

)
〈D| + h.c.

}
, (15)

wherein |u〉 and |d〉 is the dressed state basis (each having contributions of |e〉 and |B〉 states),
ωu and ωd are the energies of those states (i.e. eigenvalues of the diagonalization procedure)

ωu/d =
1

2
(δ ±

√

δ2 + 4 �2), (16)

and au
e and ad

e are the amplitudes of |u〉 and |d〉 in |e〉, respectively (see also equation (17)),
i.e. the excited level |e〉 expressed in the dressed state basis is given by

|e〉 = au
e |u〉 + ad

e |d〉. (17)

In the interaction picture with respect to the first three Hamiltonian contributions, the resonance
condition (for tuning the |u〉 state to resonance) is easily seen to be fulfilled by setting ωu = ν.
This procedure leads to the following resonance condition for optimal cooling rates,

δ =
ν2

− �2

ν
. (18)

Consequently, the detuning is, for a given trapping and laser Rabi frequency, uniquely
determined in the optimal cooling case.

To see how the magnitude of the cooling term increases with increasing �, it is useful to
define an ‘effective Rabi frequency’ �eff. If |u〉 corresponds to the resonant state (the one that
has been tuned to resonance), then �eff is defined as

�eff = � au
e (19)

and is a direct measure of the strength of the resonant (and therefore relevant) cooling
contribution. In the case of fulfilling condition (18), it follows that

|�eff| =
ν |�|

√
ν2 + �2

(20)

(see figure 2(a)). From equation (20), it is clearly seen that it is impossible to increase the
cooling term contribution above a limiting upper value, or more precisely, �eff is limited to a
maximal value, which corresponds to the trapping frequency ν (|�eff|max = ν). Therefore the
trapping frequency is responsible for an upper limit to the maximal achievable cooling rate.

A second limitation arises from the decay rate γ and the contributions of the excited state
|e〉 in the new dressed state basis. Note that spontaneous decay to both dressed states and the
|D〉 state takes place. The cooling process relies on the decay to the |D〉 state, and thus, to keep
the process going, it is necessary that the other states decay fast enough, i.e. have a sufficiently
large |e〉 contribution. Otherwise the system will be trapped (at least for a certain amount of
time) in one of the dressed states and thus the cooling rate will decrease significantly. For equal
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Figure 2. (a) |�eff|/ν is plotted over the Rabi frequency � in units of the
trapping frequency ν. It turns out that the maximal achievable |�eff| is limited
to the trapping frequency ν (see also equation (20)). (b) Absolute value of |e〉
amplitudes in the dressed states; the red curve represents the resonant state. The
minimal amplitude determines the dynamics for a given �eff.

decay rates γ in (12) and (13), equal |e〉 contributions in the dressed states would lead to the
optimal case when only taking into account the spontaneous decay influence. The |e〉 amplitudes
in the dressed states for the resonance case (18) are plotted in figure 2(b). Note that the minimal
amplitude determines the dynamics. After a point of equal |e〉 amplitudes in the dressed states,
the minimal |e〉 amplitude decreases again with further increasing �eff, which sets the optimal
rate to a value �eff < ν, depending on the relation between γ and ν.

4. Rate equation formula and comparison to the numerical results

The procedure described in [7, 20] allows one to calculate an analytic formula for the cooling
rate by adiabatically eliminating the internal degrees of freedom under the assumption that the
cooling dynamics are much slower than the internal dynamics. Moreover, it is assumed that
the trapping frequency is large compared to the cooling dynamics (i.e. η� � ν), which allows
a projection on the phonon |n〉〈n| subspace, i.e. a derivation of a rate equation. This second
condition is only fulfilled for small values of � in our case (otherwise the cooling term is
of the order of the trapping frequency or, with further increasing �, even bigger). The rate
W can be written in the form W = A− − A+ and the final steady-state population is given
by 〈n〉ss = A+/(A− − A+), wherein A+ /A− are the transition rates for increasing or lowering
the phonon number, respectively. Those quantities consist of two time correlation functions
of internal operators, which can be calculated using the quantum regression theorem and the
optical Bloch equations. It follows that, due to the fact that there exist no heating terms in first
order in the Lamb–Dicke parameter, A+ is equal to zero and thus W = A− and the final phonon
population is given by 〈n〉ss = 0.

Following the procedure given in [20], we obtain for the rate W (see the appendix for the
calculation)

W =
8η2 �2 γ ν2

γ 2 ν2 + [(δL − ν) ν + �2)]2
, (21)
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Figure 3. Cooling rate W as a function of the Rabi frequency � both in units
of the trapping frequency ν for η = 0.1 and γ = 5ν (left plot)/γ = 0.5ν (right
plot). The detuning δ for a given � is chosen to fulfil the resonance condition
equation (18). The blue line is the rate obtained by numerical simulations, and
the red dashed line the one calculated using the rate equation formula (23).

where the rate W is defined via
d

dt
〈n〉 = −W 〈n〉. (22)

This rate (21) becomes optimal if the term in brackets is equal to zero and the resulting condition
is equivalent to the resonance condition given in equation (18). In that case, the rate takes the
form

W =
8η2 �2

γ
. (23)

The fact that the rate is proportional to 1/γ is a direct consequence of the adiabatic elimination
in high γ . More precisely, the rate W is proportional to the spontaneous decay rate γ of the
excited level times the probability pu of achieving this level. The latter quantity is proportional
to 1/γ 2, i.e. the probability of reaching the excited dressed state (here: |u〉) decreases with
increasing dissipation. Therefore, the rate is given by W ∝ (1/γ 2) γ = 1/γ . However, this does
not mean that the optimal achievable rate is becoming slower with increasing γ , because it is
possible to reach higher final values for � due to the fact that the (internal) dynamics are less
limited by the decreasing |e〉 amplitude of the resonant state, which occurs with increasing �

beyond a point of equal dressed state amplitudes. Figure 3 shows the rate obtained by numerical
simulations and that calculated using equation (23) for different Rabi frequencies. As expected,
the rate formula describes the rate quite well in the limit of small � values, whereas it fails
completely in the opposite limit (when the cooling contribution is getting stronger and the
conditions used for the formula derivation are no longer fulfilled).

5. Simulation and results

Figure 4 shows optimal cooling cycles for different spontaneous decay rates (γ = 0.5ν < ν and
γ = 5ν > ν). In the first case (γ < ν, the rate is of the magnitude of γ ), the optimal cooling
rate is achieved for �eff ≈ ν (compare to equation (18)), i.e. the case of equal |e〉 amplitudes
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Figure 4. Average population 〈n〉 versus time in units of the trapping frequency
ν for optimally chosen cooling parameters. The left plot describes the optimal
case for γ = 0.5ν (� = 0.85ν, δ = 0.28ν, η = 0.1) and the right plot for γ = 5ν

(� = 2.8ν, δ = −6.84ν, η = 0.1). The insets show the final cooling stage of the
corresponding figures using a logarithmic scale for the population, which clearly
reveals the final population of the order of η2.

in the dressed states. That is what one would expect, because with further increasing �eff to
its maximal value ν, there is one dressed state with a small |e〉 amplitude and therefore slower
spontaneous decay from this state leads to a decreasing rate despite the increasing strength of the
cooling term contribution. In the γ = 5ν, γ > ν, W � γ (cooling rate) case, the spontaneous
decay rate is much faster than the cooling dynamics. Therefore, as expected, it is possible to
increase �eff beyond the ‘equal amplitude’ situation and thus a slightly higher effective Rabi
frequency can be realized. The spontaneous decay time of the dressed states is much less
limiting in this case. Note that this higher � is needed to compensate for the influence of the
quantum Zeno effect, which reduces the rate compared to the γ = 0.5ν case for a given �. The
optimal achieved rates W (see also equation (22)) are 0.08ν (� = 0.85ν, �eff = 0.65ν) for the
γ = 0.5ν case and 0.09ν (� = 2.8ν, �eff = 0.94ν) for the γ = 5ν case, respectively. Rates for
different values of � are presented in figure 3.

The dependence of the cooling rate W on the spontaneous decay rate γ is plotted in figure 5.
As discussed before, for higher spontaneous decay rates, higher values of � are possible
because of fewer restrictions due to the spontaneous decay and therefore the rate increases with
increasing γ . For small values of γ , when the cooling dynamics are limited by the spontaneous
decay rate and not by the �eff coupling, the rate increases significantly with increasing γ . For
high values of γ , the rate converges to a limiting value for the rate. In this case, the cooling
dynamics are clearly limited by the fact that �eff reaches its maximal value ν (the trapping
frequency (20); see the right inset of figure 5 for the corresponding �eff values). Thus further
increasing � in the region �eff . ν for increasing γ (which is indeed necessary to compensate
for the higher quantum Zeno effect) leads to a very slow increase in �eff and therefore leads to
a saturation of the rate with �eff converging to its maximal value.

The dependence on η (for otherwise fixed parameters) is shown in figure 6. For η � 1,
i.e. in the regime where heating terms of higher orders in η can be neglected, the rate
scales approximately linearly with increasing Lamb–Dicke parameter η. Note that the rate
equation (23) includes a quadratic contribution of η, but also the optimal Rabi frequency
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Figure 5. Cooling rate W in units of the trapping frequency ν for different values
of the spontaneous decay rate γ (in units of the trapping frequency ν). The inset
shows the optimal value of � (left) and �eff (right) for a given γ . While the rate
increases fast in regions where the cooling is limited by the spontaneous decay
rate (small values of γ ), it saturates for high spontaneous decay rates, where
the rate is limited by the limitation of �eff (see also figure 2). Values have been
calculated for η = 0.1, optimal values for the Rabi frequency and the detuning
chosen according to the resonance condition equation (18).

depends on �, scaling approximately ∝ 1/
√

η and thus leading to an approximately linear
scaling4 of the rate dependence on η. Thus decreasing η leads to increasing � for the optimal
condition, which can be explained as compensating for the quantum Zeno effect, although it
deteriorates the spontaneous decay amplitude behaviour. By increasing η to higher values, it
reaches some optimal point and decreases again afterwards due to the fact that the heating terms
in second order (and by further increasing also in higher orders) in η become more and more
important.

The cooling scheme concept is designed for the Lamb–Dicke regime (η � 1), because
only in this regime can higher-order contributions be neglected. Numerical simulations for
higher Lamb–Dicke parameters show that the (minimal) final population always increases
with increasing Lamb–Dicke parameter. While the final population for η = 0.1 is given by
〈n〉 = 0.01 corresponding to η2 as expected according to (14), it is given by 〈n〉 ' 0.06 for
η = 0.2, 〈n〉 ' 0.64 for η = 0.3 and 〈n〉 ' 4.5 for η = 0.6 (� = 13ν, γ = 5ν). Therefore, only
in the Lamb–Dicke regime can the goal to achieve the vibrational ground state be achieved.
With respect to the new final population, the cooling exhibits for higher Lamb–Dicke parameters
on average again an exponential decay, leading e.g. for the above described η = 0.6 case to a
cooling rate of W ' 0.006ν. Note, however, that the cooling rate and the final temperature are
not optimized simultaneously for the same parameters, which especially for high Lamb–Dicke
parameters leads to significant differences in the final populations and rates. The fact that both

4 More exactly, numerical simulations show that the approximate scaling is given by W ∝ η1.28 and � ∝ η−0.45.
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Figure 6. Cooling rate W in units of the trapping frequency ν for different
values of the Lamb–Dicke parameter η. The corresponding � dependence (for
optimal rates) is shown in the inset. For small values of η (when the influence
of higher-order heating terms is small), the rate scales approximately linear in η.
All values have been calculated for a fixed spontaneous decay rate γ = 5ν and
optimal detunings according to the resonance condition (18), including terms up
to second order in η.

the final population and the rate are worse with increasing Lamb–Dicke parameter underlines
the restriction to the Lamb–Dicke regime.

Robustness to phase fluctuations. The presented scheme relies on destructive interference
and thus may be fragile to dephasing, i.e. fluctuations in the phase difference between the laser
pairs around the optimal π/2 value. The numerical analysis of the phase fluctuation is shown in
figure 7. It can be seen that even at fluctuations that are larger than 20%, the population is still
less than 10−2 and the rates decrease only by a factor of 2.

The proposed cooling scheme is faster than previously proposed continuous cooling
schemes. The fastest continuous scheme that was implemented is the EIT cooling scheme [12],
which cooled at a rate of 10−4ν. The robust cooling scheme [16] can in principle reach a rate of
10−2ν. In contrast, the proposed cooling scheme can reach rates that are one order of magnitude
less than the trap frequency.

6. Multi-mode cooling

The presented cooling scheme was tested for the case of several trapped ions. Furthermore,
the cooling scheme, i.e. the laser coupling of internal and external degrees of freedom as
presented in section 2, is applied to one of the trapped ions (named ion 1 in the following).
It is advantageous to express the Hamiltonian in terms of normal modes, wherein the creator
and annihilator of the nth normal mode are denoted by a†

n and an respectively. In contrast, the
ones of the ith local mode are denoted by bi and b†

i . Expanding equation (4) to the multi-particle
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Figure 7. The left plot shows the final population 〈n〉ss, and the right plot
the rate W in units of ν for different phase differences ϕ between the two
coupling laser pairs. Note that ϕ = π/2 corresponds to the optimal case allowing
the complete elimination of heating terms in first order in η. The simulation
is performed in the Schrieffer–Wolff transformed picture using a Hamiltonian
expansion up to second order in the Lamb–Dicke parameter with the parameters
� = 2.8ν, δ = −6.84ν (according to the resonance condition equation (18)),
η = 0.1 and γ = 5ν. Note that the final population corresponds to the population
in the transformed picture.

case leads to the Hamiltonian

H = δ |e〉〈e| +
∑

n

νn a†
n an + ην [| + 1〉〈+1| − | − 1〉〈−1|] (b1 + b†

1)

+

[
�
√

2
(1 + i) |e〉〈B| + η

�
√

2
(1 + i) |e〉〈D|(b1 + b†

1) + h.c.

]
+O(η2). (24)

Herein, νn describes the frequencies of the corresponding normal modes, the summation over n
equals a summation over all normal modes and all internal states correspond to those of ion 1.
With the transformation xi =

∑
n Mn

i Qn between the local coordinates {xi} and the normal
coordinates {Qn}, the local operators in (24) can be expressed in terms of normal ones using
the relation (xi =

√
h̄/(2mν) (bi + b†

i ))

(bi + b†
i ) =

∑
n

Mn
i

√
ν

νn

(
an + a†

n

)
(25)

and thus the Hamiltonian (24) reads

H = δ |e〉〈e| +
∑

n

[
νn a†

n an + η′

n ν [| + 1〉〈+1| − | − 1〉〈−1|]
(
an + a†

n

)]
+

[
�
√

2
(1 + i) |e〉〈B| +

∑
n

η′

n

�
√

2
(1 + i) |e〉〈D| (an + a†

n) + h.c.

]
+O(η2), (26)

wherein η′

n = ηMn
1

√
ν/νn.
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Again, the effect of the magnetic gradient terms is best seen by moving to a Schrieffer–Wolff
transformed picture in which the magnetic gradient displacements of the individual normal
mode oscillators are removed. This transformation is given by

U ′
= exp

[
−

∑
n

η̃n [| + 1〉〈+1| − | − 1〉〈−1|] (an − a†
n)

]
=

∏
n

exp
[
−η̃n [| + 1〉〈+1| − | − 1〉〈−1|]

(
an − a†

n

)]
, (27)

with η̃n = η′

n ν/νn = η Mn
1 (ν/νn)

3/2. Note that this transformation differs from the transforma-
tion used in section 2, which can easily be checked by inserting (25) into (6). Applying this
transformation (compare to equation (7)) to the Hamiltonian (24) leads to H ′

= U ′HU ′†,

H ′
= δ |e〉〈e| +

∑
n

νn a†
n an +

[ �
√

2
(1 + i) |e〉〈B| + η

�
√

2
(1 + i) |e〉〈D|

×

∑
n

Mn
1

√
ν

νn

([
1 +

ν

νn

]
an +

[
1 −

ν

νn

]
a†

n

)
+ h.c.

]
+O(η2). (28)

Consequently, the amplitudes of the blue and red sideband terms for a specific mode n depend
on the relation of the trapping frequency ν to the normal mode frequency νn. A complete
cancellation of blue sideband heating terms is only possible for the COM mode, because only
in this case νC O M = ν. For higher modes, heating terms are always present, although they are
off-resonant by tuning the laser frequency to the red sideband. In general, with increasing νn,
the heating amplitude increases and the cooling amplitude decreases, which leads to equal
amplitudes for νn → ∞. The latter case corresponds to the situation in cooling schemes that do
not cancel blue sideband terms, e.g. EIT cooling and sideband cooling. Therefore, the presented
cooling scheme results in an improved cooling behaviour with respect to those schemes also in
the multi-particle case albeit not being able to cool other modes than the COM mode without
heating terms.

The cooling of the individual modes (COM mode (blue), first excited mode (breathing
mode, red) and second excited mode (Egyptian mode, green)) for the case of three ions is
presented in figure 8. For three ions [2], EM1

= (1/
√

3, −1/
√

2, 1/
√

6), ν1 = ν, ν2 =
√

3ν,
ν3 =

√
29/5ν. The left plot shows the cooling starting with an initial population 〈n〉 = 2 for each

mode. Due to the fact that in the higher excited modes heating terms are always present while in
the COM mode those contributions are eliminated completely in first order in η, the COM mode
is always cooled with a faster rate also in the case when the cooling terms of any of the excited
modes are set to resonance, i.e. the COM cooling transitions are off-resonant. The right plot
shows the heating of the non-resonant excited modes originally in 〈n〉 = 0 during the resonant
cooling process of the COM mode starting from 〈n1〉 = 2. The modes are cooled/heated to final
populations of 〈n1〉 = 0.005, 〈n2〉 = 0.031 and 〈n3〉 = 0.14. That is, the heating turns out to be
very small and increases with νn, as expected from equation (28).

7. Conclusion and comments

We presented a cooling scheme in the Lamb–Dicke regime, which completely eliminates the
influence of the blue sideband heating transitions as well as the carrier transitions in lowest order
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Figure 8. Cooling of three trapped ions. The line colours blue, red and green
correspond to the single modes with increasing frequency in this order. The
simulation was performed in the original (non-transformed) picture using a
second order in η Hamiltonian expansion and the values � = 2.8ν, γ = 5ν and
η = 0.1. The insets show the corresponding cooling processes with a logarithmic
scaling of the population. The left plot shows the cooling of the three modes,
all starting with an initial population 〈n〉 = 2. The detuning δ was chosen in a
way to set the red sideband terms of the first and second modes to resonance,
respectively, corresponding to continuous and dashed lines. Continuous lines
describe the situation when the laser is tuned to resonance with the red sideband
of the COM mode and dashed lines the analogous situation with the breathing
mode tuned to resonance (see resonance condition equation (18)). The right
plot shows the heating of the excited modes during the cooling process of the
COM mode, which is set to resonance. The final populations are 〈n1〉 = 0.005,
〈n2〉 = 0.031 and 〈n3〉 = 0.14.

in the Lamb–Dicke parameter, resulting in a good cooling behaviour and providing cooling rates
of the order of one magnitude below the trapping frequency. Albeit the Lamb–Dicke regime
required for the Hamiltonian expansion and the resonance condition limit the cooling rate well
below the trapping frequency, the achieved rates are faster than in comparable existing schemes
working in the same regime (e.g. EIT cooling [11] and Robust cooling scheme [16]). This is
achieved by a proper choice of the magnetic gradient strength whose influence was analysed in
a Schrieffer–Wolff transformed picture. Optimal cooling conditions were derived together with
a formula valid in the weak laser coupling case. The dependence on the Lamb–Dicke parameter
as well as on the spontaneous decay rate was presented. Moreover, the cooling behaviour under
deviations around the optimal phase differences between the coupling laser pairs was analysed,
revealing that deviations of about 20% only reduce the rates by a factor of two and the final
population is still of the order of η2, both very satisfying values compared with other cooling
schemes working in the Lamb–Dicke regime. Furthermore, an analysis of the multi-particle case
revealed good cooling behaviour also for several modes, albeit not being able to eliminate the
carrier and blue sideband terms completely up to first order in η in other modes than the COM
mode.
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Appendix. Rate equation derivation

In this appendix, the calculation leading to the rate equation formula (21) is presented. The
master equation (10) up to first order in η can be written in the following form,

dρ

dt
= L0 ρ +

(
L1

1 +L2
1

)
ρ, (A.1)

wherein the lower index indicates the order in the Lamb–Dicke parameter. The Liouvillians are
given by

L0 ρ =
(
L0,ext +L0,int

)
ρ = −i

[
H0,ext, ρ

]
+

[
−i

[
H0,int, ρ

]
+Ld

0 ρ
]

(A.2)

L1
1 ρ = −i [H1, ρ] , L2

1 ρ = Ld
1 ρ, (A.3)

with the definitions of the spontaneous decay contributions Ld
0 ρ and Ld

1 ρ given in equation (12)
and equation (13), respectively. The complete first order Liouvillian L1 is defined as the sum
of the two first-order contributions, i.e. L1 = L1

1 +L2
1. The zero- and first-order Hamiltonian

contributions (compare to equation (8)) are

H0,ext = ν b†b,

H0,int = δ1 |e〉〈e| +

{
�
√

2
(1 + i) |e〉〈B| + h.c.

}
, (A.4)

H1 = b η �
√

2 (1 + i) |e〉〈D| + h.c. =
∑

n∈{1,2}

Rn Fn, (A.5)

where Rn are pure external operators and Fn pure internal ones: R1 := b, R2 := R†
1 , F1 :=

η �
√

2 (1 + i) |e〉〈D| and F2 = F†
1 .

The projector P on the relevant subspace is given by

Pρ = Pe P iρ = µ ρss,

P i ρ = lim
t→∞

eL0,int t ρ = ρss trI(ρ), (A.6)

Peρ =

∞∑
n=0

|n〉〈n| 〈n|ρ|n〉,

with the external/vibrational density-matrix contribution µ = Pe trI(ρ), the internal steady state
ρss = |D〉〈D| andP i andPe the projectors on the internal steady state (assuming that the internal
dynamics are much faster than the cooling dynamics) and the vibrational |n〉〈n| subspace,
respectively. trI denotes the trace over the internal part. The master equation for the relevant
external part Pρ up to first order in the Lamb–Dicke parameter is given by (see e.g. [21])

d

dt
Pρ = PL1 (−L−1

0 )L1Pρ =

∫
∞

0
dtPL1 eL0 t L1Pρ. (A.7)
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Tracing equation (A.7) over the internal part, the master equation for the external part µ is
obtained,

d

dt
µ =

∫
∞

0
dt Pe trI

(
L1 eL0 tL1Pρ

)
=

∫
∞

0
dt Pe trI

(
L1

1 eL0 tL1
1Pρ

)
, (A.8)

wherein we used that trI(Pρ) = Pe trI(ρ), which follows directly from equation (A.6). The last
step takes into account that the L2

1 terms (originating from the Schrieffer–Wolff transformation
of the spontaneous decay terms) do not contribute to the master equation, because

L2
1 µ ρss = 0, L2

1ρextρint = 0, (A.9)

with ρss = |D〉〈D| and assuming equal γ -rates in L2
1. Inserting (A.5) into equation (A.3), the

first-order Liouvillian L1
1 can be written as

L1
1 ρ = −i

∑
n

[Fn Rn, ρ] = −i
∑

n

Fn Ln
1,ext ρ +Ln

1,int ρ Rn, (A.10)

using the definitions Ln
1,ext ρ = [Rn, ρ] and Ln

1,int ρ = [Fn, ρ]. Thus, inserting (A.10) into (A.8)
and noting that

trI(Ln
1,int ρext ⊗ ρint) = ρext trI([Fn, ρ int]) = 0, (A.11)

one obtains
d

dt
µ = (−i)

∑
n

∫
∞

0
dt PetrI

(
Fn Ln

1,ext eL0 t L1
1 µ ρss

)
= (−1)

∑
n,n′

∫
∞

0
dtPeLn

1,exte
L0,extt{Ln′

1,ext µtrI

(
Fn eL0,intt Fn′ρss

)
+ µ Rn′trI(Fn eL0,int tLn′

1,int ρss)}

= (−1)
∑
n,n′

∫
∞

0
dt PeLn

1,ext eL0,ext t
{Ln′

1,ext µ 〈Fn(t) Fn′(0)〉ss + µRn′ 〈[Fn(t), Fn′(0)]〉ss},

(A.12)

with the internal operator two time-correlation functions 〈Fn(t) Fn′(0)〉ss = trI(Fn eL0,intt Fn′ ρss)

and 〈Fn′(0) Fn(t)〉ss = trI(Fn eL0,intt ρss Fn′).
Furthermore, using that [exp(L0,ext t), µ] = 0 and defining Rn(t) = eL0,ext t Rn, we end up

with
d

dt
µ = (−1)

∑
n,n′

∫
∞

0
dt Pe

{[Rn, [Rn′(t), µ]] 〈Fn(t) Fn′(0)〉ss

+ [Rn, µ Rn′(t)] [Fn(t), Fn′(0)]} . (A.13)

Inserting the concrete expressions for the external and internal operators (see definitions below
equation (A.5)) and applying the projection Pe (equation (A.6)), the master equation for the
external part turns out to be

d

dt
µ = S12(−ν)

(
b† µb − b b† µ

)
+ S21(ν)

(
bµb†

− b† bµ
)

+ h.c., (A.14)

wherein

Si j(ν) =

∫
∞

0
dt eiνt

〈Fi(t) F j(0)〉ss. (A.15)
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The time evolution of the vibrational state population (µ =
∑

∞

n=0 pn |n〉〈n|) following from
equation (A.14) takes the form

d

dt
pn = 〈n|

d

dt
µ|n〉 = (n + 1) A− pn+1 −

[
(n + 1) A+ + n A−

]
pn + n A+ pn−1, (A.16)

with the phonon number increasing/decreasing rates

A− = 2 Re(S21(ν)), A+ = 2 Re(S12(−ν)). (A.17)

Therefore the equation of motion for the phonon population expectation value 〈n〉 is found
to be

d

dt
〈n〉 =

d

dt

∞∑
n=0

pn n =

∞∑
n=0

n
d

dt
pn = −(A− − A+) 〈n〉 + A+, (A.18)

with the steady-state solution 〈n〉ss

〈n〉ss =
A+

A− − A+
. (A.19)

Thus what remains to be done is to calculate the rates A− and A+, i.e. to calculate the two-time
correlation functions Si j(ν) (A.15). Using the Bloch equations (the internal equation of motion
in the zeroth order in the Lamb–Dicke parameter) and the quantum regression theorem, one
obtains the results in section 4.
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