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1 Overview

Quantum mechanics is a tremendously successful theory playing a central role
in natural sciences even beyond physics, and has been verified in countless ex-
periments, some of which were carried out with very high precision. Despite its
great success and its history reaching back more than hundred years, still today
the interpretation of quantum mechanics challenges our intuition that has been
formed by an environment governed by classical physical laws.

Quantum optical experiments may come very close to idealized situations
of gedanken experiments originally conceived to test and better understand the
predictions and implications of quantum theory. An experimental system ideally
suited to carry out such experiments will be dealt with in this work: electrody-
namically trapped ions provide us with individual localized quantum systems
well isolated from the environment. The interaction with electromagnetic ra-
diation allows for preparation and detection of quantum states, even of single
ions (Neuhauser et al. 1980). Since the first storage and detection of a collection
of ions in Paul and Penning traps has been reported (Fischer 1959, Church &
Dehmelt 1969, Ifflander & Werth 1977), a large variety of intriguing experiments
were carried out, for instance, the demonstration of optical cooling (Neuhauser
et al. 1978, Wineland et al. 1978) and experiments related to fundamental phys-
ical questions (for instance, (Sauter et al. 1986, Bergquist et al. 1986, Diedrich &
Walther 1987, Schubert et al. 1992, Howe et al. 2001, Guthöhrlein et al. 2001).)
Also, for precision measurements and frequency standards the use of trapped
ions is well established (for instance, (Stenger et al. 2001, Diddams et al. 2001,
Becker et al. 2001).)

The fact that quantum mechanics makes only statistical predictions let Al-
bert Einstein and others doubt whether this theory is correct, or more specific,
whether it gives a complete description of physical reality as they perceived it.
Einstein cast part of his doubts about this theory in the words “Gott würfelt
nicht” (“God doesn’t roll dice”,) that is, according to his opinion laws of nature
do not contain this intrinsic randomness and a proper theory should account for
that.

Another puzzling feature of quantum mechanics was pointed out by Ein-
stein, Podolsky, and Rosen (EPR) in (Einstein et al. 1935). Quantum theory
predicts correlations between two or more quantum systems once an entangled
state of these systems has been generated. These correlations persist even after
the quantum systems have been brought to spacelike separated points. The sta-
tistical nature of quantum mechanical predictions, and the superposition princi-
ple, together with quantum mechanical commutation relations give rise to such
nonlocal correlations (Einstein et al. 1935). Einstein found this, what he later
called “spukhafte Fernwirkung” (“spooky action at a distance”) deeply disturb-
ing and concluded that quantum mechanics is an incomplete theory. The term
“Verschränkung” (entanglement) has been coined by E. Schrödinger to describe
such correlated quantum systems (Schrödinger 1935). Recently, entangled states
of various physical systems have been created and analyzed in experiments (a
review can be found in (Whitaker 2000).) All experimental findings have been
in agreement with quantum mechanical predictions.

There is no a priori reason not to apply quantum mechanics to objects
like a measurement apparatus made up from a large number of elementary con-
stituents each of which is perfectly described by quantum theory. This, however,
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may be a cause for yet more discomfort, since it leads to seemingly paradoxical
or absurd consequences as Erwin Schrödinger pointed out (Schrödinger 1935).
With a gedanken experiment he illustrated the consequences of including an
object usually described by classical physics (he chose a cat) into a quan-
tum mechanical description 1. The cat is ‘coupled’ to a quantum system pre-
pared in a superposition state, and in the course of the gedanken experiment
the cat, too, assumes a superposition state of ‘being dead’ and ‘being alive’
(Schrödinger 1935): an entangled state of quantum system and cat results.

The cat can be viewed as a macroscopic apparatus that is used to measure
the state of a quantum system. Thus, if the quantum system initially is in
a superposition of two states, then linearity of quantum mechanics demands
the measurement apparatus, too, to be in a superposition of two of its meter
states. This is clearly not what we usually observe in experiments. Reference
(Brune et al. 1996) describes a cavity QED experiment where an electromagnetic
field acts as meter for the quantum state of individual atoms. It is shown
how the decay of the initially prepared superposition of meter states is the
faster the larger the initial separation of these states is. For macroscopically
distinct meter states this decay of a superposition state into a statistical mixture
of states (that is, either one or the other is realized) is usually too fast to
be observable experimentally. Thus, superpositions of macroscopically distinct
states are never observed. Schrödinger-cat like states have also been investigated
with trapped ions (Myatt et al. 2000) and superconducting quantum interference
devices (Friedman et al. 2000).

The first step in a measurement process requires some interaction between
the quantum system and a second system (the probe), and consequently a cor-
relation is established between the two systems (In general, this will result in an
entangled state between quantum system and probe.) This correlation reduces
or even destroys the quantum system’s capability to display characteristics of
a superposition state in subsequent local operations, and the appropriate de-
scription of the quantum system alone is a statistical mixture of states. The
coupling of the probe to a macroscopic apparatus leads to a reduction of the
probe itself from a coherent superposition into a statistical mixture (for instance,
(Zurek 1991, Giulini et al. 1996) and references therein.) When the apparatus
is finally found in one of its meter states, quantum mechanics tells us that the
quantum system is reset to the state correlated with this particular meter state.
This will be evident in any subsequent manipulation the quantum system is
subjected to.

If the quantum system would undergo some kind of evolution as long as it
is not being measured, then the measurement process might impede or even
freeze this evolution. This slowing down (or coming to a complete halt) of the
dynamics of a quantum system when subjected to frequent measurements (von
Neumann 1932) has been termed quantum Zeno effect or quantum Zeno paradox
(Misra & Sudarshan 1977).

An unambiguous demonstration of this effect requires measurements on in-
dividual quantum systems as opposed to ensemble measurements. Such an
experiment has been carried out with individual electrodynamically trapped
Yb+ ions prepared in a well defined quantum state, and it is shown that even

1Arguably classical physics is not sufficient to describe a cat. For the purpose of the
gedanken experiment, therefore, it might be useful to choose an inanimate macroscopic object
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negative-result measurements (which do not involve local interaction between
quantum system and apparatus in a “classical” sense) impede the quantum
system’s evolution (section 4.)

Now we turn to the concept of a quantum state that is a central ingredient of
quantum theory. How can an arbitrary unknown state of a quantum system be
determined accurately? The determination of the set of expectation values of the
observables associated with a specific quantum state is complicated by the fact
that after a measurement of one observable, information on the complementary
observable is no longer available. Only if infinitely many identical copies of a
given state were available could this task be achieved. Since this requirement
cannot be fulfilled in experiments, it is of interest to investigate ways to gain
optimal knowledge of a given quantum state making use of finite resources.
In addition, quantum state estimation is, for instance, relevant for quantum
communication where quantum information at the receiver end of a quantum
channel has to be deciphered.

If N identically prepared quantum systems in an unknown arbitrary state
are available, how can this state be determined? In other words, what is the
optimal strategy to gain the maximal amount of information about the state of
a quantum system using finite physical resources? Quantum states of various
physical systems such as light fields, molecular wave packets, motional states
of trapped ions and atomic beams have been determined experimentally (for
a review of recent work see, for instance, (Schleich &Raymer 1997, Freyberger
et al. 1997, Buz̆ek et al. 1998, Walmsley & Waxer 1998, White et al. 1999,
Lvovsky et al. 2001).)

Optimal strategies to read out information encoded in the quantum state of
a given number N of identical two-state systems (qubits) have been proposed
in recent years. However, they require intricate measurements using a basis of
entangled states. It is desirable to have a measurement strategy at hand that
gives an estimate of a quantum state with high fidelity, even if N measurements
are performed separately (even sequentially) on each individual qubit, that is, if
a factorizing basis is employed for state estimation. Sequential measurements on
arbitrary but identically prepared states of a qubit, the ground state hyperfine
levels of electrodynamically trapped 171Yb+, are described in section 5. The
measurement basis is varied during a sequence of N measurements conditioned
on the results of previous measurements in this sequence. The experimental
efficiency and fidelity of such a self-learning measurement (Fischer et al. 2000)
is compared with strategies where the measurement basis is randomly chosen
during a sequence of N measurements.

In addition to puzzling us with fundamental questions regarding, for exam-
ple, the measurement process, quantum mechanics holds the opportunity to put
its laws to practical use. In the field of quantum information processing (QIP)
and communication basic elements of computers are explored that would be
able to solve problems that, for all practical purposes, cannot be handled by
classical computers and communication devices ((Feynman 1982, Deutsch 1985,
Gruska 1999, Nielsen & Chuang 2000), and references therein.) The computa-
tion of properties of quantum systems themselves is particularly suited to be
performed on a quantum computer, even on a device where logic operations
can only be carried out with limited precision. Exchange of information can
be made secure by using encrypting methods that rely on quantum properties,
for instance, of optical radiation. While exploring these routes to new types of
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computing and communication, again much will be learned about still unsolved
issues in quantum mechanics, for instance, regarding the characterization of en-
tanglement (Lewenstein et al. 2000). The experimental system described in this
work is well suited to conduct investigations in this new field.

The great potential that trapped ions have as a physical system for quantum
information processing (QIP) was first recognized in (Cirac & Zoller 1995), and
important experimental steps have been undertaken towards the realization of
an elementary quantum computer with this system (for instance, (Wineland
et al. 1998, Appasamy et al. 1998, Roos et al. 1999, Hannemann et al. 2002).)
At the same time, the advanced state of experiments with trapped ions reveals
the difficulties that still have to be overcome.

Using 171Yb+ ions we have realized a quantum channel, that is, propagation
of quantum information in time or space, under the influence of well controlled
disturbances. The parameters characterizing the quantum channel can be ad-
justed at will and various types of quantum channels (that may occur in other
experimental systems, too) can be implemented with individual ions. Thus a
model system is realized to investigate, for example, the reconstruction of quan-
tum information after transmission through a noisy quantum channel (section
6.1.) Transfer of quantum states becomes important when quantum informa-
tion is distributed between different quantum processors, as is envisaged, for
instance, for ion trap quantum information processing (Pellizzari 1997, van Enk
et al. 1999). Furthermore, codes for quantum information processing, and in
particular error correction codes may be tested for their applicability under well
defined, non-ideal conditions.

These experiments demonstrate the ability to prepare arbitrary states of this
SU(2) system with very high precision – a prerequisite for quantum information
processing. The coherence time of the hyperfine qubit in 171Yb+ is long on the
time scale of qubit operations and is essentially limited by the coherence time
of microwave radiation used to drive the qubit transition.

In addition to the ability to perform arbitrary single-qubit operations, a
second fundamental type of operation is required for QIP: conditional quan-
tum dynamics with, at least, two qubits. Any quantum algorithm can then be
synthesized using these elementary building blocks (DiVincenzo 1995, Barenco
et al. 1995). While two internal states of each trapped ion serve as a qubit,
communication between these qubits, necessary for conditional dynamics, is
achieved via the vibrational motion of the ion string in a linear trap (the “bus
-qubit”) (Cirac & Zoller 1995). Thus, it is necessary to couple external (mo-
tional) and internal degrees of freedom. Common to all experiments performed
to date – related either to QIP or other research fields – that require some kind
of coupling between internal and external degrees of freedom of atoms is the use
of optical radiation for this purpose. The recoil energy Er = (~k)2/2m taken
up by an atom upon absorption or emission of a photon may change the atom’s
motional state (k = 2π/λ, λ is the wavelength of the applied electromagnetic
radiation, and m is the mass of the ion.) In order for this to happen with
appreciable probability with a harmonically trapped atom, the ratio between
Er and the quantized motional energy of the trapped atom, ~ν should not be
too small (ν is the angular frequency of the vibrational mode to be excited.)
Therefore, in usual traps, driving radiation in the optical regime is necessary to
couple internal and external dynamics of trapped atoms.

The distance between neighboring ions δz in a linear electrodynamic ion
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trap is determined by the mutual Coulomb repulsion of the ions and the time
averaged force exerted on the ions by the electrodynamic trapping field. Ma-
nipulation of individual ions is usually achieved by focusing electromagnetic
radiation to a spot size much smaller than δz. Again, only optical radiation is
useful for this purpose.

In section 6.2 a new concept for ion traps is described that allows for exper-
iments requiring individual addressing of ions and conditional dynamics with
several ions even with radiation in the radio frequency (rf) or microwave (mw)
regime. It is shown how an additional magnetic field gradient applied to an
electrodynamic trap individually shifts ionic qubit resonances making them dis-
tinguishable in frequency space. Thus, individual addressing for the purpose of
single qubit operations becomes possible using long-wavelength radiation. At
the same time, a coupling term between internal and motional states arises even
when rf or mw radiation is applied to drive qubit transitions. Thus, conditional
quantum dynamics can be carried out in this modified electrodynamic trap, and
in such a new type of trap all schemes originally devised for optical QIP in ion
traps can be applied in the rf or mw regime, too.

Many phenomena that were only recently studied in the optical domain
form the basis for techniques belonging to the standard repertoire of coherent
manipulation of nuclear and electronic magnetic moments associated with their
spins. Nuclear magnetic resonance (NMR) experiments have been tremendously
successful in the field of QIP taking advantage of highly sophisticated experi-
mental techniques. However, NMR experiments usually work with macroscopic
ensembles of spins and considerable effort has to be devoted to the prepara-
tion of pseudo-pure states of spins with initial thermal population distribu-
tion. This preparation leads to an exponentially growing cost (with the number
N of qubits) either in signal strength or the number of experiments involved
(Vandersypen et al. 2000), since the fraction of spins in their ground state is
proportional to N/2N .

Trapped ions, on the other hand, provide individual qubits – for example,
hyperfine states as described in this work – well isolated from their environ-
ment with read-out efficiency near unity. It would be desirable to combine the
advantages of trapped ions and NMR techniques in future experiments using
either “conventional” ion trap methods, but now with mw radiation as outlined
above, or, as described in the second part of section 6.2.2, treating the ion string
as a N -qubit molecule with adjustable spin-spin coupling constants: In a suit-
ably modified ion trap, ionic qubit states are pairwise coupled. This spin-spin
coupling can be formally described in the same way as J-coupling in molecules
used for NMR, even though the physical origin of the interaction is very dif-
ferent. Thus, successful techniques and technology developed in spin resonance
experiments, like NMR or ESR, can immediately be applied to trapped ions.
An advantage of an artificial “molecule” in a trap is that the coupling constants
Jij between qubits i and j can be chosen by the experimenter by setting the
magnetic field gradient, the secular trap frequency, and the type of ions used.
In addition, individual spins can be detected state selectively with an efficiency
close to 100% by collecting scattered resonance fluorescence.

Another avenue towards quantum computation with trapped ions is the use
of an electric quadrupole transition (E2 transition) as a qubit (Appasamy et al.
1998, Schmidt-Kaler et al. 2000, Barton et al. 2000, Hughes et al. 1998). Section
6.3 gives an account of experiments carried out with Ba+ and 172Yb+ ions where
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the E2 transition between the ground state S1/2 and the metastable excited D5/2

state is investigated.
Cooling of the collective motion of several particles is prerequisite for im-

plementing conditional quantum dynamics on trapped ions. A study of the
collective vibrational motion of two trapped 138Ba+ ions cooled by two light
fields is described in section 6.3.3. Parameter regimes of the laser light irradi-
ating the ions can be identified that imply most efficient laser cooling and are
least susceptible to drifts, fluctuations, and uncertainties in laser parameters
(Reißet al. 2002).

2 Spin resonance with single Yb+ ions

In this section we introduce experiments with 171Yb+ ions demonstrating the
precise manipulation of hyperfine states of single ions essentially free of longi-
tudinal and transverse relaxation. The experimental techniques outlined here,
form the basis for further experiments with individual Yb+ ions described in
sections 4, 5, and 6.

2.1 Experimental setup for Yb+

171Yb+ or 172Yb+ ions are confined in a miniature Paul trap (diameter of 2
mm). Excitation of the S1/2 - P1/2 transition of Yb+ serves for initial cooling
and detection of resonantly scattered light near 369nm (Figure 1). For this
purpose, infrared light near 738nm is generated by a laser system based on
a commercial Titanium:Sapphire laser and frequency doubled using a LiIO3

crystal mounted at the center of a homemade ring resonator. The emission
frequency is stabilized against drift using an additional reference resonator.

Optical pumping into the D3/2 state is prevented by illuminating the ions
with laser light near 935nm. This couples state |D3/2, F=1〉 via a dipole allowed
transition to state |[3/2]1/2,F=0〉 that in turn decays to the ground state |S1/2,
F=1〉. Light near 935nm is produced by a homemade tunable, stabilized diode
laser. Excitation spectra recorded with this laser have been recorded that exhibit
sidebands due to micromotion of an ion in the trap. Making these sidebands
disappear by adjusting the voltages applied to additional electrodes close to the
trap serves for positioning the ion the field free potential minimum at the center
of the trap.

The quantum mechanical two-state system used for the experiments de-
scribed in sections 4, 5, and 6 is the S1/2 ground-state hyperfine doublet with
total angular momentum F = 0, 1 of 171Yb+. The

|0〉 ≡ |S1/2, F = 0〉 ↔ |S1/2, F = 1,mF = 0〉 ≡ |1〉 (1)

transition with Bohr frequency ω0 is driven by a quasiresonant microwave (mw)
field with angular frequency near ω = 2π 12.6 GHz. The time evolution of
the system is virtually free of decoherence, that is, transversal and longitudinal
relaxation rates are negligible. However, imperfect preparation and detection
limits the purity of the states. Photon-counting resonance fluorescence on the
S1/2(F=1)↔ P1/2(F=0) transition at 369 nm serves for state selective detection
with efficiency > 98%. Optical pumping into the |F = 1,mF = ±1〉 levels during
a detection period is avoided when the E vector of the linearly polarized light
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Figure 1: Top: Relevant energy levels of 171Yb+ . The hyperfine splitting is
shown only for the ground state (not to scale.) Bottom: Schematic drawing of
major experimental elements. All lasers are frequency stabilized employing ref-
erence resonators (not shown.) MW: microwave; PMT: photo multiplier tube;
DSP: digital signal processing; AOM: acousto optic modulator. For most ex-
periments described in this work (using 171Yb+ ) the elements drawn with bold
lines are used.
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Figure 2: Rabi oscillations: Excitation probability of state
|1〉 ≡ |S1/2F = 0,mF = 0〉 of a single Yb+ ion averaged over 85 preparation-
detection cycles as a function of mw pulse length tmw. The solid line results
from a fit using equation 4 giving ΩR = 2.9165 × 2πkHz. The error bars
indicate one standard deviation of the statistical error resulting from the finite
number of preparation-detection cycles. The sub-unity contrast of the signal
is due to imperfect initial state preparation by optical pumping (which will be
improved in future experiments.)

subtends 45o with the direction of the applied dc magnetic field. The light is
usually detuned to the red side of the resonance line by a few MHz in order
to laser-cool the ion. Cooling is achieved by simultaneously irradiating the ion
with light from both laser sources and with microwave radiation.

When exciting the electric quadrupole transition S1/2 - D5/2 (section 6.3,)
the Yb+ ion may decay into the extremely long-lived F7/2 state. Light gener-
ated by a tunable diode laser near 638nm resonantly couples this state to the
excited state D[5/2]5/2 such that optical pumping is avoided. The time needed
to repump the ion from the F7/2 state to the S1/2 state has been determined
as a function of the intensity of the laser light near 638nm (Riebe 2000). It
saturates at ≈ 9ms.

2.2 Ground state hyperfine transition in 171Yb+

The two hyperfine states of Yb+ , |0〉 and |1〉 are coupled by a resonant, linearly
polarized microwave field coherently driving transitions on this resonance. In a
semiclassical description of the magnetic dipole interaction between a microwave
field travelling in the y − direction and the hyperfine states of 171Yb+ the
Hamiltonian reads

H =
~
2
ω0σz − ~µ · ~B (2)

=
~
2
ω0σz +

~
2
γBx cos(ky − ωt + φ′)σx

where ~µ is the magnetic dipole operator of the ion, ~B = (Bx cos(ky − ωt +
φ′), 0, 0)T is the magnetic field associated with the microwave radiation, and γ
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Figure 3: Data from a Ramsey-type experiment where the ion undergoes free
precession between two subsequent mw π/2-pulses (detuning δ = 103.9× 2πHz,
averaged over 100 realizations.) The error bars are of statistical origin. This
experimental signal, too, is essentially free of decoherence and the contrast of
the so-called Ramsey fringes is only limited by the finite preparation efficiency.
The data displayed in Figure 2 and in this Figure show that single-qubit opera-
tions are carried out with high precision, an important prerequisite for scalable
quantum computing.

is the gyromagnetic ratio. The initial phase of the mw field, φ = ky + φ′ at the
location of the ion is set to zero in what follows. Transforming this Hamiltonian
according to H̃ = exp(i(ω/2)tσz)H exp(−i(ω/2)tσz), and invoking the rotating
wave approximation yields the time evolution operator

U(t) = exp
[
− i

2
t (δσz + Ωσx)

]
(3)

governing the dynamics of the two-state system. The detuning δ ≡ ω0 − ω, the
Rabi frequency is denoted by Ω = γBx/2, and σz,x represent the usual Pauli
matrices. If the ion is initially prepared in state |0〉, then the probability to find
it in state |1〉 after time t is

P1(t) =
(

Ω
ΩR

)2

sin2

(
ΩR

2
t

)
(4)

where ΩR ≡ √
Ω2 + δ2. A pure state |θ, φ〉 = cos θ

2 |0〉 + sin θ
2eiφ|1〉 represented

by a unit vector in 3D configuration space (Bloch vector) is prepared by driving
the hyperfine doublet with mw pulses with appropriately chosen detuning δ ≡
ω0 − ω, and duration tmw = θ/Ω, and by allowing for free precession for a
prescribed time tp = φ/δ.

The vertical bars in Fig. 2 indicate the experimentally determined excitation
probability of state |1〉 (single 171Yb+ ion) as a function of the mw pulse length
tmw; the solid line is a fit using equation 4 (Rabi oscillations.) The observed
Rabi oscillations are free of decoherence over experimentally relevant time scales.
However, the contrast of the oscillations is below unity, since the initial state
|0〉 was prepared with probability 0.89. This limitation will be addressed in
future experiments. Figure 3 displays data from a Ramsey-type experiment

10



(Ramsey 1956) where the ion undergoes free precession for time tp between
two subsequent mw pulses. This experimental signal, too, is essentially free
of decoherence, and the contrast of the Ramsey fringes is only limited by the
finite preparation efficiency. The data in Figure 2 and 3 show that single-qubit
operations are carried out with high precision, an important prerequisite for
scalable quantum computing.

3 Elements of quantum measurements

3.1 Measurements and Decoherence

In what follows, we consider the process of performing a measurement on a
quantum system. We start by considering the interaction between the quantum
system to be measured and a second system, the quantum probe, assuming that
pure states of of both are prepared before an interaction between the two takes
place. Initially, the state of the (unknown) quantum system |ψi〉 =

∑
n cn |n〉

(|n〉 are the eigenstates of the system Hamiltonian with complex coefficients
cn) and of the (known) state of the quantum probe |φi〉 factorizes, that is we
have |ψi〉 ⊗ |φi〉. The interaction between system and probe is assumed to be
governed by a Hamiltonian of the form ((Giulini et al. 1996) chapter 3)

Hint =
∑

n

|n〉 〈n| ⊗ Ân (5)

where Ân are operators acting only in the Hilbert space of the probe. They
transform the probe conditioned on the state of the quantum system. If |ψi〉 =
|n〉, then, after the interaction has taken place the combined state of system
and probe reads

|n〉 |φi〉 Hint−→ |n〉 |φn〉 . (6)

For the sake of a clearer discussion in the following paragraphs we assume that
〈φk|φl〉 = δkl. In general, if the quantum system is initially prepared in a
superposition state, the first step of the measurement will result in an entangled
state between system and probe

|ψi〉 |φi〉 =
∑

n

cn |n〉 |φi〉 Hint−→
∑

n

cn |n〉 |φn〉 . (7)

Thus, if the quantum system initially is in a superposition of states, then lin-
earity of quantum mechanics demands the probe , too, to be in a superposition
of its states.

There is no a priori reason not to apply quantum mechanics, and, in par-
ticular the above treatment, to objects used as a probe that are made up of a
large number of elementary constituents each of which is perfectly described by
quantum mechanics. E. Schrödinger (Schrödinger 1935) illustrated how quan-
tum theory, if applied to macroscopic objects, may lead to predictions that are
not in agreement with our observations. He imagined a cat coupled to an indi-
vidual quantum system that may exist in a superposition of states, say |e〉 and
|g〉 . The apparatus is constructed such that if the quantum system is in |e〉 ,
the cat remains untouched, whereas state |g〉 means the cat will be killed by
an intricate mechanism. The formal quantum mechanical description of this
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situation leads to the conclusion that the cat is in a superposition state of being
dead and being alive, once the quantum system assumes a superposition state.

If the cat is replaced by an apparatus that is used to measure the state
of the quantum system, one immediately sees that the Schrödinger’s gedanken
experiment illustrates part of the measurement problem in quantum mechanics:
Why does a macroscopic probe correlated to the quantum system’s state not
exist in a superposition of its possible states, but instead always assumes one
or the other?

The Kopenhagen interpretation solves this contradiction between quantum
mechanical predictions and actual observations by postulating that quantum
mechanics does not apply to a classical apparatus. Following this interpretation
there exists a border beyond which quantum mechanics is no longer valid. This,
of course, provokes the questions where exactly this borderline should be drawn
and what parameter(s) have to be changed in order to turn a given quantum
system into a classical device.

The mathematical counterpart of this view was formulated by von Neu-
mann: he postulated two possible time evolutions in quantum mechanics (von
Neumann 1932): One is the unitary time evolution that a quantum system
undergoes according to Schrödinger’s equation in absence of any attempt to
perform a measurement (von Neumann’s “zweiter Eingriff” or “second inter-
vention”). This evolution is reversible. The other process is the irreversible
quasi instantaneous time evolution when a measurement on the system is per-
formed. It leads to a projection of the wave function on one of the eigenfunctions
of the measured observable (called the “first intervention” by von Neumann.)

The theory of decoherence (Zurek 1991, Giulini et al. 1996) answers the ques-
tion how a superposition of a quantum system in the course of a measurement
is reduced to a state described by a local diagonal density matrix (after tracing
out the probe degrees of freedom), a mathematical entity describing possible
alternative outcomes, but not a superposition of states. We will consider this
approach in more detail in the following paragraphs.

A cavity-QED experiment similar to the gedanken experiment envisioned by
Schrödinger is realized by first preparing a Rydberg atom in a superposition
of two internal energy eigenstates |e〉 and |g〉 (Brune et al. 1996). Then, this
quantum system is sent through a cavity containing an electromagnetic field
in a Glauber state (a coherent state corresponding to the cat in the gedanken
experiment), |α〉 whose phase is changed by dispersive interaction (no energy
exchange takes place between atom and field) depending on the state of the
atom. The combined atom-field state after the interaction reads

|Ψ〉atom,cav = 1/
√

2(|e〉|αeiϕ〉C + |g〉|αe−iϕ〉C). (8)

The decay of this coherent superposition of probe states correlated with a quan-
tum system (Rydberg atom) towards a statistical mixture was indeed exper-
imentally observed and quantitatively compared with theoretical predictions
(Brune et al. 1996). It could be shown that the decay of the superposition be-
comes faster with increasing distinguishability of the two probe states involved
in the measurement of the quantum system.

This decay from a superposition towards a statistical mixture is monitored
by sending a second atom through the cavity (a time τ after the first atom) and
detecting this second atom’s state after it has interacted dispersively with the
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cavity field. The analysis of the correlations between the first and second atom’s
measurement results then reveals to what degree the off-diagonal elements of
the density matrix (the coherences, created through the interaction with the
first atom) describing the cavity field have decayed at time τ when the second
atom was passing through the cavity (Maitre et al. 1997).

(Gedanken) experiments on quantum complementary, too, have dealt with
the influence of correlations and measurements on an observed system. As an
example we consider first the diffraction of electrons when passing through a
double slit resulting in an interference pattern on a screen mounted behind the
double slit (Feynman et al. 1965, Messiah 1976). Any attempt to determine
the path the electrons have taken, that is through which slit they passed, de-
stroys the interference pattern. This can be explained by showing that the
act of position measurement imposes an uncontrollable momentum kick on the
electrons in accordance with Heisenberg’s uncertainty principle ((Bohr 1949),
reprinted in (Bohr 1983).) This is to be regarded as a local physical interaction
(Knight 1998).

In (Scully et al. 1991) it is shown by means of a gedanken experiment,
without making use of the uncertainty principle, that the loss of interference
may be caused by a nonlocal correlation of a welcher weg detector with the
observed system: An atomic beam is detected on a screen after it has passed
through a double slit. After having passed the double slit, the wave function
describing the center-of-mass (COM) motion of the atoms is

Ψ(~r) =
1√
2

(ψ1(~r) + ψ2(~r)) (9)

where the subscripts 1 and 2 refer to the two slits. The probability to detect an
atom at location ~R on the screen is then given by

∣∣∣Ψ(~R)
∣∣∣
2

=
1
2
|ψ1(~R)|2 + |ψ2(~R)|2 + ψ∗1ψ2 + ψ∗2ψ1 (10)

where the last two terms are responsible for the appearance of interference
fringes on the screen.

Now an empty (vacuum state) micromaser cavity is placed in front of each
slit and the atoms are brought into an excited internal state, |e〉 before they
reach one of the cavities. The interaction between atom and cavity is adjusted
such that upon passing through a cavity an atom will emit a photon in the
cavity and return to its lower state, |g〉. Consequently, the combined state of
atomic COM wave function and cavity field is now an entangled one and reads

Ψ(~r) =
1√
2

(ψ1(~r) |1〉1 |0〉2 + ψ2(~r) |0〉1 |1〉2) . (11)

Here, the state ket representing a cavity field is labelled with the number of
photons present in the cavity, and the subscripts indicate in front of which slit
the respective cavity is placed. Calculating again the probability distribution
on the screen now gives
∣∣∣Ψ(~R)

∣∣∣
2

=
1
2
|ψ1(~R)|2 + |ψ2(~R)|2 + ψ∗1ψ2〈1|0〉1〈0|1〉2 + ψ∗2ψ1〈0|1〉1〈1|0〉2 . (12)

The two last terms responsible for the appearance of interference fringes dis-
appear, since the cavity states are orthogonal, and with them the interference
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pattern on the screen. It is emphasized in (Scully et al. 1991) that the welcher
weg detector functions without recoil on the atoms and negligible change of the
spatial wave function of the atoms. The atoms, after having interacted with
the welcher weg detector behave like a statistical ensemble, and the loss of the
atomic spatial coherences is due to the nonlocal correlation of the atom with the
detector. Such a correlation is generally produced in every welcher weg scheme,
but its effect of suppressing interference is often covered by local physical back
action on the observed quantum object (Dürr, Nonn & G.Rempe 1998).

The ability of the atomic COM wave function to display interference can be
restored in this gedanken experiment by erasing the welcher weg information
((Scully et al. 1991) and references therein, (Scully & Walther 1998).) However,
the interference is regained only, if the detection events due to atoms arriving at
the screen are sorted according to the final state of the device used to erase the
Welcher Weg information (a detector for the photons in this gedanken experi-
ment). Experiments along these lines have demonstrated such quantum erasers
(Kwiat et al. 1992, Herzog et al. 1995, Chapman et al. 1995).

Here, we have considered the extreme case that complete information on the
atoms path is available and the interference disappears completely. A general
quantitative relation between the amount of welcher weg information stored in
a detector and the visibility of interference fringes has been given in (Englert
1996). In order to verify this relation, a welcher weg experiment using an atom
interferometer was carried out and is described in (Dürr, Nonn & Rempe 1998b,
Dürr, Nonn & Rempe 1998a). In that experiment the amount of information
stored in the detector and the contrast of interference fringes were determined
independently.

The first part of the cavity-QED experiment described in (Brune et al. 1996)
and outlined above (that is, before the second atom is send through the cavity)
can be interpreted as an atom interferometer with a welcher weg detector in one
of the arms of the interferometer (compare also (Gerry 1996)): Before the atom
enters the cavity a coherent superposition of its energy eigenstates 1/

√
2(|e〉 +

|g〉) is prepared by applying a π/2-pulse to the atom. The analogy with an
optical Mach-Zehnder interferometer where a photon is sent along one of two
possible paths after the first beam splitter (in a classical view) is manifest in
the fact that the atom may cross the cavity either in state |e〉 or state |g〉 (again
classically speaking). After the atom has passed through the cavity, a second
π/2-pulse is applied corresponding to the second beam splitter (or combiner) in
an optical interferometer.

Placing a photo detector in one of the arms of the Mach-Zehnder interferome-
ter would reveal information on which path the photon took. Here, the coherent
field in the cavity that undergoes a phase shift correlated to the atom’s state acts
as a welcher weg detector. The cavity field does not act as a “digital” detector
indicating the state of the atom with certainty. Instead, the two coherent field
components correlated with the two atomic states may have some overlap (i.e.,〈
αeiϕ

∣∣ αe−iϕ〉 6= 0) such that they cannot be distinguished with certainty. Con-
sequently, the correct state of the atom could only be inferred with probability
below unity, if a measurement of the cavity field were performed. Therefore, the
interference fringes do not completely disappear, but instead a reduced contrast
of the fringes is observed (Fig. 3 in (Brune et al. 1996).)

After the welcher weg detector (the field in the cavity-QED experiment) and
the atom have become entangled, the atom’s capability to display interference
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vanishes. If only the atom is considered, that is, only one part of the entangled
entities quantum system and quantum probe, then it appears as if the atom
had been reduced to a statistical mixture of states as opposed to a coherent
superposition. This is evident when considering the reduced density matrix of
the atom obtained by “tracing out” the probe degrees of freedom. By applying
a suitable global operation on probe and the atom together, the capability of the
atomic states to show interference can be restored. This has been demonstrated
in a different experiment where the Welcher Weg information is encoded in the
photon number instead of the phase of the field (Bertet et al. 2001). Thus, the
reversibility of the interaction of system and probe is demonstrated.

The quantum probe itself – in the experiment described in (Brune et al. 1996)
represented by the mesoscopic cavity field initially prepared in a superposition of
two states by the interaction with the atom – eventually undergoes decoherence:
photons escaping from the resonator into the environment lead to entanglement
between the atom, cavity field, and the previously empty, but now occupied
“free space” modes of the electromagnetic field. Finally, this process results
in a local diagonal density matrix (after tracing out the “free” field modes)
describing a statistical mixture of the state of the atom (system) and the cavity
field (probe). That is, the outcome of any subsequent manipulation of only the
atom and/or cavity field will be characterized by the initial absence (before this
further manipulation takes place) of coherent superpositions.

This argument can, of course, be extended further, including into the de-
scription also the environment with which the photons escaping from the cavity
may eventually interact. Taking this argument consecutively further, always
leaves behind some entities (the atom, cavity field, “free” field, ...) that will be-
have as statistical mixtures, if the next entity is not included in the theoretical
description and further experiments. In practical experiments it seems impossi-
ble to include the whole chain of entities in further manipulations. Therefore, for
all practical purposes, the correlation established between system, probe, and
environment irreversibly destroys the system’s and probe’s superposition state.
For a macroscopic environment (e.g., a measurement apparatus) this reduction
to a statistical mixture occurs quasi-instantaneous (Giulini et al. 1996).

In the considerations to follow, we divide the measurement apparatus, used
to extract information about the state of a quantum system, into a quan-
tum probe that interacts with the observed quantum system and a macro-
scopic device (called “apparatus” henceforth) coupled to the probe and yield-
ing macroscopically distinct read-outs. The measurement process is then for-
mally composed of two stages (as outlined above; (von Neumann 1932, Alter
& Yamamoto 2001, Braginsky & Khalili 1992)). First a unitary interaction
between quantum probe and the quantum system takes place. Then the quan-
tum probe is coupled to the apparatus that indicates the state of the probe by
assuming macroscopically distinct states (e.g., pointer positions.) The “envi-
ronment” in the cavity-QED experiment described above takes on only part of
the role of the apparatus: in principle, information about the probe’s state is
available in the environment after a time determined by the decay constant of
the cavity field. However, it will be difficult for an experimenter to extract this
information by translating it into distinct read-outs of a macroscopic meter.
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3.2 Measurements on individual quantum systems

The theory of decoherence explains the appearance of local alternatives with
certain statistical weights instead of coherent superpositions in quantum me-
chanical measurements. But it does not give an indication of which eigenstate
the probe (and consequently the system) will be reduced to as the final result
of the measurement. The density matrix describing system and probe, accord-
ing to decoherence theory, becomes diagonal as a result of the interaction with
the apparatus, but, in general, still has more than one diagonal element larger
than zero. This will be a valid description, if after a measurement has been
performed on an ensemble of quantum systems, further manipulations of this
ensemble are carried out. However, such a density matrix is not in agreement
with the experimental observation that after a measurement has taken place
on an individual quantum system, and a particular eigenvalue of the measured
observable has been obtained, subsequent measurements again yield the same
result. After such a measurement, the state of this single quantum system has
to be described by the density operator ρ = |n〉 〈n| of a pure state, that is
all diagonal elements vanish except one. Decoherence cannot explain or predict
what particular outcome a given measurement on an individual quantum system
has (i.e., which diagonal element becomes unity.) The measurement of a single
quantum system corresponds to a projection of the system’s (and probe’s) wave
function on a particular eigenstate |n〉 (|φn〉) in accord with von Neumann’s
first intervention (the projection postulate.)

According to the projection postulate, the wave function of the object col-
lapses into an eigenfunction of the measured observable due to the interaction
between the measurement apparatus and the measured quantum object. The
result of the measurement will be the corresponding eigenvalue. One could sus-
pect that the statistical character of the measurement process described by the
projection postulate is due to incomplete knowledge of the quantum state of the
measurement apparatus. However, von Neumann showed that the measurement
process remains stochastic even if the state of the measurement apparatus were
known (chapter VI.3 in (von Neumann 1932).) We have seen that decoher-
ence can account for the quasi-instantaneous disappearance of superpositions
and the appearance of distinct measurement outcomes with certain probabil-
ities, but not for the “choice” of a particular outcome of a measurement on
an individual system (the projection postulate, too, does not explain this last
point.)

A quantum mechanical wave function can be determined experimentally
from an ensemble experiment: Either a series of measurements is performed
on identically prepared single systems, or a single measurement measurement
on an ensemble of identical systems is carried out (von Neumann 1932, Al-
ter & Yamamoto 2001, Raymer 1997). The wave function is interpreted as a
probability amplitude that defines a probability density P(a) = |〈ψ|ψ〉|2, the
distribution of possible results a ∈ R of measurements of an observable Â. The
corresponding expectation value 〈a〉 = 〈ψ|Â|ψ〉 defines the center position and
the width 〈(4a)2〉 = 〈a2〉 − 〈a〉2 of the probability density. It is possible to
determine both quantities in an ensemble measurement, and therefore to infer
the quantum wave function up to a phase.
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The expectation value might be estimated from

〈a〉 ≈ 1
N

N∑
n=1

an (13)

where the an are the results of local measurements on identically prepared in-
dependent quantum systems. In a similar way 〈a2〉 and 〈a〉2 can be determined,
and thus 〈(∆a)2〉. Though it is possible to determine an unknown quantum wave
function from an ensemble measurement, it is impossible with a single quantum
system, neither from a single measurement nor from a series of subsequent mea-
surements. If a1 is the result of a single measurement, the estimated expectation
value 〈as〉 = a1, and in general 〈a〉 6= 〈as〉. The quantum uncertainty, 〈(∆a)2〉
of the measured observable remains undetermined, since 〈a2

s〉 = 〈as〉2 = a2
1.

Even if a series of measurements on the same single system is performed, it is
not possible to infer the probability distribution P (a). The results of N subse-
quent measurements of Â on a single system are not independent, and one will
obtain the same eigenvalue a1 = a2 = ... = aN for every observation. The esti-
mated expectation value will then again be 〈as〉 = 〈a1〉 = a1, and the variance
〈∆a〉 = 0 (compare also chapter 2 in (Alter & Yamamoto 2001).)

In this sense, quantum mechanics is not an ergodic theory, in contrast to
classical statistics where a series of measurements on a single system is equivalent
to a single measurement on an ensemble of identical systems. Only if an observed
single quantum system is identically prepared in advance of every subsequent
measurement, a series of measurements on a single quantum system is equivalent
to a single measurement of an ensemble of quantum systems.

In general, it is not possible to predict the outcome of a measurement on an
individual quantum system with certainty, even if complete knowledge of the
initial quantum wave function is available. The obtained results are statistical,
if the system is not initially prepared in an eigenstate of the observable being
measured. On the other hand, if the initial state is an eigenstate, then the
measurement is compatible to the preparation. Therefore, even a single mea-
surement may yield partial information about the systems initial state: If an
eigenvalue is obtained corresponding to a particular eigenstate |n〉, the observed
system was initially not in an eigenstate |n′〉 orthogonal to the measured one.

So far, in the discussion of measurements on quantum systems we have not
explicitly considered the case of negative result measurements (for a recent re-
view see (Whitaker 2000).) We will restrict the following discussion to quantum
mechanical two-state systems for clarity. In some experimental situations (real
or gedanken) the apparatus coupled to the quantum probe and quantum system,
may respond (for example by a “click” or the deflection of a pointer) indicating
one state of the measured system, or not respond at all indicating the other.
Such measurements where the experimental result is the absence of a physical
event rather than the occurrence of an event have been described, for instance,
in (Renninger 1960, Dicke 1981). A negative-result measurement or observa-
tion leads to a collapse of the wave function without local physical interaction
involved between measurement apparatus and observed quantum system. This
will be discussed in more detail in the following paragraphs. In particular, the
meaning of the concept “local physical interaction” is looked at in this context.

The situation described above is analogue to a gedanken experiment depicted
in chapter 3.3.2.3 in (Giulini et al. 1996). There, a Stern-Gerlach (SG) apparatus
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Figure 4: Illustration of a negative result measurement using a Stern-Gerlach
apparatus (SG) with a nonabsorbing detector (DA) at one of its exits (see text).

is considered that is oriented to yield at its exit spin-1/2 particles with their spin
pointing either in the positive or negative z direction. Particles with different
spin directions propagate along spatially separate trajectories upon exiting the
SG device (Fig. 4). A non-absorbing detector, DA is placed in only one of
the exit “channels” A of the device SG such that it will register a particle
passing through. If the particle takes the other channel B (corresponding to the
orthogonal spin direction) then the detector DA does not respond. If for times
greater than tA (the time needed for the particle to travel from the entrance
of SG to DA,), DA has not indicated the passing through of a particle, and if
an additional auxiliary detector DB were used in channel B, placed far away
from SG and DA (we take tB À tA ), then this detector DB would register the
particle with certainty at time tB after it was launched at the entrance of SG.
Even though in this example, in a classical sense, the particle and the detector
DA never interacted, (since they are located in regions of space separated by a
distance much larger than the deBroglie wavelength of the particle), the mere
possibility for detection may change the behavior of the particle: a spin-1/2
at the entrance of SG initially prepared in a superposition of eigenstates of
σz is effectively reduced to an eigenstate of σz. In (Giulini et al. 1996) it is
argued: “The claim that the particle did not interact at all with the detector
[DA] in the case of a spin-down result [detector DA does not “click”] must be
wrong, since a [superposition state] is different from an ensemble of z−up and
z−down states.” In this argument, the change of a quantum state is taken as
a sufficient condition for “interaction” between the quantum system and some
device (quantum or macroscopic). What is termed “interaction” in (Giulini
et al. 1996) we consider as the consequence of a negative result measurement,
a measurement not involving a local physical interaction between detector and
system.

If detector DA did not respond (a negative-result measurement occurred,)
then the quantum state has nevertheless changed as described above: a coherent
superposition is reduced not only to a statistical mixture, but to a definite
state. In a classical sense, no interaction between the particle and the detector
took place, since the particle is travelling along path B for t > tA. This we
consider the absence of local physical interaction. The Hamiltonian describing
the quantum system (spin-1/2 after having passed through SG) and the detector
(DA) contains a term coupling the spin system to the detector DA, only if the
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spin is in the z−up state, thus describing a conditional local physical interaction
(which is absent if the spin is in z−down state.) In general, a Hamiltonian
determines eigenstates and -values, and fixes a range of possible measurement
outcomes, some of which may be obtained without local physical interaction.

4 Impeded quantum evolution: the quantum Zeno
effect

The non-local character of negative result measurements manifests itself in an
effect that Misra and Sudarshan named “Zeno’s paradox in quantum theory” (or
“quantum Zeno effect”) alluding to the paradoxes of the greek philosopher Zeno
of Elea (born around 490 BC), who claimed that motion of classical objects is an
illusion. Zeno illustrated his point of view with various examples one of which is
the following: before an object can reach a point at a distance d from its present
location, it must have passed through the point at distance d/2. Carrying this
argument further, it means that infinitely many points have to be passed in
finite time before d can be reached. Therefore motion is not possible according
to this argument. Modern Mathematics resolves this apparent “paradox” mak-
ing use of real numbers and convergent infinite series. In the quantum domain
the notion “quantum Zeno effect” refers to the impediment or even suppression
of the dynamical evolution of a quantum system by frequent measurements of
the system’s state (see, for instance, (Khalfin 1968, Fonda et al. 1973, Misra &
Sudarshan 1977, Beige & Hegerfeldt 1996, Home & Whitaker 1997) and refer-
ences therein, and also chapter V.2 in (von Neumann 1932).)

How does a quantum system behave, whose evolution in time is unitary, un-
der repeated measurements separated by the time 4t? This will be considered
for the case of ideal measurements, that is, the measurement is instantaneous
and leaves the quantum system in an eigenstate of the observable being mea-
sured (Beige & Hegerfeldt 1997). Let |a〉 be an eigenstate of observable Â,
and P̂a = |a〉〈a| the corresponding projector. If a quantum system, initially
prepared in state |ψ(0)〉, undergoes ideal measurements at times t1, t2, .... with
4t = ti − ti−1 (i = 1, 2, . . . , N), then after N successive measurements the
system is found in state

|ψ(tN , 0)〉 = P̂aÛ(tN , tN−1) P̂a . . . P̂a Û(t1, 0)|ψ(0)〉 (14)

where Û(ti, ti−1) denotes the unitary time evolution operator for the quantum
system between two measurements. The probability to find the quantum system
in the state |a〉 after N ideal measurements is

Pa = |〈a|ψ(tn, 0)〉|2 (15)

= |〈a|Û(t1, 0)|ψ(0)〉|2
n∏

i=2

|〈a|Û(ti, ti−1)|a〉|2 , (16)

and an expansion gives:

|〈a|Û(ti, ti−1)|a〉|2 ' 1−4t2(4Ĥ)2 (17)

If the time interval between subsequent measurements goes to zero, 4t → 0,
then Pa tends to 1 and the survival probability becomes Pa = |〈a|ψ(0)〉|2. This
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simple argument shows that a quantum system initially in a state |ψi〉 turn
into an eigenstate |a〉 under repeated ideal measurements for 4t → 0 with
probability |〈a|ψ(0)〉|2 (von Neumann 1932). If |ψ(0)〉 = |a〉, the system remains
in |a〉 for 4t → 0.

For short times the survival probability of the state will be proportional
to t2, and the decay rate of this state is proportional to t. In contrast, an
exponential decay occurs with a constant rate, and a decay for time t1, followed
by an interruption (or measurement), followed by further decay for a time t2 is
equivalent to uninterrupted decay for a time t1 + t2 (Home & Whitaker 1997).

A simple quantum system to demonstrate the quantum Zeno effect is a
stable two-level system (states |0〉 and |1〉 with energy separation ~ω0) driven
by a resonant harmonic perturbation. After unitary time evolution of duration
4t, the probability of finding the system in the initially prepared eigenstate,
e.g. |0〉 (the survival probability,) P0 = cos2(θ/2), where θ = Ω ·∆t, and Ω is
the Rabi frequency. The corresponding transition probability P1 = sin2(θ/2).
For small time intervals ∆t the survival probability becomes

P0 = cos2
(

Ω ·∆t

2

)
' 1− Ω2∆t2

4
(18)

displaying the initial quadratic time dependence required for the quantum Zeno
effect.

When an ideal measurement is carried out at the end of a period of evolu-
tion ∆t, the quantum system is reset to one of its eigenstates. If during time
evolution one performs q successive ideal measurements a time ∆t apart, the
survival probability to find the system in the initial eigenstate in measurement
q under the condition that it was found q − 1 times in this state before,

P00 = cos2·q(θ/2) . (19)

In Figure 5a) P00 is shown for several values of θ. On the other hand, if no
measurements were performed and the system evolved coherently, the (a priori)
probability that the system is in the initial state after time t = n·∆t is Pcoh(n) =
cos2(n · θ/2) (Figure 5b).

In their original proposal of the quantum Zeno effect Misra and Sudarhan
used the term “quantum Zeno paradox” for the case of “freezing” the system
to a particular state by means of continuous observation of the systems unitary
evolution (Misra & Sudarshan 1977), while the term “quantum Zeno effect” was
used to characterize its impediment (Peres 1980, Pascazio & Namiki 1994, Cook
1988). Other authors distinguish between unitary evolution of the quantum
system and exponential decay of an unstable system, and the suppression of the
latter is regarded paradoxical (Block & Berman 1991). In (Home & Whitaker
1997) it is pointed out that the the quantum Zeno effect is a quantum effect
due to the initial quadratic time dependence of quantum mechanical evolution.
In contrast, a strictly exponential decay is a classical concept. In order for
the quantum Zeno effect to take place when the system is characterized by an
exponential decay, deviations from the exponential law at short times would be
required (an initial quadratic time dependence.) For unstable quantum systems
these short time deviations were indeed predicted (Winter 1961, Fonda et al.
1978), and observed experimentally in the tunnelling of atoms from a trapped
state into the continuum (Wilkinson et al. 1997). The use of the term quantum
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Figure 5: a) Probability, P00(q) to find a harmonically driven two-state system
in the initially prepared state |0〉 in each one of q successive measurements,
resulting in uninterrupted sequences of q equal results (for several nutation
angles θ = Ω∆t.) b) A priori probability for the system to be in state |0〉 after
time n ·∆t, if no measurements are performed.

Zeno paradox to describe the inhibition of an exponential decay, therefore, seems
inappropriate, since it requires the same initial time dependence to take place
as in the unitary case.

What can be regarded as paradoxical about the quantum Zeno effect? In a
comprehensive review by (Home & Whitaker 1997), it is stressed that the para-
doxical aspect is the retardation of evolution without any back action on the
observed quantum system during the measurement process, as a consequence of
negative result measurements. In the terminology used in this article this would
correspond to the absence of local physical interaction in the course of a nega-
tive result measurement. The mere presence of the macroscopic measurement
apparatus (like the detector DA in the Stern-Gerlach scheme discussed above)
may affect the quantum system due to the nonlocal correlation between the two.
(Home & Whitaker 1997) suggest that a nonlocal negative result measurement
on a microscopic system characterizes the quantum Zeno paradox.

It seems sensible to extend this definition of the quantum Zeno paradox
to two more classes of measurements that are not of the negative-result type
(Toschek & Wunderlich 2001): i) measurements free of back action (quantum
nondemolition measurement (Braginsky & Khalili 1992, Alter & Yamamoto
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2001)), that in fact give rise to positive results, and ii), measurements whose
back action cannot account for the retarding effect. In both cases the local inter-
action (in connection with positive results) alone, cannot explain the change in
the dynamics of the quantum system, and experiments that obey those criteria
would show the quantum Zeno paradox.

In the theoretical considerations at the beginning of this section state vec-
tors have been used, that is, the behavior of individual quantum systems was
investigated. Why is it necessary to carry out experiments on the quantum Zeno
paradox with individual quantum systems? Important work related to this ques-
tion is found, for instance, in (Spiller 1994, Alter & Yamamoto 1997, Nakazato
et al. 1996, R.Wawer et al. 1998). The next paragraphs will be concerned
with some aspects connected to this question. A more detailed discussion, con-
cerning in particular experiments with trapped ions, is given in (Toschek &
Wunderlich 2001, Wunderlich et al. 2001).

The original formulation of the quantum Zeno effect considered the proba-
bility for the observed system to stay in its initial state throughout the time in-
terval during which measurements are made. It has been pointed out (Nakazato
et al. 1996) that in ensemble measurements it is not possible to record this prob-
ability, unless different subensembles are chosen for each measurement, condi-
tioned on previous measurement results. In usual ensemble experiments only
the net probability of making or not making a transition from 0 to 1 after a
series of N measurements is recorded and calculated to interpret the experi-
ment. Experiments with single quantum system permit to record each individ-
ual measurement result and thus to select sequences of results where the system
remained in its initial state.

Furthermore, by making a series of measurements on an ensemble of identi-
cally prepared quantum systems the effect of the measurement on the quantum
systems’ evolution cannot be distinguished from mere dephasing of the members
of the ensemble (Spiller 1994). (For example, collisions between atoms lead to
dephasing of the atoms’ wave functions.) Both processes lead to the destruc-
tion of coherences (off-diagonal elements of the density matrix) and give rise to
identical dynamical behavior when the quantum system, after the measurement
has been performed or dephasing has set in, will be subjected to subsequent
manipulations. When investigating the quantum Zeno paradox we are inter-
ested in the change in the system’s dynamics conditioned on the outcome of the
measurement, in particular of negative-result measurements. Since dephasing of
an ensemble as described above might occur independently of the measurement
results, the question whether and how a series of particular measurement re-
sults is correlated with, and influences the quantum system’s dynamics cannot
be answered by an ensemble experiment. One might argue that dephasing is a
measurement no matter how it comes about. During the process where the wave
functions of the members of an otherwise isolated ensemble loose their initial
phase relation via some mutual interaction (they have been identically prepared
initially) correlations are established between members of this ensemble. This,
however, does not establish a measurement of the initial state of the quantum
systems.

In accordance with the discussion in section 3, the following condition is
taken as a necessary one to constitute a measurement: some correlation is es-
tablished between the quantum system (or an ensemble of quantum systems)
and the “outside world” (not described by the elements of the Hilbert space(s)
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of the quantum system(s) under investigation.) This could be an apparatus that
assumes classically distinct states correlated to the quantum system’s state.

4.1 Experiments

An experiment with several thousand Be+ ions stored in an electromagnetic
trap (Itano et al. 1990, Itano et al. 1991) (based on a proposal by Cook for a
single ion (Cook 1988)) indeed shows the reduction of the transition probability
between coherently driven hyperfine states (here, we label them |0〉 and |1〉)
when the ions’ state was frequently probed. Probing the ions’ state is achieved
by irradiating them with light resonantly coupling one of the hyperfine states
to a third level |2〉 such that scattering of light occurs, if and only if an ion
occupies, say state |0〉.

After initial preparation of the ions in |0〉, they are driven by a microwave π-
pulse inverting the population of the hyperfine states. To investigate the effect
of repeated measurements on the transition probability between states |0〉 and
|1〉, the sample of ions is irradiated, during the driving pulse, by N resonant
probe light pulses. At the end of the microwave pulse the population of state
|0〉 is measured by again applying a probe pulse and detecting scattered light.
The outcome of the experiment shows a reduction of the observed transition
probability in agreement with the predicted net transition probability

Pe1(T ) =
1
2
[1− cosN (θ/N)] (20)

where θ = π, and T is the duration of the microwave pulse. The index e1 indi-
cates that the ions in this ensemble experiment are found in state |1〉 irrespective
of the results of intermediate probing (taking place between initial preparation
and final probing N). The corresponding survival probability Pe0 = 1−Pe1. The
theoretical transition probability is derived from a quantum mechanical model
taking into account the probe light pulses that leave the population of states |0〉
and |1〉 unchanged and just set the coherences to zero (Itano et al. 1990).

The inhibition of the quantum system’s evolution was considered to be a
consequence of measurements (light scattering) frequently projecting the ions
back to their initial state. In (Frerichs & Schenzle 1991), calculations of the
dynamics of such a three level system are reported. It is deemed not necessary
to invoke the notion of measurement together with state reduction to explain
that the quantum system’s evolution was impeded in the experiment. Instead,
the retardation of the 2-state system’s evolution is interpreted as a dynamical
effect that can be explained when the third level is included in the quantum
mechanical description (Frerichs & Schenzle 1991, Block & Berman 1991, Gagen
& Milburn 1993). Indeed, good agreement is found with experimental data
gathered from the ensemble of Be+ ions. This is not so surprising, since the
results of the experiment are expectation values of an ensemble of ions, and one
would not expect quantum mechanics to fail in predicting the correct ensemble
average. Each measurement leads to a diagonal density matrix describing the
ions (ρ00 6= 0 6= ρ11), however, with both diagonal elements different from zero.
However, the paradoxical aspect of quantum mechanics, and in particular of
quantum Zeno, comes into focus when the eigenvalue of every single system as
a result of a measurement is revealed.
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Both state reduction and Bloch equations may lead to identical results when
measurements on an ensemble are performed. This has been shown in (Power
& Knight 1996) and (Beige & Hegerfeldt 1996) where the ensemble quantum
Zeno experiment with Be+ ions is simulated using quantum jump techniques
in order to test whether the projection postulate is applicable to describe the
observed results. It is pointed out that for an ensemble, the quantum trajec-
tories produced by the quantum jump approach reproduce the density matrix
probabilities resulting from the Bloch equations. In the latter model the decay
of the coherences is due to coupling of the driven transition to the strong mon-
itor transition (Frerichs & Schenzle 1991, Power & Knight 1996). Therefore,
to understand the ensemble averaged relaxation, it is not necessary to refer to
state reduction. In (Beige & Hegerfeldt 1996) it is suggested that under partic-
ular conditions (that were fulfilled in the experiment) the projection postulate
is a useful tool that gives the right results. On the other hand, in (Power &
Knight 1996) it is pointed out that the Bloch equations do not hold for the de-
scription of the quantum Zeno effect with a single ion, since one of the diagonal
elements of the density matrix disappears whereas in an ensemble, in general,
both diagonal elements assume nonzero values.

Another aspect (connected to the above argument) to mention is that in the
Be+ experiment only the net transition probability at the end of the microwave
pulse is recorded. Intermediate back-and-forth transitions between states |0〉
and |1〉 of individual members of the ensemble, as well as correlated transitions
of ions, could not be detected. In (Nakazato et al. 1996) it is worked out
that, if one takes into account the result of every intermediate measurement,
the probability in equation 20 describes not the quantum Zeno effect of a two-
level system, equation 20 includes these intermediate back-and-forth transitions,
which means the system does not necessarily stay in the initial state. The correct
description is the one in equation 19. Both equation 20 and 19 imply that an
ensemble (for N →∞ nonselective measurements) and a single quantum system
(q → ∞ selective measurements) are found in the initial state. However, for
small N (q), expression 20 and 19 yield markedly different results (section 4.3.)

The experiment described in (Kwiat et al. 1995) aimed at the demonstration
of an optical version of the quantum Zeno effect. Based on a suggestion put
forth in (Elitzur & Vaidman 1993), the propagation of a photon in a sequence
of Mach-Zehnder interferometers is restricted to only one arm of the interfer-
ometers due to interaction-free measurements. Even though the outcome of
the experiment obeys the mathematics of the quantum Zeno effect, the physics
seems different as pointed out in (Home & Whitaker 1997) where it is argued
that the result of this experiment is explicable, as far as the quantum Zeno
effect is concerned, in terms of classical physics. A modification of this exper-
iment shows the polarization rotation of photons to be impeded because of an
interaction-free measurement within the Mach-Zehnder interferometer (Kwiat
et al. 1999). As in the previous experiment the mathematics of the quantum
Zeno effect describes well the dynamical behavior of the system. According to
the arguments in (Home & Whitaker 1997, Whitaker 2000), it appears that
again the physics necessary for the quantum Zeno effect is not involved. An
experiment that can be classically described gives equivalent results: the rota-
tion of the polarization of light passing through an optically active substance is
retarded by means of a sequence of polarization analyzers (Peres 1980).

Recently an experiment was performed to demonstrate the quantum Zeno
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effect and the anti Zeno effect in an unstable system (Fischer et al. 2001). The
anti Zeno effect describes an acceleration of the decay of an unstable system
under repeated observation (Kofman & Kurizki 2000, Facchi et al. 2001). As
stated previously, the quantum Zeno effect may occur, if the short time evolu-
tion of the decay deviates from a purely exponential one (Winter 1961, Fonda
et al. 1978, Wilkinson et al. 1997). Reference (Fischer et al. 2001) describes the
decay via tunnelling of an ensemble of atoms trapped in an optical potential
created by a standing light wave. Acceleration of the standing wave leads to a
deformed potential, thus admitting tunnelling of some atoms out of the optical
potential wells. The tunnelling probability shows a marked deviation from ex-
ponential decay for short times that has its origin in the initial reversibility of
the decay process. Tunnelling is initiated by applying high acceleration to the
atoms trapped in the standing wave for a time ttunnel, and interrupted for time
tinterr during which the acceleration was low. The interruption of tunnelling is
considered a measurement of the number of atoms that remain trapped, since
tinterr is chosen such that the fraction of trapped atoms separate in momen-
tum space from the atoms that have tunnelled during ttunnel. The insertion of
periods of low acceleration indeed leads to a slower decay of the survival prob-
ability of trapped atoms. It seems that this experiment does not satisfy the
criteria for the quantum Zeno paradox for similar reasons as the experiment
with an ensemble of Be+ ions outlined above. The final measurement of the
spatial distribution of all atoms yields an ensemble average in agreement with
the unitary time evolution predicted by the Schrödinger equation. The inter-
mediate measurement results (obtained after periods of low acceleration) were
not recorded; even if this had been the case, back-and-forth transitions between
trapped and free states of individual members of the ensemble during the initial
period (reversible dynamics) would have gone unnoticed.

The discussed experiments appear not suitable to demonstrate the Quantum-
Zeno-Effect, or rather the quantum Zeno paradox, for they do not address a key
point that makes up the nature of the effect: the retardation of the evolution of
a quantum system due to a (possibly nonlocal) correlation between the observed
individual quantum system and the macroscopic measurement apparatus during
the repeated measurement process. This correlation leads to an irreversible
change in the system’s wave function and is evident even in negative result
measurements where its effect is not concealed by local physical interaction.
The latter, too, may indeed affect the system’s transition probability under the
condition of an initial quadratic time dependence. However, such a change in
the time evolution is necessary but not sufficient for the quantum Zeno effect.

4.2 Quantum Zeno experiment on an optical transition

An experiment with a single 172Yb+ ion demonstrating the quantum Zeno ef-
fect will be outlined in what follows (Balzer et al. 2000). The electronic states
S1/2 ≡ |0〉 and D5/2 ≡ |1〉, connected via an optical electric quadrupole transi-
tion close to 411nm, serve as a two-level quantum system. State |0〉 is probed by
coupling it to state P1/2 via a strong dipole transition and detecting resonance
fluorescence close to 369nm. The quadrupole transition |0〉 − |1〉 was coher-
ently driven using light emitted by a diode laser with emission bandwidth 30Hz
(in 2ms). To demonstrate the retardation of quantum evolution, driving light
pulses close to 411 nm alternated with probe pulses at 396nm. The duration, ∆t
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and the Rabi-frequency, Ω of the driving pulse were set to fixed values, and the
frequency of the light field was slightly detuned from exact resonance in order
to vary the effective nutation angle θeff =

√
Ω2 + δ2 ·∆t. The intensity and the

duration of the probe field were adjusted such that the observation of resonance
fluorescence results in state reduction to state |0〉, while the absence of fluores-
cence results in state |1〉 with near unity probability. Each outcome of probing
was registered, and a complete record of the evolution of the single quantum
system was acquired. Thus, a trajectory of “on” results (resonance fluorescence
was observed) and “off” (no fluorescence, i.e. negative) results is obtained. The
statistical distribution of uninterrupted sequences of q equal results was found
in good agreement with P00(q − 1) = U(q)/U(1) where U(q) is the normalized
number of sequences with q equal results, and U(1) denotes the probability for
this result at the beginning of the sequence. This shows the impediment of the
system’s evolution under repeated measurements, and thus the quantum Zeno
effect. A theoretical model taking into account spontaneous decay of the D5/2

state fits well the recorded series of “off” events (negative-result measurements)
as well as to the “on” events (positive-result measurements.) It has been shown
that the effect of the measurement on the ion’s evolution is not intertwined with
additional dephasing effects (Balzer et al. 2000, Toschek & Wunderlich 2001).
The observed impediment of the driven evolution of the system’s population is
a consequence of the correlation between the observed quantum system and the
macroscopic meter.

In this experiment the angle of nutation θ was not exactly predetermined.
During the driving pulse, the system’s population undergoes multiple Rabi os-
cillations giving an effective nutation angle θeff = θ mod 2π at the end of
the interaction that varies in a small range due to not perfect experimental
conditions. Therefore, the exact nutation angle was obtained from a fit of
experimental data. The analysis of the experiment is further complicated by
spontaneous decay from the relatively short-lived D5/2 state (lifetime of 6ms
(Fawcett & Wilson 1991)) into the S1/2 ground state and the extremely long-
lived F7/2 state of 172Yb+ (lifetime of about 10 years (Roberts et al. 1997).)In
addition, the relatively short time series recorded in this experiment may cause
interpretational difficulties.

4.3 Quantum Zeno experiment on a hyperfine transition

In this section we describe an experiment with a single 171Yb+ ion whose ground-
state hyperfine states are used as the quantum system to be measured. Here, the
quantum Zeno paradox is demonstrated avoiding the complications associated
with relaxation processes and optical pumping as in the experiment described
in the previous section (Balzer, Hannemann, Reiß, Wunderlich, Neuhauser &
Toschek 2002). The hyperfine transition is free of spontaneous decay and the use
of microwave radiation allows for precise preparation of states with a desired
nutation angle θ. Sufficiently extensive data records ensure an unambiguous
interpretation of these experiments.

parameters of the microwave field driving this transition are precisely de-
fined.

A semiclassical treatment of the magnetic dipole interaction between mi-
crowave field and hyperfine states of Yb+ in an interaction picture (and making
the rotating wave approximation) yields the time evolution operator U(t) =
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exp
[− i

2 t (δσz + Ωσx)
]
. (compare section 2). For t > 0 the ion evolves into a

superposition state

|ψ〉I = cos
θ

2
|0〉+ sin

θ

2
eiφ|1〉 , (21)

and the probability, P1(t) to find the system in |1〉 is proportional to t2 for small
t. In the experiment the resonance condition ω0 = ω is fulfilled to good approx-
imation, and after time T = π/Ω of unperturbed evolution, a measurement of
the ion’s state will reveal it to be in state |1〉 with close to unit probability.

4.3.1 State selective detection

The relevant energy levels of the 171Yb+ ion are schematically shown in Figure
1. Sufficiently long irradiating the ion with uv laser light will prepare the ion
in the ground state F = 0 by optical pumping. The occupation of the F = 1
level (after interaction with the microwave field) is probed by irradiating the
ion with light at 369 nm (uv laser light,) thus exciting resonance fluorescence
on the electric dipole transition S1/2, F = 1 ↔ P1/2, and detecting scattered
photons using a photomultiplier tube. An “on” result (scattered photons are
registered) leaves the ion in state |1〉, otherwise the ion is in the |0〉 (“off” result;
no photons are registered.)

While the uv light is turned on for detection of the ion’s state, the ion may
be viewed as a beam splitter for the incident light beam: Either the light is
completely “transmitted”, that is, the initially populated light mode (charac-
terized by annihilation operator b) remains unchanged. This will occur with
probability, w0 close to unity, if the ion is in state |0〉 during the uv laser pulse
(we take w0 = 1 in what follows). Or, photons are scattered into some other
mode b′ 6= b (that may be different for every scattered photon,) if the ion re-
sides in |1〉. The latter occurs with probability w1 determined by the detuning
relative to the S1/2, F = 1 ↔ P1/2, F = 0 resonance, intensity, and duration of
the incident uv light. For a sufficiently long uv light pulse eventually a photon
will be scattered into mode b′, and we may take w1 = 1. After one photon has
been scattered into mode b′, the ionic state correlated with this electromagnetic
field mode b′ is |1〉. Thus, the correlation established between the state of the
light field and the ion’s state is

|0〉|b〉 → |0〉|b〉
|1〉|b〉 → |1〉|b′〉 , (22)

and consequently
α|0〉+ β|1〉 → α|0〉|b〉+ β|1〉|b′〉 (23)

In this (simplified) description |b〉 represents the em field in its initial mode,
and |b′〉 stands for a different mode occupied by a single photon. Since the field
states |b〉 and |b′〉 are orthogonal, the density matrix describing the ion’s state
(obtained by tracing over the field states) becomes diagonal, and coherences
of the ion’s states |0〉 and |1〉 that may have existed are no longer observable
(Giulini et al. 1996). The field carries information about the ion’s state, thus
destroying the ion’s ability to display characteristics of a superposition state in
subsequent manipulations it may be subjected to.

The scattered photon in mode |b〉 may be absorbed by the photo cathode of a
photo multiplier tube leading, after several amplification stages, to the ejection
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of a large number of photo electrons from the surface of the last dynode of the
photo multiplier. This current pulse strikes the anode of the multiplier and is
further amplified and finally registered as a voltage pulse by a suitable counter.
Thus, the ion’s state is eventually correlated irreversibly with the macroscopic
environment. The irreversible correlation will actually take place much earlier in
the detection chain. Irreversibility here means it is not possible, or rather very
improbable, to restore the photo cathode (which would include, for instance,
the power supply connected to it) to its state before an electron was ejected in
response to an impinging photon.

Does the finite detection efficiency for photons (only the small fraction of
about 4×10−3 of scattered photons are detected during an “on” event) influence
the interpretation of and conclusions drawn from the experiment described here?
In order to answer this question we look in some more detail at the process of
correlation between the ion’s state and the ‘rest of the world.

After the first photon has been scattered from mode b into an orthogonal
mode b′, a correlation between the ion and its macroscopic environment has
been established, even if this photon is not registered by the photomultiplier
tube, but instead is absorbed, for instance, by the wall of the vacuum recipient
housing the ion trap. Welcher weg information about the state of the ion is
available, and the ion is left in a statistical mixture of states, corresponding to
a density matrix with two diagonal elements different from zero (if one uses the
density matrix formalism to describe an ensemble of such individual quantum
systems.) The quantum Zeno experiment described below shows that the correct
description of the single ion’s state after a measurement pulse is either |0〉 or
|1〉 (corresponding to a density matrix with only one diagonal element.) One
may wonder whether (after a single photon has been scattered and absorbed by
a wall) the ion is already reduced to the F = 1 state, or, alternatively if it is
necessary for the scattered photon to hit the photo detector and thus yield a
macroscopically distinct read-out for this to happen.

The second alternative does not seem plausible, since it would mean that the
macroscopic photo detector plays a distinctive role compared to other macro-
scopic entities, like the wall of the vacuum recipient. No matter where the
photon is absorbed, the absorption will result in an irreversible correlation of
the ion with its environment, thus destroying the ion’s coherences. However, the
absorption in the wall does not yield macroscopically distinct states in the sense
that an observer could access the information on the ion’s state stored in the
post-absorption state of the wall (as opposed to the case when the photon hits
the detector.) Should the ion’s state reduction (here to state |1〉) only happen
if an apparatus yields distinct read-outs, then this would mean that the ion’s
dynamics depends on whether the photo detector is switched on or off during
a sequence of N measurements (which seems implausible.) Such a sequence
of measurements (only the last one of N measurement results is actually reg-
istered) has not been performed experimentally with a single ion. One would
assume that the ion’s dynamics is not changed during such a sequence compared
to one where all intermediate results are “amplified” to distinct read-outs (as
was actually done, and is necessary to demonstrate the quantum Zeno effect.)
If this assumption is correct, then this together with the experimental results
described below, implies that state reduction of the ion occurs independently of
the information gain of any observer. In addition, it means that after one pho-
ton has been scattered by the ion, the ion is in state |1〉. Once it is in state |1〉,
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it will scatter many more photons during the detection interval (about 107s−1),
some of which will be registered by the photo detector. Therefore, if and only
if the ion is in state |1〉, will a distinctive macroscopic read-out be obtained
(resulting from photo detection) corresponding to this state. Similar reasoning
shows that the absence of photo counts correlates with the ion being in state
|0〉.

4.3.2 Fractionated π-pulse

To demonstrate the quantum Zeno paradox we investigate the impediment of
an induced transition by means of measurements, similar to the proposal in
(Cook 1988). First, an 171Yb+ ion is illuminated for 50ms with uv light and
thus prepared in state |0〉. The intensity, detuning and duration of microwave
radiation applied to the ion is adjusted such that a π-pulse results, inducing a
transition to state |1〉. This is achieved, if subsequent probing using uv light
invariably leads to registration of fluorescence yielding an “on” result (Fig. 6a).
The duration of the π-pulse was 2.9 ms.
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Figure 6: a: Excitation of the hyperfine transition in 171Yb+ by applying a
microwave π-pulse. b: Fractionated π-pulse without intermediate probing, and
c: with intermediate probing using light at 369nm and simultaneous detection
of the scattered photons (PC: photon counter, prep: initial preparation by a
light pulse at 369nm.)

In order to separate the influence of the measurement pulses clearly from the
driving field, the applied π-pulse is fractionated in N pulses of equal area π/N
a time τprobe = 3ms apart (Fig. 6b). The frequency of microwave radiation is
carefully set to resonance with the ionic transition by means of Ramsey-type
experiments (compare section 2.) Thus, there is no dephasing between driving
field and ion due to free precession during the intermissions, and the fractionated
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excitation will again result in a transition with nutation angle N ×π/N . Pulses
of probe light are applied during the N − 1 “gaps” of duration τprobe, and the
photon counter is gated open synchronously in order to register or not register
scattered photons indicating the ions excitation to state |1〉 or survival in the
initially prepared state |0〉, respectively (Fig. 6c.) The experimental succession
of initial preparation in |0〉, applying N microwave pulses and N probe pulse is
repeated 2000/N times.

The experiment is carried out for N = 1, 2, 3, 4 and 10. We are interested in
those sequences where all N measurements give a negative (“off”) result, indi-
cating the survival of the ion in its initially prepared state. The number of these
sequences normalized by the total number of sequences is plotted in Figure 7
versus the number of probe interventions (grey bars.) The data shown in Figure
7 have been corrected to account for the imperfect initial state preparation with
an efficiency of 82%, as well as possible false detection of one of the N results.
The number of photo counts during a detection interval are Poisson distributed
characterized by mean photon numbers of about 5 (“on” results) and 0.2 (“off”
result), respectively. Since the two distributions overlap to some degree, wrong
assignments may occur. To distinguish between “on” and “off” a fixed threshold
is used. This threshold is chosen such that in less than 0.5% of the cases an
“on” result is mistaken as “off”. The error bars represent the variance of the
binomial distribution of the number of recorded sequences of “on” and “off”
results. In contrast to the proposal by Cook (Cook 1988) the result of each of
N measurements is registered. Therefore, it is possible to identify sequences
of results that represent survival of the ion in the initially prepared state, |0〉
during the N observations. The survival probability vanishes for N = 1 and
increases to 77% for N = 10 showing that the evolution is impeded by frequent
measurements.
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Figure 7: Probability of survival in the initially prepared state versus the num-
ber, N−1 of probe interventions. The gray bars indicate the corrected (see text)
measurement results which agree well with the calculated values of the survival
probability P00 (black bars.) This demonstrates the quantum Zeno paradox.
The light grey bars give the survival probability when no measurement pulses
are applied. The measured values differ significantly from the values of the
probability Pe0 (white bars,) that doesn not properly describe the quantum
Zeno effect (see text.)
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The occurrence of sequences of N equal results (“off”) follows P00(N) =
cos2N (π/2N), according to equation (19). This is different from the “net” prob-
ability Pe0(N) = 1/2(1 + cosN (π/N)) where intermediate transitions between
|0〉 and |1〉 are taken into account as discussed above. These two probabilities
are significantly different for small values of N . The quantum Zeno paradox is
evident in the correspondence of the experimental data in Figure 7 with P00.

In principle it is possible to analyze the recorded data by ignoring the re-
sults of the first N − 1 probe interventions in each sequence. More specifically,
one could extract from the data the probability for the ion to end up in state
|0〉 after the N -th measurement irrespective of its history. This probability
would then be expected to agree with results from an ensemble experiment,
provided no dephasing in the ensemble occurred. However, owing to the popu-
lation accumulating in the Zeeman sublevels |F = 1,mF = ±1〉 during an “on”
detection interval, the upper state |1〉 may be decoupled by the probe light
from the two-level system (Balzer, Hannemann, Reiß, Neuhauser, Toschek &
Wunderlich 2002a): once an “on” result has been obtained, the ion may have
made a transition to one of the Zeeman levels |F = 1,mF = ±1〉 and is no longer
affected by the subsequent microwave driving pulse. (This does not affect the
determination of the survival probability in state |0〉.)

4.3.3 Statistics of sequences of equal results
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Figure 8: Top: Measurement scheme of alternating excitation and detection.
Bottom: schematic of a trajectory of results.

In the experiment described in the previous section, the quantum Zeno ef-
fect is manifest in the survival probability of the initially prepared state |0〉
growing with the number of intermediate measurements during the driving π-
pulse. In other words, frequent measurements hinder the transition to state |1〉,
in accordance with Cook’s suggestion to demonstrate the quantum Zeno effect.
However, to demonstrate the quantum Zeno effect, it is not necessary to employ
a fractionated π-pulse. The retardation of the evolution of an initially prepared
state will show up in a sequence of alternated driving and probing, too. We have
recorded series of 10000 pairs each consisting of a drive pulse and a probe pulse
as shown in Figure 8(top) resulting in trajectories of alternating sequences of
“on” and “off” results (Fig. 8, bottom). The normalized number of sequences
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of q equal results, U(q) corresponds, to good approximation, to the probability
of survival in one of the eigenstates, P00:

U(q)/U(1) = P00(q − 1) , (24)

where U(1) denotes the probability to find the ion in this state at the very
beginning of a sequence. P00 is the conditional probability according to equation
19. The statistical distributions of the “off” sequences, P00(q− 1) = U(q)/U(1)
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Figure 9: Statistical distribution of “off” sequences, P00(q − 1) = U(q)/U(1)
versus q − 1 (for different values of the nutation angle θ indicated in the Fig-
ure.) The correspondence of the measurement results (dots) with the survival
probabilities P00(q−1) (solid lines) verifies the quantum Zeno effect. Deviations
between measured and calculated values for large q are due to the finite length
of the experimental trajectories of measurement results.

is shown in Figure 9 for the nutation angles θ = π, π/2, π/5 and θ = 2π − 0.1
(dashed lines). The duration of a microwave pulse that corresponds to θ = 2π
was set here to 4.9 ms. The interval of probing was 2ms. The solid lines indicate
the survival probabilities P00(q − 1). A systematic deviation of 3% from the
preset values of θ emerges from slightly varying the preset areas of the driving
pulse while fitting P00 to the data. For long sequences (large q), the data show
strong deviations from the calculated survival probability. This is due to the
finite length of the experimental trajectory.

Both experiments on the hyperfine transition of the 171Yb+-ion show clearly
the quantum Zeno effect, the retardation of the evolution of an individual quan-
tum system as a consequence of measurements. In particular, they demonstrate
the quantum Zeno paradox, since the measurement results are of the negative-
result type, indicating a correlation between the observed individual quantum
system and the measurement apparatus without local physical interaction.
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5 Quantum state estimation using adapative mea-
surements

5.1 Introduction

Determining an arbitrary state of a quantum system is a task of central impor-
tance in quantum physics, and in particular, in quantum information processing
and communication where quantum mechanical 2-state systems (qubits) are el-
ementary constituents. In order to gain complete knowledge about the state
of a quantum system infinitely many measurements have to be performed on
infinitely many identical copies of this quantum state. Naturally, the question
arises how much information about a quantum state can be extracted using finite
resources and what strategies are best suited for this purpose. A first indication
of the appropriate operations to be carried out with two identically prepared
qubits in order to gain maximal information about their state was given by
(Peres & Wootters 1991). It was strongly suggested that optimal information
gain is achieved when a suitable measurement on both particles together is per-
formed. The measure that served to quantify the gain of information in these
theoretical considerations was the Shannon information.

The Shannon information (or entropy) −∑
n pn log2 pn (Shannon 1948) is

a measure for the uncertainty about the true value of some variable before a
measurement of this variable takes place. The variable may take on m different
values with probability pn , n = 1..m. Alternatively, the Shannon information
can be viewed as giving a measure for the information that is gained by ascer-
taining the value of this variable. In Ref. (Brukner & Zeilinger 2001) it is argued
that this measure is not adequate in the quantum domain, since the state of a
quantum system is not well defined prior to observation. Only if the quantum
system is in an eigenstate before and after a measurement is performed, does the
measurement indeed reveal a preexisting property. In general, however, this is
not the case in the quantum domain, and therefore, the Shannon information is
deemed not suitable as a measure for the uncertainty associated with an observ-
able before a measurement takes place. This statement may also be expressed
in different words: In the quantum world not even the possible alternatives of
measurement outcomes are fixed before a measurement is carried out. This fact
is also at the core of the EPR programme where quantum mechanics predicts
nonclassical correlations between two particles (Einstein et al. 1935). An alter-
native measure for the information content of a quantum system invariant under
unitary transformations has been suggested in (Brukner & Zeilinger 1999).

The suggestion in (Peres & Wootters 1991) that the optimal measurement
for determining a quantum state of two identically prepared particles needs to
be carried out on both particles together, was proven in (Massar & Popescu
1995). In more technical terms this means that the operator characterizing the
measurement does not factorize into components that act in the Hilbert spaces of
individual particles only. In (Massar & Popescu 1995) it was also shown that the
same is true when N = 1, 2, 3, . . . identically prepared qubits are available. The
states to be estimated were drawn randomly from a uniform distribution over
the Bloch sphere and the cost function that has been optimized was the fidelity
cos2(θ/2) where θ is the angle between the actual and estimated directions.
The optimal fidelity that can be reached is (N + 1)/(N + 2). As a special case
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of optimal quantum state estimation of systems of arbitrary finite dimension
the upper bound (N + 1)/(N + 2) for the mean fidelity of an estimate of N
qubits was rederived in Ref. (Derka et al. 1998). In addition, it was shown that
finite positive operator valued measurements (POVMs) are sufficient for optimal
state estimation. This result implied that an experimental realization of such
measurements is feasible, at least in principle. Subsequently, optimal POVMs
were derived to determine the pure state of a qubit with the minimal number of
projectors when up to N = 5 copies of the unknown state are available (Latorre
et al. 1998). Still, the proposed optimal and minimal strategy requires the
experimental implementation of rather intricate non-factorizing measurement
operators. In addition, all N qubits have to be available simultaneously for a
measurement.

In (Buz̆ek et al. 1999, Buz̆ek et al. 2000) investigations are reported on how
an arbitrary qubit state |ψ〉 can be turned into the state |ψ⊥〉 orthogonal to
the initial one. Such a quantum mechanical universal NOT (U-NOT) operation
would correspond to the classical NOT gate that changes the value of a classical
bit. It is shown that a U-NOT gate corresponds to an anti-unitary operation,
and an ideal gate transforming an unknown quantum state into its orthogonal
state does not exist. If a single qubit in a pure state is given and no a priori in-
formation on this state is available, then measuring the quantum state and using
this information to prepare a state |ψ⊥〉 gives the optimal result. If N qubits in
state |ψ〉 are available, then too, the optimal U-NOT operation can be attained
by estimating the initial quantum state using these N qubits and subsequently
preparing the desired state. Thus, the optimal fidelity (N + 1)/(N + 2) for a
U-NOT is reached which coincides with the optimal fidelity for state estimation.

(Gill & Massar 2000) consider the problem of quantum state reconstruction
when taking advantage of a large ensemble of identically prepared quantum
states in a finite dimensional Hilbert space. For N → ∞ any sensible mea-
surement strategy yields a perfect estimate of a given quantum state, and since
for large N the estimate drawn from any strategy comes very close to the true
value, the distinguishing feature between different strategies applied to large
ensembles is the rate at which neighboring states can be distinguished. A quan-
titative measure for this rate is introduced and an upper bound for any type
of estimation strategy is derived in (Gill & Massar 2000). For the case of a
2-dimensional Hilbert space (qubits) an explicit measurement strategy for pure
states is given attaining this upper bound when using separate measurements
on each particle. It turned out that for mixed states this upper bound is also
valid as long as measurements are carried out in a factorizing basis. However,
if collective measurements are allowed for, then this bound is not necessarily
valid. Therefore, mixed states exhibit nonlocality without entanglement when
large ensembles are available whereas pure states do not show this feature.

Nonlocality without entanglement has been described in Ref. (Bennett
et al. 1999). There unentangled quantum states of a composite quantum sys-
tem are described that can only be distinguished by a joint measurement on the
whole system, but not by separate measurements on the individual constituents,
not even when exchange of classical information between the observers measur-
ing the individual objects is allowed for. A joint measurement on the quantum
system reveals more information than any “classically” coordinated measure-
ments of the individual parts.

In (Massar & Popescu 2000) it is shown that different definitions for the tar-
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Figure 10: The steps necessary for transmission of information using quantum
systems are schematically shown.

get function function that is to be maximized in quantum state estimation may
lead to different recipes for optimal measurements. This in turn will determine
the properties of the quantum state that is revealed in a quantum measurement.
It is shown that no matter what type of target function is chosen, the maximum
amount of information that can be obtained from one qubit is one bit.

Estimating a quantum state can also be viewed as the decoding procedure
at the receiver end of a quantum channel necessary to recover elements of an al-
phabet that have been encoded in quantum states by a sender (see, for instance,
(Jones 1994).) A sketch of the steps necessary for the transmission of quantum
information is displayed in Figure 10: The sender prepares a quantum state
by setting the classical parameters of an appropriate device that prepares the
desired quantum state. Then, the quantum system propagates in space or time
until it reaches the receiver equipped with an apparatus capable of performing
measurements in any basis, and it is her/his task to give the best possible esti-
mate of this quantum state after N identically prepared copies of the quantum
system have been sent. In order to specify what “best possible” means, the
Shannon information and von Neumann entropy for this situation have been
computed, and an upper bound for the information obtainable from N iden-
tically prepared quantum states as well as a lower bound on the entropy have
been derived (Jones 1994).

The quantum information associated with a state of a qubit to be trans-
mitted can be viewed as a unit vector indicating a direction in space. If no
common coordinate system has been established, then the transmission of a di-
rection in space between two distant parties requires a physical object. In the
quantum domain, N identically prepared spin-1/2 systems may serve for this
purpose. It has been shown that the optimal state, that is, the one that yields
the highest average fidelity F = 〈cos2(θ/2)〉 of transmission is an entangled one
for N > 2 (Bagan et al. 2000, Peres & Scudo 2001, Bagan, Baig, Brey & Munoz-
Tapia 2001) (θ is the angle between the estimated and the actual direction to be
transmitted.) The use of product states for communication of a spin direction
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has been investigated in (Bagan, Baig & Munoz-Tapia 2001).
Debugging of a quantum algorithm is another possible application for quan-

tum state estimation (Fischer et al. 2000). Once a quantum algorithm has been
implemented, it has to be tested, for instance by checking the state of a certain
qubit in the course of the computation. In such a case the qubits are only avail-
able sequentially and efficient estimation is desirable, that is, a large overlap of
the estimated state with the true one while keeping the number of repetitions
of the algorithm as small as possible.

First experimental steps towards entanglement-enhanced determination (N =
2) of a quantum state have been undertaken (Meyer et al. 2001). The rotation
angle around a specific axis of the total angular momentum of 2 spin systems has
been estimated with an uncertainty below the standard quantum limit. The re-
lated problem of measuring in an optimal way the phase difference φ between the
two arms of a Mach-Zehnder interferometer has been addressed in Ref. (Berry
& Wiseman 2000). The optimal input state has been derived and an adaptive
measurement scheme is proposed that relies on the detection of photon counts
and yields a variance in φ close to the optimal result.

We have seen that optimal strategies to read out information encoded in the
quantum state of a limited number of identical qubits require intricate measure-
ments using a basis of entangled states. The first experimental demonstration
of a self-learning measurement (employing a factorizing basis) of an arbitrary
quantum state (Hannemann et al. 2002) and an experimental comparison with
other strategies is reviewed in what follows.

5.2 Elements of the theory of self-learning measurements

It was recently shown that quantum state estimation of qubits with fidelity close
to the optimum is possible when a self-learning algorithm is used (Fischer et al.
2000). When using this algorithm, N members of an ensemble of identically
prepared quantum systems in a pure state,

|ψ〉 = |ψ〉1 ⊗ |ψ〉2 ⊗ . . .⊗ |ψ〉N , (25)

can be measured individually, that is, they do not have to be available simul-
taneously. In other words, the measurement operator M̂ employed to estimate
the state can be written as a tensor product and we have

M̂ |ψ〉 = m̂1|ψ〉1 ⊗ m̂2|ψ〉2 ⊗ . . .⊗ m̂N |ψ〉N (26)

The operators m̂n project onto the orthonormal basis states

|θ(n)
m , φ(n)

m 〉 = cos
θ
(n)
m

2
|0〉+ sin

θ
(n)
m

2
eiφ(n)

m |1〉 and |π − θ(n)
m , π + φ(n)

m 〉 (27)

An experimental realization of a self-learning measurement on an individual
quantum system in order to estimate its state is reported in (Hannemann
et al. 2002). The projector m̂n of measurement n is varied in real time during
a sequence of N measurements conditioned on the results of previous measure-
ments m̂l, l < n in this sequence (for the first measurement, n = 1, obviously no
prior knowledge of the state is available and the first measurement basis can be
chosen arbitrarily.) The cost function that is optimized when proceeding from
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measurement n to n+1 is the fidelity of the estimated state after measurement
n + 1. This will be detailed in the following paragraphs.

Prior to the first measurement no information on the qubit state is available
and the corresponding density matrix %0 reflecting this ignorance is

%0 =
∫ π

0

dθ sin θ

∫ 2π

0

dφ w0(θ, φ) |θ, φ〉〈θ, φ| , (28)

where w0(θ, φ) = 1
4π is the probability density on the Bloch sphere. After the

qubit has been measured in the direction (θm, φm) the new distribution wn(θ, φ)
(n = 1, 2, 3, . . . , N) is obtained from Bayes rule ((Bayes 1763), reprinted in
(Bayes 1958):

wn(θ, φ|θm, φm) =
wn−1(θ, φ) |〈θm, φm|θ, φ〉|2

pn(θm, φm)
, (29)

where wn−1(θ, φ) gives the a priori probability density to find the qubit along
the direction indicated by θ and φ. The conditional probability to measure the
qubit along the direction |θm, φm〉 if it is in state |θ, φ〉 is given by |〈θm, φm|θ, φ〉|2.
Correct normalization is ensured by the denominator

pn(θm, φm) =
∫ π

0

dθ sin θ

∫ 2π

0

dφ wn−1(θ, φ) |〈θm, φm|θ, φ〉|2 (30)

that gives the probability to measure the qubit along the direction |θm, φm〉
irrespective of its actual state, that is, integrated over all possible a priori di-
rections.

The adaptive algorithm needs to find optimal measurement axes (θm, φm)n

after each step. The optimization is based on the knowledge gained from the
preceding measurements as represented by wn−1(θ, φ).

The cost function used to find the optimal measurement is the fidelity

Fn−1(θ, φ) = 〈θ, φ|%n−1|θ, φ〉 . (31)

After n−1 measurements the knowledge of the state is represented by wn−1(θ, φ)
and the fidelity of any state |θ, φ〉 is

Fn−1(θ, φ) =
∫ π

0

dθ′ sin θ′
∫ 2π

0

dφ′ wn−1(θ′, φ′) |〈θ, φ|θ′, φ′〉|2 (32)

The estimated state after n − 1 measurements |θest, φest〉n−1 has to maximize
this fidelity:

Fn−1(θest, φest) = F opt
n−1 ≡ maxFn−1(θ, φ) (33)

In order to find the optimal direction for the next measurement n, the ex-
pected mean fidelity after the next measurement is maximized as a function
of the measurement axis. Suppose the system will be found in the direction
(θm, φm). Then the fidelity would be

Fn(θ, φ|θm, φm) =
∫ π

0

dθ′ sin θ′
∫ 2π

0

dφ′ wn(θ′, φ′|θm, φm) |〈θ, φ|θ′, φ′〉|2 (34)
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where the expected distribution after this measurement, wn(θ′, φ′|θm, φm) is ob-
tained from Bayes rule (Eq. 29). The optimal fidelity F opt

n (θm, φm) is then found
by maximizing this function with respect to (θ, φ).

A measurement along a certain axis will reveal the system to be in one
of two possible states: Either is is found along this axis (θm, φm), or in the
opposite direction (θ̄m, φ̄m) ≡ (π − θm, π + φm). So far we have only taken
into account the first of these two possible outcomes of the measurement. The
optimized fidelity for the second result is calculated analogously and occurs with
probability pn(θ̄m, φ̄m) (Eq. 30). Thus the expected mean fidelity after the next
measurement is given by the optimized fidelities for each outcome, weighted by
the estimated probability for that outcome:

F̄n(θm, φm) = pn(θm, φm)F opt
n (θm, φm) + pn(θ̄m, φ̄m)F opt

n (θ̄m, φ̄m) (35)

The optimal measurement direction (θopt
m , φopt

m ) has to maximize this function.
The direction of the first (n = 1) measurement is of course arbitrary, since

there is no a priori information on the state. The expected mean fidelity in this
case is F̄1 = 2/3, independently of (θm, φm)1. For measurements two and three
the following analytical expressions have been derived: F̄2 = (1/2 + cos(α/2 −
π/4)/

√
18), where the expected mean fidelity depends on the relative angle α

between the second and the first measurement direction. Thus the optimal
second measurement direction has to be orthogonal to the first one, yielding
F̄ opt

2 = (1/2 + 1/
√

18). The optimal third measurement axis is orthogonal to
both previous directions and yields F̄ opt

3 = (1/2 + 1/
√

12).
Interestingly, if the Shannon information is used as a cost function to find

the optimal measurement directions, then the fidelity obtained from numerical
simulations of the estimated state after N measurements is not as high as is
the case, if the fidelity is employed as outlined above (Fischer et al. 2000). This
may hint at the inadequacy of the use of the Shannon measure in the quantum
domain as pointed out by Brukner and Zeilinger (Brukner & Zeilinger 2001).
However, the log2 function occurring in the Shannon measure for information
poses some difficulties when numerically optimizing the cost function, and the
less precise final estimate of the quantum state in our numerical studies could
be caused by accumulating round-off errors.

5.3 Experiment

A typical sequence of measurements where the adaptive algorithm outlined
above has been realized is depicted in Figure 11. The probability density
wn(θ, φ) is shown on the surface of the Bloch sphere and the measurement
direction n is indicated by a grey “pin. The head of the pin marks the out-
come of the measurement along this direction. Here, the state to be estimated
is |θprep, φprep〉 = |3π/4, π/4〉. The white solid circle on the Bloch sphere rep-
resents the parameters θp and φp of the state to be estimated, and does not
indicate a quantum mechanical uncertainty. These parameters are part of a
recipe to prepare the desired quantum state using a classical apparatus. When
such a quantum state is subjected to a measurement, for instance, along the
z-direction, then after this measurement, of course, there will be no more in-
formation available about the components of the initial state in the x- and
y-directions in accordance with the uncertainty relation derived from the com-
mutators of the spin-1/2 operators. Only in the limit N → ∞ for N suitably
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Figure 11: A sequence of N = 12 adaptive measurements carried out on iden-
tically prepared qubits in order to estimate their state (|3π/4, π/4〉, marked by
a white solid circle.) The probability density wn(θ, φ) is gray scale coded on
the surface of the Bloch sphere (the gray scale code is different for each mea-
surement.) In addition, contour lines indicate where wn takes on the values
0.1, 0.2, . . .. A gray straight line through each Bloch sphere shows the measure-
ment direction and the filled gray circle indicates the measurement outcome.
The fidelity of state estimation of this particular run is 94.9%.

chosen measurements of N states prepared according to the same recipe, the
parameters θ and φ could be recovered. The uncertainty associated with the
preparation of a specific quantum state, |θ, φ〉 is not a quantum mechanical
one, it is determined by technical issues: If the electromagnetic field used for
preparation of an ionic quantum state contains a large number of photons, for
example, a coherent intense field emitted by a mw source with mean photon
number 〈M〉 satisfying 〈4M〉/〈M〉 ¿ 1 (Haroche 1971), then the “graininess”
of the field can be safely neglected, and the amplitude stability of the applied
mw field determined by technical specifications of the mw source would limit
the precision of state preparation. The time resolution (25ns) of the digital sig-
nal processing system controlling the mw source is another technical limitation
for the accuracy and precision of state preparation. (In the actual experiment,
the initial preparation of state |0〉 is the main source of imprecision when an
arbitrary quantum state is generated.)

Imprecision in the initial preparation of |0〉 and in the subsequent preparation
of a desired quantum state, relaxation and dephasing of the quantum state
before it is being measured, and the effect of an imperfect measurement can be
concisely summarized as the action of a depolarizing quantum channel together
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Figure 12: The experimentally determined average fidelity of state estimation
as a function of the difference in detection efficiency, ∆η for states |0〉 and |1〉,
respectively. The fidelity is plotted for different states to be estimated. For
∆η = 0 the fidelity should be independent of the initial state which is indeed
observed in the experiment. a)Self-learning estimation; b) Random choice of
basis.

with a systematic bias.

% → (1− 2λ)% + λI + ∆η σz , (36)

where ∆η ≡ (η1−η0)/2 is the difference in detection efficiencies for state |1〉 and
|0〉, respectively; 0 ≤ λ ≤ 1/2, and here we have λ ≤ 1− η̄ ≡ 1−(η1 +η0)/2 with
1/2 ≤ η0,1 ≤ 1. This description is also applicable to other types of experiments
where imperfections may be due to other physical reasons. The third term on
the rhs in eq. 36 arises whenever the efficiencies of detection for states |0〉 and
|1〉 (η0 and η1, respectively) differ from each other, and has a specific influence
on different estimation strategies. For any strategy, ∆η 6= 0 means that the
fidelity of state estimation depends on the state to be measured as can be seen
in Fig. 12. Fig. 12 also displays data obtained from experimental runs where
the N measurement directions are chosen randomly.

Experiments are necessarily imperfect, that is, they never perfectly reflect
results obtained from theoretical considerations. In the case of quantum state
estimation this means that an estimate with fidelity equal to the theoretical
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value cannot be obtained. Here, the performance of the experimental appara-
tus has been characterized quantitatively and completely (that is, the features
that are relevant for the experiment.) Taking into account the known experi-
mental imperfections, the theoretical value for the fidelity of state estimation
is numerically calculated for an ensemble of 10000 states drawn randomly from
a uniform distribution on the Bloch sphere. This theoretical mean fidelity is
then compared to the experimental result of the self-learning algorithm and the
random strategy (Fig. 13.)
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Figure 13: The average fidelity of state estimation as a function of the number N
of available qubits. Diamonds and stars indicate values obtained from numerical
simulations for the self-learning algorithm and the random choice of measure-
ment basis, respectively (taking into account the experimental preparation and
detection efficiencies.) Solid squares show the experimentally determined values
for these two measurement strategies.

Decoherence inevitably occurs in any experiment and it has been shown that
under this commonplace condition the self-learning strategy still yields the best
results. Even more, the self-learning and the random strategy show a larger
difference in mean fidelity (85.0% compared to 81.9%, the difference exceeding
5 standard errors) in the ‘real’ experimental world than the difference between
the ideal theoretical values (92.5% and 91%, respectively, for N = 12.)

The estimation procedure discussed here allows for separate (local) mea-
surements on each qubit. Following each measurement on a particular qubit,
classical information is used to determine the best measurement to be performed
on the next qubit. In reference (Bagan et al. 2002) the optimal LOCC scheme
(performing local operations with exchange of classical information) is intro-
duced for arbitrary states on the Bloch sphere (3D case). Interestingly, if the
state to be estimated lies in the xy−plane (2D case), then local operations alone
suffice to obtain the optimal state estimate and classical communication is not
necessary. This optimal LO(CC) scheme exhibits the same asymptotic behavior
with the number N of qubits as the optimal scheme taking advantage of col-
lective measurements, and yields (according to theory) a slightly better average
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fidelity than the adaptive scheme presented here.

6 Quantum Information

The investigations of fundamental questions of quantum mechanics, in addition
to their intrinsic interest, may also prove useful to construct an information pro-
cessor functioning according to the principles of quantum mechanics. If such a
quantum computer were available, it could be used for a variety of tasks a clas-
sical computer, for all practical purposes, could not handle. A famous example
for such a task is the factoring of large numbers. The difficulty of this task en-
sures the security of communication encrypted according to the RSA procedure
(developed by R. Rivest, A. Shamir, and L. Adleman (Rivest et al. 1978)), if the
large number the encryption is based on, is changed after a time interval short
compared to the computational time needed to carry out the factorization of
this number. In (Shor 1994, Shor 1997) an algorithm is described, based on the
laws of quantum mechanics, that could be used to find the prime factors of a
given number of the order 10N in time T proportional to (ln N)3, as compared
to the best known classical algorithm where T ∝ exp(s(ln N)1/3(ln ln N)2/3)
with O(s) = 2 .

For N = 130 (a typical order of magnitude of today’s RSA-type encrypt-
ing schemes) a classical computer using the best known algorithm would need
about 1017 instructions, whereas a quantum computer running Shor’s algorithm
(Shor 1994) could solve the same task using 1010 instructions, thus reducing the
time needed for this computation by a factor 107, if the same speed for an ele-
mentary operation is assumed for both types of computers. The efficiency of the
Shor algorithm relies on the efficient implementation of Fourier transformations
with quantum logic. Its advantage over the classical algorithm increases with
increasing complexity of the problem to be solved (here with N .) It was shown,
that a single qubit in a pure state together with log2 N qubits in arbitrary mixed
states suffice to implement Shor’s factoring algorithm (Parker & Plenio 2000).

The calculation of properties or dynamics of quantum systems is a promising
line of action for a quantum computer, even one with only few qubits and
operating with limited precision (Feynman 1982, Mølmer & Sørensen 2000). In
Ref. (Abrams & Lloyd 1999) it is shown how a quantum computer consisting
of about 100 qubits can be used to calculate eigenvalues and eigenvectors of
Hamilton operators. Computing, for instance, energy levels and correlation
energies of a Boron atom with 5 electrons is a rather intricate problem: if
20 angular wave functions and 40 radial wave functions are used, then this
amounts to a total of about 1015 many body basis states to be considered
in such a calculation. Sophisticated classical techniques have been developed
to circumvent problems arising from the exponentially growing space of basis
states. Still, a quantum computer of very limited size may be able to perform
more accurate calculations (Abrams & Lloyd 1999). Ref. (Somaroo et al. 1999)
describes how proton nuclear spins have been used to simulate the dynamics of
a truncated quantum harmonic oscillator employing nuclear magnetic resonance
techniques. Nonlinear dynamical problems that are hard or impossible (for all
practical purposes) to solve on a classical computer due to accumulating round-
off errors may also be simulated efficiently on a quantum computer (Georgeot &
Shepelyansky 2001a, Georgeot & Shepelyansky 2001b, Georgeot & Shepelyansky

42



2002).
What is the origin of the computational power of a quantum computer?

The elementary switching unit (bit) of usual classical computers is a transistor
that may assume two distinct macroscopic states that can be identified with
the computational binary states 0 and 1. In a quantum computer transistors
are replaced by two-state quantum systems (qubits) that may exist in arbitrary
superposition states α|0〉+β|1〉 with the complex numbers α, β satisfying |α|2 +
|β|2 = 1. The possibility to exploit the quantum mechanical superposition
principle and the linearity of operations in Hilbert space for massive parallel
computing is one ingredient for a quantum computer. The art of designing
quantum algorithms makes use of another feature of quantum mechanics: the
ability to display interference. Roughly speaking, a quantum algorithm has
to be designed such that different computational paths interfere in such a way
that at the end of the algorithm the correct result survives with probability near
unity(Cleve et al. 1998). Recent introductions to quantum computing can be
found, for instance, in (Nielsen & Chuang 2000, Gruska 1999).

To date, nuclear magnetic resonance applied to macroscopic ensembles of
molecules (Gershenfeld & Chuang 1997) and electrodynamically trapped ions
(Cirac & Zoller 1995) are the two physical systems that have been most success-
fully used to demonstrate quantum logic operations, and even complete quantum
algorithms (Jones & Mosca 1998, Chuang et al. 1998, Vandersypen et al. 2001).
Also, their specific advantages and shortcomings have been thoroughly investi-
gated, experimentally and theoretically. Introductions to quantum computing
with an emphasis on ion traps or nuclear magnetic resonance are given, for
instance, in (Steane 1997, Wineland et al. 1998, Sasura & Buzek 2002) and
(Jones 2001), respectively.

Sections 5 and 6.1 describe experiments with trapped 171Yb+ ions address-
ing basic questions of quantum mechanics that, at the same time, are relevant
for QIP: the self-learning measurement of arbitrary qubit states and the realiza-
tion and characterization of various quantum channels. These experiments also
demonstrate the ability to perform arbitrary single-qubit gates with individual
171Yb+ ions with high precision – a prerequisite for QIP. The coherence time
of the hyperfine qubit in 171Yb+ is, for all practical purposes, limited by the
coherence time of microwave (mw) radiation used to drive the qubit transition.

In addition to single-qubit operations, a second basic ingredient is required
for QIP with trapped ions: conditional quantum dynamics with, at least, two
qubits. Any quantum algorithm can then be synthesized using these elemen-
tary building blocks (DiVincenzo 1995, Barenco et al. 1995). Communication
between qubits, necessary for conditional quantum dynamics, is achieved via
the vibrational motion of the whole ion string(Cirac & Zoller 1995, Sorensen
& Molmer 2000, Jonathan et al. 2000). Thus, external (motional) and internal
degrees of freedom need to be coupled. Driving a hyperfine transition with mw
radiation (as in the experiments described in this article) does not allow for
such a coupling, since the Lamb-Dicke parameter is essentially zero for long-
wavelength radiation. Also, the inter-ion spacing in usual traps is much smaller
than the wavelength of mw radiation and, therefore, individual addressing of
ions is not possible. Section 6.2.2 describes how an additional magnetic field
gradient applied to an electrodynamic trap individually shifts ionic qubit reso-
nances thus making them distinguishable in frequency space. At the same time,
coupling of internal and motional states is possible even for mw radiation. With
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the introduction of this additional static field, all optical schemes devised for
QIP in ion traps can be applied in the mw regime, too.

Instead of applying usual methods for coherent manipulation of trapped ions,
a string of ions in such a modified trap can be treated like a molecule in NMR
experiments taking advantage of spin-spin coupling. A collection of trapped
ions forms a N -qubit “molecule” with adjustable spin-spin coupling constants
(second part of section 6.2.2.)

6.1 Realization of quantum channels

Quantum logic operations, and other experiments where coherent superpositions
of quantum states have to remain intact for a certain time, are carried out ideally
under perfect, noiseless conditions. However, the inevitable coupling of qubits
to their environment and the imperfection inherent to any physical operation
with qubits invariably degrade the performance of quantum logic operations.

A quantum channel describes the general dynamics of a qubit under prop-
agation in space and/or time. This evolution of qubits can be associated with
a physical device used to transmit quantum information (like an optical fiber).
When employing quantum states to transmit information, the sequence of nec-
essary steps can be visualized as follows (compare Figure 10): some physical
apparatus is used to prepare a quantum state using a set of classical variables.
The quantum state propagates, signified by the quantum channel until it is
measured by a receiver, again using a suitable apparatus to extract the values
of classical variables. The optimal reconstruction of quantum states has been
the topic of experiments described in the previous section. Now we consider
explicitly the influence of the environment on a quantum state once it has been
prepared, that is, we investigate the influence of the quantum channel on the
transmission of quantum information (Hannemann et al. n.d.).

The state of a qubit is completely determined by the expectation values
〈σx〉, 〈σy〉, and 〈σz〉, and the density matrix describing its state can be written
as

ρ =
1
2
(I + ~s · ~σ) (37)

where ~s · ~σ = 〈σx〉σx + 〈σy〉σy + 〈σz〉σz, and σx,y,z are the Pauli matrices. Ide-
ally, while being transmitted through the quantum channel, the qubit’s state
described by the Bloch vector ~s is not changed. However, in general, the prop-
agation of the qubit through a quantum channel will alter the qubit’s state and
~s′ will be obtained at the quantum channel’s exit. This change of the qubits
state can be of reversible or irreversible nature. The quantum channel may also
stand for a quantum memory storing a qubit state which may undergo some
change until it is ‘activated again, that is, transferred to another quantum sys-
tem or being subjected to a measurement. It can also represent the dynamics of
a qubit during a quantum computation. The most economical error correcting
and avoiding codes used to correct or stabilize quantum information depend on
the type of quantum channel the qubits are exposed to.

Two examples for detrimental effects acting on qubit states (the consequence
of “noise”) are given in what follows. A phase damping channel leads to decoher-
ence of a qubit state, affecting the off-diagonal elements ρ10 = ρ∗01 = 〈σx〉−i〈σy〉
of the density matrix that are diminished or disappear completely while the di-
agonal elements remain unchanged. It transforms a Bloch vector according to
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~s′ =




1− 2λ 0 0
0 1− 2λ 0
0 0 1


~s , (38)

with 0 ≤ λ ≤ 1/2. The σx and σy components of the Bloch vector shrink by a
factor 1− 2λ.

A quantum channel that fully depolarizes the quantum state of a qubit
transforms any state ρ into a completely mixed state ρ′ = 1/2 I. A partially
depolarizing channel can be characterized by a parameter 0 ≤ λ ≤ 1/2 that is
interpreted as the probability for changing the qubit’s state into its orthogonal
state: if the input state is pure, then we choose the basis such that the qubit’s
initial density matrix reads

ρ =
1
2
(I + σz) . (39)

After the quantum channel

ρ′ = (1− λ)
1
2
(I + σz) + λ

1
2
(I − σz) . (40)

The action of the depolarizing channel is independent of the initial polarization
of the qubit, hence can be described by

~s → ~s′ = (1− 2λ)~s . (41)

In (Fujiwara & Algoet 1999) it is shown that any quantum channel for qubits
can be cast in the form

~s′ = M̂~s + ~v . (42)

where M̂ ∈ R3×3 and ~v ∈ R3. Equation 42 yields ~s′, the Bloch vector of the
qubit after it has traversed the quantum channel characterized by M̂ and ~v.

Various quantum channels have been realized experimentally with 171Yb+

ions (Hannemann et al. n.d.) and the matrix and vector elements

Mij = 2Pij − Piz − Pi(−z) (43)
vi = Piz + Pi(−z) − 1

are determined by measuring the probabilities (or rather relative frequencies)
Pij = 〈i| ρ′ |j〉, where ρ′ is the density matrix describing the qubit state after
the quantum channel, and i, j ∈ {x, y, z} (Hannemann et al. n.d.).

Exploiting coherent and incoherent operations on the hyperfine qubits of
Yb+ we realized and completely characterized a polarization rotating quan-
tum channel, a phase damping quantum channel acting in the xy−plane, and
a phase damping quantum channel acting in an arbitrary plane. A Pauli chan-
nel and combinations of the aforementioned channels can also be realized. In-
coherent disturbances to a quantum channel are realized by applying to the
qubit a noisy magnetic field with well-defined spectral properties in conjunction
with coherent microwave operations. Another possibility to produce a desired
quantum channel is realized by applying to the qubit small amounts of light
close to 369nm, thus inducing well-defined quantities of longitudinal and/or
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Figure 14: Experimentally realized quantum channel with designed phase damp-
ing in the plane normal to the unit vector ~n = (1, π/6, 0)T (in polar coordinates).
In addition, a small amount of amplitude damping is present. The relative am-
plitude of the noise magnetic field was varied between -19dB and -1dB.
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transversal relaxation during coherent microwave operations (Balzer, Hanne-
mann, Reiß, Neuhauser, Toschek & Wunderlich 2002b). This light-induced de-
coherence is readily applicable to individually addressed quantum systems, it
may be switched on and off immediately, and it is reproducible. Although, in
the present experiment, the coherent drive was microwave radiation resonant
with a ground-state hyperfine transition in Yb+ , the same principle seems to
apply to a system where a dipole-forbidden optical transition is driven by laser
light (for example in Ca+ or Ba+ .)

An example of an experimentally realized quantum channel is displayed in
Figure 14. Here, a channel affected by controlled amounts of phase damping
in the plane normal to the unit vector ~n = (1, π/6, 0)T (in polar coordinates)
has been implemented. The applied noisy magnetic field causes in addition a
small amount of amplitude damping (detailed in (Hannemann et al. n.d.).) Each
matrix element is plotted as a function of the amplitude of the additional noisy
magnetic field.

Since the elements of the matrix describing the quantum channel can be
varied over a wide range, this experimental system can be used to simulate
specific quantum channels characteristic for other physical implementations of
QIP, too. Error correction is essential for QIP, since decoherence is ubiquitous.
We have implemented different quantum channels characterized by reversible
and irreversible dynamics that can be used, for instance, to experimentally
test the capabilities of different types of quantum error correcting codes under
varying conditions.

If spatially separated quantum information processors, for example, ion traps
each containing a limited number of qubits are connected to allow for the ex-
change of quantum information, then it will also be useful to be able to first
characterize the quantum channel and then apply the appropriate strategy to
avoid or correct these specific errors.

6.2 New concepts for spin resonance with trapped ions

The discussion of a new approach to ion trap quantum computing in this section
is restricted to the use of electrodynamic Paul traps, even though this concept
should also be applicable when other trapping techniques are employed, for
example, Penning traps (Powell et al. 2002).

6.2.1 Linear ion trap

In a linear Paul trap (Paul et al. Westdeutscher Verlag, Cologne,1958), a time-
dependent two-dimensional quadrupole field strongly confines the ions in the
radial direction yielding an average effective harmonic potential (Ghosh 1995).
An additional static electric field is applied to harmonically confine the ions
also in the axial direction (Prestage et al. 1989, Raizen et al. 1992). If the
confinement of N ions is much stronger in the radial than in the axial direction,
the ions will form a linear chain (Schiffer 1993, Dubin 1993) with inter-ion
spacing

δz ≈ ζ 2N−0.56 (44)

where
ζ ≡ (e2/4πε0mν2

1)1/3 , (45)
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m is the mass of one singly charged ion, e the elementary charge, and ν1 is
the angular vibrational frequency of the center-of-mass (COM) mode of the ion
string (Steane 1997, James 1998). The distance between neighboring ions, δz
is determined by the mutual Coulomb repulsion of the ions and the trapping
potential. Typically, δz is of the order of a few µm; for example, δz ≈ 7µm for
N = 10 171Yb+ ions with ν1 = 100× 2πkHz.

Two appropriately chosen internal states of each ion confined in a linear
electrodynamic trap represent a quantum mechanical 2-state system that may
serve as one qubit. In order to prepare these quantum mechanical 2-state sys-
tems individually (single qubit operations), electromagnetic radiation is aimed
at on ion at a time, that is, it must be focused to a spot size much smaller than
δz. Therefore, optical radiation is usually required for individual addressing of
qubits in ion traps (Nägerl et al. 1999).

In order to implement conditional quantum dynamics with ionic qubits, it is
necessary (in addition to single qubit operations) to couple external and internal
degrees of freedom. The interaction Hamiltonian governing the dynamics of a
particular ion j at position zj subjected to an electromagnetic field with angular
frequency ω and initial phase φ′ reads

HI =
~
2
Ω(σ+

j + σ−j ) [exp[i(kzj − ωt + φ′)] + exp[−i(kzj − ωt + φ′)]]

=
~
2
Ω(σ+

j + σ−j )

[
exp

[
N∑
n

iSnjηn(a†n + an)− iωt + iφ

]
+ h.c.

]
.(46)

where Ω = ~d · ~F/~ is the Rabi frequency with ~d · ~F signifying either magnetic or
electric coupling between the atomic dipole and the respective field component.
σ+,− = 1/2 (σx ± σy) represent the atomic raising and lowering operators, re-
spectively, (a†n and an are the creation and annihilation operators of vibrational
mode n, and Snj are the coefficients of the the unitary transformation matrix
that diagonalizes the dynamical matrix describing the axial degrees of freedom
of a linear string of N ions (Wunderlich 2001). The Lamb-Dicke parameters ηn

determining the coupling strength between internal and motional dynamics are
given by

ηn ≡
√

(~k)2

2m
/~νn =

~k
2∆pn

=
∆zn 2π

λ
. (47)

The square of ηn gives the ratio between the change in kinetic energy of the
atom due to the absorption or emission of a photon and the quantized energy
spacing of the harmonic oscillator mode characterized by angular frequency νn.
The mean square deviation of the vibrational mode’s ground state wave function
in momentum space, (∆pn)2 = ~mνn/2, and the corresponding quantity in po-
sition space, (∆zn)2 = ~/2mνn. Only if ηn is nonvanishing, will the absorption
or emission of photons be possibly accompanied by a change of the motional
state of the atom. Trapping a 171Yb+ ion, for example, with ν1 = 100× 2πkHz
gives ∆z1 ≈ 17nm and it is clear from eq. 47 that driving radiation in the
optical regime is necessary to couple internal and external dynamics of these
trapped ions.
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Figure 15: Illustration of a linear ion trap including an axial magnetic field gra-
dient. The static field makes individual ions distinguishable in frequency space
by Zeeman-shifting their internal energy levels (solid horizontal lines represent
qubit states). In addition, it mediates the coupling between internal and exter-
nal degrees of freedom when a driving field is applied (dashed horizontal lines
stand for vibrational energy levels of the ion string, see text).

6.2.2 Spin resonance with trapped ions

As was briefly outlined in the introductory section 1, it would be beneficial for
ion trap experiments to take advantage of the highly developed technological
resources used in spin resonance (e.g., NMR) experiments. In particular, em-
ploying microwave radiation with extremely long coherence time compared to
optical radiation allows for precise and, on the time scale of typical experiments,
virtually decoherence free manipulation of qubits 2. In what follows it is outlined
how in a linear ion trap with an additional axial magnetic field gradient, ∂zB i)
ions can be individually addressed in frequency space, and ii) the Hamiltonian
governing the interaction between microwave radiation and ions is formally iden-
tical with 46, with the usual Lamb-Dicke parameter η replaced by a new effective
LDP η′ scaling with ∂zB/ν

3/2
1 (Mintert & Wunderlich 2001, Wunderlich 2001).

Individual addressing of qubits in a modified ion trap Applying a
magnetic field gradient ~B = bz · ẑ + B0 along the axial direction of a linear
ion trap causes a z-dependent Zeeman shift of the internal ionic states |0〉 and
|1〉. Thus the transition frequency ω

(j)
01 , j = 1 . . . N , of each ion is individually

shifted and the qubits can be addressed in frequency space. The Breit-Rabi
2Optical radiation with a long coherence time has been realized experimentally (for in-

stance, (Rafac et al. 2000)). However, building and maintaining such intricate light sources is
exceedingly challenging compared to the case of rf or mw radiation
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Figure 16: Hyperfine levels of an atom with nuclear spin I = 1/2 and electron
angular momentum J = 1/2 (for Yb+ J = 1/2 = S) as a function of scaled
magnetic field. Magnetic dipole transitions are indicated for π−polarized radi-
ation (solid lines, weak field; dashed lines, strong field), and for σ−polarization
(dotted line). The levels marked E0 and E1 are well suited to serve as qubit
states.

formula (Corney 1977)

EmImJ =
EHFS

2(2I + 1)
− gIµNBmq ± EHFS

2

[
1 +

4mqχj

2I + 1
+ χ2

j

] 1
2

(48)

gives the energy levels of the hyperfine levels for electron total angular momen-
tum J = 1/2 and arbitrary values of the nuclear spin I. The hyperfine splitting
between levels with total angular momentum F = I + 1/2 and F = I − 1/2 in
zero magnetic field is denoted by EHFS, mq = mI ± 1/2, and the plus (minus)
sign in front of the last term in 48 is to be used for levels originating from zero-
field levels F = I +1/2 (F = I−1/2). The dimensionless quantity χj is defined
as

χj ≡

(
gJ + gI

me

mp

)
µBB(zj)

EHFS
(49)

where me and mp indicate the electron and proton mass, respectively, gJ and
gI are the electronic and nuclear g-factor, and µB is the Bohr magneton.

Figure 16 shows a plot of the hyperfine levels of the ground state of Yb+

as a function of the scaled magnetic field, χ, and the allowed magnetic dipole
transitions are also displayed. In a weak static magnetic field ~B the selection
rules ∆mF = ±1 and ∆F = 0,±1 hold for π-polarized radiation (that is, the
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Figure 17: Schematic drawing of the resonances of qubits j and j +1 with some
accompanying sideband resonances. The angular frequency νN corresponds to
the Nth axial vibrational mode, and the frequency separation between carrier
resonances is denoted by δω.

electric field vector is parallel to ~B; solid lines in Figure 16,) and ∆mF = 0 and
∆F = ±1 are valid for σ-polarization (dotted line in Figure 16.) In a strong
static field the selection rules are ∆mS = ±1 and ∆mI = 0 for π-polarized
radiation (dashed lines) and ∆mS = 0 and ∆mI = 0 for σ-polarization (no
allowed transitions). Therefore, in order to avoid unwanted overlap of resonance
frequencies, E0 and E1 are the appropriate choice as qubit states. For the case
of the ground state of 171Yb+ where EHFS/~ = 12.6×2πGHz, a strong magnetic
field (i.e., χ ≈ 1) amounts to 0.45T.

Choosing the levels E0 and E1 indicated in Figure 16 as qubit states and
neglecting the contribution of the nuclear spin to the total energy (since the
nuclear magneton µN ¿ µB), the dependence of the qubit resonance frequency
on the axial coordinate is given by

∂ω
(j)
01

∂z
=

1
2~

gJµB
∂B(z)

∂z


1 +

χj√
1 + χ2

j


 . (50)

The electronic angular momentum is due to the spin of a valence electron and
we have gJ = gS = 2.

When separating the qubit resonance frequencies through the application of
a magnetic field gradient, overlap between the motional sidebands of the qubit
transitions has to be avoided. Therefore, the gradient has to be chosen such
that

δω ≥ 2νN + ν1 (51)

where δω = ∂ω01
∂z δz is the frequency shift between two neighboring ions (compare

Figure 17), and νN is the angular frequency of the highest axial vibrational
mode. Together with expression 44 giving the distance between two ions, δz,
the requirement 51 leads to an estimate of the necessary field gradient in the
weak field limit:

∂B

∂z
≥ ~

2µB

(
4πε0m

e2

) 1
3

ν
5
3
1

(
4.7N0.56 + 0.5N1.56

)
. (52)
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Thus, for example, N = 10 171Yb+ ions with ν1 = 100×2πkHz require ∂B
∂z ≈ 10

T/m (Mintert & Wunderlich 2001).
The expression 52 for the required field gradient gives an order of magnitude

estimate that is necessary to assess whether the necessary gradients are feasible.
The exact magnitude of the field gradient has to be determined individually for
a given experimental situation in order to also avoid possible interference from
second order (in η′) motional sideband resonances. If, for example, 10 Yb+ ions
are used, a constant gradient can be chosen such that it leads to a frequency
shift between neighboring ions of 8.8ν1 (while equation 52 yields a gradient
equivalent to a frequency shift ≥ 8.6ν1.) Then all second order resonances are
separated from the carrier and the respective upper and lower sidebands by
at least 0.2 ν1. Since the distance between neighboring ions depends on the
position of two ions in the linear string, not all ions’ resonances will be centered
in the desired frequency gap for a constant field gradient. This can be corrected
by a slight variation of the gradient along the trap axis (which can be achieved
when current carrying coils are used.) Note that the local variation of the
field gradient over the extent of the spatial wave function of an individual laser
cooled ion would still essentially be zero. Simply increasing the field gradient
given in 52 by a factor 2 removes all possible coincidences of first order and
second order resonances. Resonances of order three or higher in the effective
Lamb-Dicke parameter η′ possibly still coincide with the useful ones. However
their excitation will be suppressed by at least a factor (η′)2 compared to the
first order resonances.

An example may illustrate how the required gradients can be generated:
Using a coil of 1 mm diameter (approximately the size of the ion traps employed
for the experimental work described in this article) with 3 windings and running
a current of 3.3A through them produces a field gradient up to 20 T/m over the
required distance. With additional coils the gradient can be modelled to have a
desired spatial dependence. With small permanent magnets gradients of a few
hundred T/m are easily generated.

Coupling internal and external dynamics In the previous paragraphs it
was shown that a magnetic field gradient applied to a linear ion trap allows for
individual addressing of ions in frequency space. In order to create entangled
states between internal and motional degrees of freedom of one particular ion it
is obviously necessary to couple internal and external dynamics. If this coupling
is possible, then the qubit state of a particular ion may be “written” into the
vibrational motion of the ion string, and in subsequent operations transferred
to another qubit, or quantum dynamics of one qubit conditioned on the state of
another can be performed. At the beginning of this section, the physical reason
for coupling of internal and external states was outlined, if laser light is used
to drive an internal resonance. If mw or rf radiation is used, the recoil on the
ion upon absorption or emission of a photon is not sufficient to excite motional
states of the ion (the LDP is vanishingly small.) However, in the presence
of a magnetic field gradient motional quanta can nevertheless be created or
annihilated in conjunction with changing the internal state of an ion (Mintert
& Wunderlich 2001). The physical origin of this effect will be discussed in what
follows.

Figure 18 displays two internal states of an ion and a phase space diagram
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Figure 18: Illustration of the coupled system ‘qubit ⊗ harmonic oscillator’ in
a trap with magnetic field gradient. Internal qubit transitions lead to a dis-
placement dz of the ion from its initial equilibrium position and consequently
to the excitation of vibrational motion. In the formal description the usual
Lamb-Dicke parameter is replaced by a new effective one (see text.)

of a harmonic oscillator (an eigenmode of the ion string.) The internal states of
the ion are, in the presence of an axial magnetic field gradient, Zeeman shifted
as a function of position along the axial direction. In Figure 18 the derivative of
the Zeeman shift with respect to the magnetic field has a different sign for the
lower energy state |0〉 and the upper state |1〉. The position dependent Zeeman
shift gives rise to a force acting on the ion in addition to the electrodynamic
and Coulomb potentials such that its equilibrium position is slightly different,
depending on whether it is in state |0〉 or |1〉. Consequently, if an electromagnetic
field is applied to drive this qubit resonance, a transition between the two states
|0〉 and |1〉 will be accompanied by a change of the equilibrium position of the
ion,

d(nj)
z = −~∂zω

(j)
01

mν2
n

. (53)

In the phase space diagram of the harmonic oscillator this gives rise to a cor-
responding shift along the position coordinate together with a shift along the
momentum coordinate. (The latter, however, is negligibly small in the mi-
crowave regime and is exaggerated in the sketch in Figureo 18.) Thus, the
oscillator will be excited and will oscillate about its new equilibrium position.
In (Mintert & Wunderlich 2001) it is shown that the formal description of this
coupling between internal and external dynamics is identical to the one used
for the coupling induced by optical radiation (equation 46.) The usual LDP is
replaced by an effective new parameter

η′nje
iφj ≡ ηnSnj + iεnj . (54)

When using mw radiation and appropriately choosing the trap parameters sec-
ular axial frequency ν1 and magnetic field gradient, then ηnSnj ¿ εnj and we
have ηnj ≈ εnj with

εnj ≡ Snj
−d

(nj)
z

∆zn
= Snj

∆zn∂zω
(j)
01

νn
. (55)

The numerator on the rhs of equation 55 contains the spatial derivative of the
resonance frequency of qubit j times the extension ∆zn of the ground state wave
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function of mode n, that is, the variation of the internal transition frequency
of qubit j when it is moved by a distance ∆z. Thus, the coupling constant εnj

is proportional to the ratio between this frequency variation and the frequency
of vibrational mode n. The strength of the coupling between an ion’s internal
dynamics and the motion of the ion string is different for each ion j and depends
on the vibrational mode n: Snj is a measure for how much ion j participates in
the motion of vibrational mode n.

All optical schemes devised for conditional quantum dynamics with trapped
ions can also be applied in the microwave regime, despite the negligible recoil
associated with this type of radiation. This includes, for instance, the proposal
presented in (Cirac & Zoller 1995) that requires cooling to the motional ground
state, and the proposals reported in (Sorensen & Molmer 2000) and (Jonathan
& Plenio 2001) (the latter two work also with ions in thermal motion.)

Trapped ions as a N-qubit molecule The Hamiltonian describing a string
of trapped two-level ions in a trap with axial magnetic field gradient (without
additional radiation used to drive internal transitions) has been shown to read
(Wunderlich 2001)

H =
~
2

N∑

j=1

ωj(z0,j)σz,j +
N∑

n=1

~νn(a†nan)− ~
2

N∑

i<j

Jijσz,iσz,j . (56)

The first sum on the rhs of 56 represents the internal energy of the collection of
N ions. The qubit angular resonance of ion j at its equilibrium position z0,j is
ωj . The second term sums the energy of N axial vibrational modes. These first
two terms represent the usual Hamiltonian for a string of two-level ions confined
in a harmonic potential (James 1998). The new spin-spin coupling term (last
sum in 56) arises due to the presence of the magnetic field gradient. Here,

Jij ≡
N∑

n=1

νnεniεnj . (57)

The pairwise coupling 57 between qubits i and j is mediated by the vibrational
motion. Therefore, it contains terms quadratic in ε, and the coupling of qubit i
and j to the vibrational motion has to be summed over all modes.

As an example, Table 1 shows the spin-spin coupling constants between 10
171Yb+ ions confined in a linear trap (ν1 = 100× 2πkHz) with a magnetic field
gradient of 25T/m. The application of NMR-type quantum logic operations
to such an artificial molecule is facilitated by the fact that individual qubit
resonances are widely separated in frequency (in this example, the frequency
“gap between neighboring ions is about 1 MHz) as compared to typical NMR
experiments (Vandersypen et al. 2001). In addition, the coupling constants Jij

have similar and nonzero values for all pairs of spins.
In a “real” molecule different nuclear spins share binding electrons that gen-

erate a magnetic field at the location of the nuclei, and the energy of a nuclear
spin exposed to the electrons’ magnetic field depends on the charge distribution
of the binding electrons. If a particular nuclear spin is flipped, the interaction
with the surrounding electrons will slightly change the electrons’ charge distri-
bution which in turn may affect the energy of other nuclear spins. This indirect
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i Ji1 Ji2 Ji3 Ji4 Ji5 Ji6 Ji7 Ji8 Ji9

1
2 54.61
3 41.36 48.12
4 34.15 38.89 44.74
5 29.40 33.17 37.44 43.04
6 25.92 29.09 32.55 36.77 42.52
7 23.19 25.93 28.88 32.35 36.77 43.04
8 20.92 23.33 25.90 28.88 32.55 37.44 44.74
9 18.93 21.07 23.33 25.93 29.09 33.17 38.89 48.12

10 17.04 18.93 20.92 23.19 25.92 29.40 34.15 41.36 54.61

Table 1: Spin-spin coupling constants Jij/2π in units of Hz for 10 171Yb+ ions
in a linear trap characterized by the angular frequency of the COM vibrational
mode ν1 = 100× 2πkHz using a static field gradient of 25T/m.

spin-spin coupling is realized here in a different way: the role of the electrons’
magnetic field is replaced by the vibrational motion of the ions.

Usual ion trap schemes take advantage of motional sidebands that accom-
pany qubit transitions. Instead, the spin-spin coupling that arises in a suitably
modified trap may be directly used to implement conditional dynamics using
NMR methods. The collection of trapped ions can thus be viewed as a N -qubit
molecule with adjustable coupling constants (Wunderlich 2001). Making use of
this spin-spin coupling does not involve real excitation of vibrational motion. In
this sense it is similar to a scheme for conditional quantum dynamics that uses
optical 2-photon transitions detuned from vibrational resonances (Sorensen &
Molmer 2000), and, thus should be tolerant against thermal motion of the ions.

6.3 Coherent optical excitation with Ba+ and Yb+ ions

This section is devoted to another possible, more “traditional” avenue towards
quantum computation with trapped ions: employing an optical transition as a
qubit. Since the relaxation rates of the states acting as a qubit eventually limit
the time available for coherent manipulation, the use of two states connected
via an electric dipole allowed transition is not a good choice. Therefore, the
electronic ground state of an ion (usually one specific Zeeman sublevel) and a
metastable excited state have been chosen as qubit states in various experiments
(Appasamy et al. 1998, Roos et al. 1999, Barton et al. 2000). Here, we report
on experiments with Ba+ and 172Yb+ ions where the electric quadrupole (E2)
resonance 2S1/2-2D5/2 serves as the qubit.

6.3.1 Rabi oscillations on optical E2 resonance in Ba+

The lifetime of the metastable state 2D5/2 (≈ 34s) is long on the timescale of
typical coherent operations on this transition. Thus, the useful coherence time
for quantum logic operations with this qubit transition is essentially limited i)
by the inverse emission bandwidth of laser light close to 1.76µm driving the
E2 resonance, and ii) by the stability of static magnetic fields that lift the
degeneracy of Zeeman states. Exciting sideband resonances of this E2 transition
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allows for coupling of internal and external degrees of freedom (compare section
6.2.)

Ba+-ions are confined in a 1-mm-diameter Paul trap and irradiated by laser
light at 493 nm (green light) for excitation of resonance fluorescence on the
2S1/2-2P1/2 transition (compare Figure 19.) This laser is usually detuned a few
ten MHz below resonance for cooling the ions. Tunable light close to 493nm
is obtained by first generating light near 986 nm by a diode laser (stabilized
to a reference resonator), and then frequency doubling the infrared light in
a ring resonator containing a KNbO3 crystal as a nonlinear element. A dye
laser at 650 nm (red light) prevents optical pumping into the 2D3/2 level. The
fluorescence signal is recorded by photon counting. A static magnetic field
defines the quantization axis and lifts the degeneracy of the magnetic sublevels.
The direction of propagation and the polarization of both light beams (green
and red) are set perpendicular to the magnetic field. The power levels of the
light fields are stabilized by electro-optic modulators.

The attainable Rabi frequency on the optical E2 resonance S1/2 - D5/2 near
1762nm (having a spectral width of 5mHz) is limited by the available intensity
of the light exciting this transition, and by the emission bandwidth, ∆ω of the
laser light. In addition, ∆ω determines the coherence time of the qubit. A
color-center laser that delivered up to 150mW of light near 1762nm with an
effective emission bandwidth ∆ω ≈ 30 × 2πkHz (1/e2 full width of a Gaussian
profile) was previously in use to excite this resonance (Appasamy et al. 1998).
The considerable effort that has to be devoted to the preparation of suitable
NaCl crystals, the necessity to always maintain the laser medium at liquid ni-
trogen temperature, and the need for an Argon ion laser that ensures the correct
polarization of the color-centers, in addition to the pump laser at 1064nm are
but a few of the obstacles that make such a laser a time consuming and not
very economical instrument. This laser was replaced by a continuous wave op-
tical parametric oscillator (Linos AG) emitting light in the required wavelength
range. In order to attain the desired long term stability of the emission fre-
quency, a highly stable reference resonator suspended in ultra-high vacuum was
used. Insensitivity against vibrations and variations in temperature and air
pressure is thus ensured (Leick 2000).

Figure 20 shows Rabi oscillations on the carrier transition of the E2-resonance
in Ba+ . Each data point is obtained by executing the following sequence 600
times: i) the infrared light driving the E2 transition is switched on for a time τ
indicated on the abscissa in Figure 20 while the green light exciting the dipole
resonance S1/2-P1/2 is turned off. ii) Laser light near 493nm is turned on for
1ms, and scattered light is collected during this time for state selective detec-
tion: Either scattered photons will be detected during the last step, indicating
that the state of the ion is S1/2 at the end of step ii (the registered number of
photons is Poisson distributed around a mean value of typically 10 counts.) Or,
if no photon counts are registered, the ion was in state D5/2. Thus, a trajectory
of “on” (resonance fluorescence is observed) and “off” (absence of resonance flu-
orescence) events is recorded. A pair of “on”-“off” events indicates a transition
from state S1/2 to state D5/2. The probability for absorption of an ir photon is
calculated by dividing the number of these excitation events by the number of
“on” events (total number of tries of excitation) in a trajectory. The probabil-
ity for emission is obtained analogously. In Figure 20 absorption and emission
probability from one trajectory for a given time τ have been averaged to yield
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Figure 19: a) Relevant energy levels and transitions in 138Ba+. b) Schematic
drawing of major experimental elements. OPO: Optical parametric oscillator;
YAG: Nd:YAG laser; LD: laser diode; DSP: Digital signal processing system
allows for real time control of experimental parameters; AOM: Acousto-optic
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Figure 20: Rabi oscillations on the optical E2 transition S1/2-D5/2 in Ba+ . A fit
of the data (solid line) yields a Rabi frequency of 71.4×2πkHz and a transversal
relaxation time of 100µs (determined by the coherence time of the ir light used
to drive the E2 resonance.)

the transition probability between states S1/2 and D5/2. A fit of the data dis-
played in Figure 20 yields a Rabi frequency of 71.4 × 2πkHz and a transversal
relaxation time of 100µs. Dephasing is determined by the emission bandwidth
of the ir laser which will be further narrowed by improved frequency locking of
the ir laser in future experiments.

6.3.2 Lifetime measurement of the D5/2 state in Ba+

When using the metastable D5/2 state in Ba+ as one quantum state of a qubit, or
for the potential application of electrodynamically trapped Ba+ as a frequency
standard, it is useful to know the lifetime of this state. Ba+ is also a promising
candidate to measure parity nonconserving interactions in atoms complement-
ing high energy experiments in search of new physics beyond the standard model
(Fortson 1993, Geetha et al. 1998). Comparison between results obtained from
atomic structure theory and experimentally determined values are thus impor-
tant. Previous attempts of determining the lifetime of the D5/2 state have
yielded different values in experiments with single and many ions, respectively
(Plumelle et al. 1980, Nagourney et al. 1986, Madej & Sankey 1990). In recent
experiments on Ca+ it was found that the lifetime of the D5/2 state in this ion
species depended on the power of an additional laser used to repump the ion
from the metastable D3/2 state (Block et al. 1999).

We have determined the lifetime of the D5/2 state in Ba+ using the quantum
jump method. The resulting experimental lifetime is limited by collisions with
background gas to 21 s which agrees well with the results reported in (Madej
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& Sankey 1990). We did not find a dependence on the power or detuning of
the laser used to scatter resonant light on the S1/2-P1/2 transition or of the
“repumper” from the D3/2 state.

6.3.3 Cooling of a pair of Ba+ ions

Cooling of the collective motion of several particles, not necessarily to the mo-
tional ground state (Sorensen & Molmer 2000, Jonathan & Plenio 2001) is pre-
requisite for implementing conditional quantum dynamics with trapped ions.
We have studied the collective vibrational motion of two trapped 138Ba+ ions
cooled by laser light close to the resonances corresponding to the S1/2-P1/2 (493
nm, green light) and P1/2-D3/2 (650 nm, red light) transition, respectively.

When two ions are confined in a nearly spherically symmetric Paul trap, and
if they are sufficiently laser cooled, then we always observe them crystallizing
at the same locations. The crystallization at preferred locations is explained by
the slight asymmetry of the effective trapping potential, that is, νx 6= νy 6= νz,
where νx,y,z are the angular frequencies of the center-of-mass-mode of the secular
motion in different spatial directions. The Coulomb potential makes the ions
repel each other, and the ion crystal tends to align along the axis of weakest
confinement by the electrodynamic potential.

The potential along the z−direction is steeper than in the xy- plane. Con-
sequently, if cooled well enough, the ions stay in this plane. Since νy > νx they
are not free to rotate in the xy-plane, and instead would have to surmount an
azimuthal potential barrier at φ = π/2 (φ = arctan(y/x)) in order to exchange
places. However, if the vibrational energy of the relative motion of the two ions
in the ỹ-mode (Reißet al. 2002) exceeds the azimuthal barrier height, then the
ions are free to rotate in the xy−plane. Depending on the parameter settings
(detuning and intensity) of the cooling lasers, these different motional states
corresponding to different temperatures are indeed observed experimentally.

If, for instance, the intensity and frequency of the green laser is held fixed and
the red laser’s frequency is scanned, then a characteristic spectrum displaying
dark resonances is obtained (Figure 21). Whenever the detuning of the red
laser, with respect to a resonance between a Zeeman level of the D3/2 state
and one of the P1/2 state equals the detuning of the green laser with respect
to a resonance between Zeeman levels of the P1/2 and S1/2 states, a coherent
superposition of the Zeeman levels of S1/2 and D3/2 is created that does not
couple to the light field anymore. The appearance of four dark resonances is due
to the selection rules for dipole allowed transitions between Zeeman sublevels
of the S1/2, P1/2, and D3/2 electronic states when both light fields are linearly
polarized perpendicular to the magnetic field that defines the quantization axis.
Fitting such an excitation spectrum using the optical Bloch equations allows
for the determination of intensity and detuning of the laser light, as well as of
the strength of the applied magnetic field. Upon scanning the red laser it is
observed that ions take on different states of motion: either they crystallize at
fixed locations or they form a ring-shaped structure when their thermal energy
is sufficient to surmount the azimuthal potential barrier.

Using the laser parameters determined from a fit of the excitation spectrum,
the expected temperature of the ions can be derived from detailed numerical
calculations of laser cooling taking into account the Zeeman structure of the
energy levels (Reißet al. 2002). It turns out that the transition from an ion
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Figure 21: Left top: Fluorescence of two trapped ions as a function of laser
detuning. Left bottom: Two trapped Ba+ ions show different motional states
depending on laser parameters. Spatial distribution of the two ions at the
detunings indicated above. Right top: Observed motional states for different
detunings of the 650 nm light. The dots correspond to individual observations.
Right middle: Mean motional energy in the ỹ-mode calculated from theory.
Right bottom: Cooling rate for the ỹ-mode calculated from theory. Figure
taken from (Reißet al. 2002).

crystal to the ring structure occurs at that detunings of the red laser where
theory predicts laser cooling to turn into heating. The ions gain enough energy
from scattering photons to surmount the azimuthal potential barrier and appear
as a ring on the spatially resolving photo detector. The transition from cooling
to heating occurs when the red laser is scanned across a dark resonance with
increasing frequency: as soon as it is blue detuned with respect to the closest
dark resonance, the cooling rate is reduced to zero and with further increasing
laser frequency becomes negative (that is, heating occurs.) Increasing the laser’s
frequency even more means that the red laser is further blue detuned with
respect to the dark resonance that was just passed. At the same time, however,
the next resonance is approached relative to which the laser is red detuned and
the cooling rate increases again. It should be noted that Raman scattering
responsible for these processes occurs when both laser are red detuned relative
to the main resonance.

Very good agreement is found between the theoretical prediction of the tran-
sition of the ions’ motional state and experimental observations. In addition,
parameter regimes of the laser light irradiating the ions are identified that imply
most efficient laser cooling and are least susceptible to drifts, fluctuations, and
uncertainties in laser parameters. When applied to cooling of a string of ions
in a linear trap, the multidimensional parameter space allows to identify re-
gions where cooling is most efficient for all vibrational modes. In particular, the
magnetic field can be increased for a larger separation of the dark resonances.

Cooling of different vibrational modes is also achieved with electromagneti-
cally induced transparency (EIT) cooling (Morigi et al. 2000, Roos et al. 2000).
In that scheme, too, atomic resonances are shaped by two laser fields such that
most efficient cooling for as many vibrational modes as possible is achieved.
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6.3.4 Coherent excitation of an E2 resonance in 172Yb+

The electric quadrupole resonance S1/2 ↔ D5/2 in 172Yb+ with a natural
linewidth of 6×2πHz (Fawcett & Wilson 1991) may be used as a qubit, too. The
relevant energy levels involved in the investigation of coherent excitation of this
transition are shown in Figure 1. The E2-transition is driven by light of a fre-
quency doubled diode laser at 411nm. The population of the S1/2 ground state
is probed by exciting resonance fluorescence on the strong monitor transition
S1/2 ↔ P1/2. In addition to spontaneous decay into the S1/2 ground state, the
state D5/2 might decay into the extremely long lived level F7/2 (lifetime > 10
years (Roberts et al. 1997)) with probability 0.81. The population trapped in
the F7/2 state is brought back into the S1/2 ground state via the jk-coupled
(Cowan 2001) level D[5/2]5/2 by illuminating the ion continuously with laser
light at 638nm. The depopulation time depends on the laser intensity and is
found to be τ638 = 9ms in the limit of high intensity.
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Figure 22: Absorption spectrum between the Zeeman states |S1/2,mj = 1/2〉 ↔
|D5/2,mj = 1/2〉 (E2-transition.) The absorption probability on resonance
exceeds 0.9 which proves coherent excitation. The sidebands at ±750kHz next
to the carrier are caused by the secular motion of the ion.

An absorption spectrum of the E2 transition is obtained by scanning the
frequency of the light at 411nm in steps of 40kHz across the resonance of a
selected Zeeman component. At every frequency step a series of 500 pairs of
driving pulses (τ411 = 5ms) and probing pulses (τ369 = 10ms) is recorded result-
ing in a trajectory of “on” and “off” observations. The absorption probability
on the |S1/2,mj = 1/2〉 ↔ |D5/2,mj = 1/2〉 transition, determined in the same
way as described in the previous section, is plotted in Figure 22 versus the
detuning of the frequency of the light field at 411nm.

The measured absorption probability on the carrier transition exceeds 0.9
verifying coherent excitation of the E2 resonance. The structure seen in the
carrier is due to Rabi oscillations (Balzer et al. 2000, Wunderlich et al. 2001).
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From the width of the carrier resonance the Rabi frequency is estimated to
be ≈ 110 kHz. A comparison of the experimental spectrum with numerical
simulations using optical Bloch equations shows that the emission bandwidth
of the laser field at 411nm is less than 5Hz in 5ms.

Next to the carrier two sidebands are visible at ±750kHz arising from the
ion’s axial secular motion in the pseudo harmonic potential of the electrody-
namic trap. The asymmetry in the absorption probability between upper and
lower sideband is due to sideband cooling on the E2 transition (to be detailed
elsewhere.)

Employing optical E2 transitions, too, important steps towards quantum
information processing have been experimentally realized. Because of the simple
level structure of 138Ba+, and of the long lifetime of its metastable D5/2 state,
this ion is well suited for experiments where coherent optical excitation is desired
(for instance, in QIP).

References

Abrams D S & Lloyd S 1999 Phys. Rev. Lett. 83, 5162.

Alter O & Yamamoto Y 1997 Phys. Rev. A 55, R2499.

Alter O & Yamamoto Y 2001 Quantum Measurement of a Single System John
Wiley & Sins Inc. New York.

Appasamy B, Stalgies Y & Toschek P E 1998 Phys. Rev. Lett. 80(13), 2805.

Bagan E, Baig M, Brey A & Munoz-Tapia R 2000 Phys. Rev. Lett. 85(24), 5230–
5233.

Bagan E, Baig M, Brey A & Munoz-Tapia R 2001 Phys. Rev. A 63, 052309/1–
11.

Bagan E, Baig M & Munoz-Tapia R 2001 Phys. Rev. A 64, 022305–1 – 022305–4.

Bagan E, Baig M & Munoz-Tapia R 2002 quant-ph/0205026 .

Balzer C, Hannemann T, ReißD, Neuhauser W, Toschek P E & Wunderlich C
2002a Laser Phys. 12, 729.

Balzer C, Hannemann T, ReißD, Wunderlich C, Neuhauser W & Toschek P E
2002 Opt. Commun. 211, 235.

Balzer C, Huesmann R, Neuhauser W & Toschek P E 2000 Opt. Commun.
180, 115.

Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator
T, Smolin J A & Weinfurter H 1995 Phys. Rev. A 52, 3457.

Barton P A, Donald C J S, Lucas D M, Stevens D A, Steane A M & Stacey
D N 2000 Phys. Rev. A 62, 032503.

Bayes T 1763 Phil. Trans. Roy. Soc. (London) 53, 370–418.

62



Bayes T 1958 Biometrika 45, 293–315.

Becker T, Zanthier J, Nevsky A, Schwedes C, Skvortsov M, Walther H & Peik
E 2001 Phys. Rev. A 63, 051802/1–4.

Beige A & Hegerfeldt G 1996 Phys. Rev. A 53, 53.

Beige A & Hegerfeldt G 1997 J. Phys. A: Math. Gen. 30, 1323.

Bennett C H, DiVincenzo D P, Fuchs C A, Mor T, Rains E, Shor P W, Smolin
J A & Wootters W K 1999 Phys. Rev. A 59(2), 1070–1091.

Bergquist J, Hulet R, Itano W & Wineland D 1986 Phys. Rev. Lett.
57(14), 1699–1702.

Berry D & Wiseman H 2000 Phys. Rev. Lett. 85(24), 5098–5101.

Bertet P, Osnaghi S, Rauschenheutel A, Nogues G, Auffeves A, Brune M, Rai-
mond J M & Haroche S 2001 Nature 411, 166.

Block E & Berman P 1991 Phys. Rev. A. 44, 1466.

Block M, Rehm O, Seibert P & Werth G 1999 Eur. Phys. J. D 7(3), 461–465.

Bohr N 1949 Ed. P.A. Schilipp, Library of Living Philosophers Evaston pp. 200–
241.

Bohr N 1983 Ed. J. A. Wheeler, W. H. Zurek, Princeton University Press Prince-
ton pp. 200–241.

Braginsky V B & Khalili F Y 1992 Quantum Measurement Cambridge Univer-
sity Press Cambridge, UK.

Brukner C & Zeilinger A 1999 Phys. Rev. Lett. 83(17), 3354–3357.

Brukner C & Zeilinger A 2001 Phys. Rev. A 63, 022113–1 – 022113–10.

Brune M, Hagley E, Dreyer J, Matre X, Maali A, Wunderlich C, Raimond J M
& Haroche S 1996 Phys. Rev. Lett. 77, 4887–4890.

Buz̆ek V, Derka R, Adam G & Knight P L 1998 Ann. Phys. 266, 454.

Buz̆ek V, Hillery M & Werner R F 1999 Phys. Rev. A 60(4), R2626–R2629.

Buz̆ek V, Hillery M & Werner R F 2000 J.Mod.Opt 47(2/3), 211–232.

Chapman M S, Hammond T D, Lenef A, Schmiedmayer J, Rubenstein R A,
Smith E & Pritchard D E 1995 Phys. Rev. Lett. 75(21), 3783–3787.

Chuang I L, Vandersypen L M K, Zhou X, Leung D W & Lloyd S 1998 Nature
393, 143.

Church D & Dehmelt H 1969 J. Appl. Phys. 40(9), 3421–3424.

Cirac J I & Zoller P 1995 Phys. Rev. Lett. 74, 4091.

Cleve R, Ekert A, Macchiavello C & Mosca M 1998 Proc. R. Soc. Lond. A
454, 339.

63



Cook R 1988 Phys. Scrip. T21, 49.

Corney A 1977 Atomic and Laser Spectroscopy Clarendon Press Oxford.

Cowan R D 2001 The theory of atomic structure and spectra University of Cal-
ifornia Press Berkeley.

Derka R, Buz̆ek V & Ekert A K 1998 Phys. Rev. Lett. 80, 1571.

Deutsch D 1985 Proc. R. Soc. London A 400, 97–117.

Dicke R H 1981 Am. J. Phys. 49, 925.

Diddams S, Udem T, Bergquist J, Curtis E, Drullinger R, Hollberg L, Itano W,
Lee W, Oates C, Vogel K & Wineland D 2001 Science 293(5531), 825–828.

Diedrich F & Walther H 1987 Phys. Rev. Lett. 58(3), 203–206.

DiVincenzo D P 1995 Phys. Rev. A 51, 1015.

Dubin D H E 1993 Phys. Rev. Lett. 71, 2753.
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Dürr S, Nonn T & Rempe G 1998a Phys. Rev. Lett. 81(26), 5705–5709.
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