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Overview of Global QC

To avoid the use of local addressing and control of quantum information in the 
performance of algorithms etc.

Almost all known QC schemes require massive amounts of local addressing, e.g. 
circuit schemes. one-way schemes, etc.

Engineering this level of classical and quantum control will be very tough 
technologically. Might Generate lots of heat/decoherence?

QUESTION? Do we really need this level of control?

NO!!!

One of the earliest designs for a QC from Lloyd: ABCABCABC chain... 
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Overview of Global QC

Science (1993)

ABCABCABC
3 Component 
Chain
Updated Globally
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Overview of Global QC

Next Design:  Simon Benjamin, 
(Oxford), in 2000

Schemes for parallel quantum computation without local control of qubits

S. C. Benjamin*
Center for Quantum Computation, Clarendon Laboratory, University of Oxford OXI 3PU, United Kingdom

!Received 29 March 1999; revised manuscript received 20 September 1999; published 18 January 2000"

Typical quantum computing schemes require transformations !gates" to be targeted at specific elements
!qubits". In many physical systems, direct targeting is difficult to achieve; an alternative is to encode local gates
into globally applied transformations. Here we demonstrate the minimum physical requirements for such an

approach: a one-dimensional array composed of two alternating ‘‘types’’ of two-state system. Each system

need be sensitive only to the net state of its nearest neighbors, i.e. the number in state ‘‘↑’’ minus the number
in ‘‘↓ .’’ Additionally, we show that all such arrays can perform quite general parallel operations. A broad

range of physical systems and interactions is suitable: we highlight two examples.

PACS number!s": 03.67.Lx, 85.65.!h

Presently there is tremendous interest in the new field of

quantum computation. Information is recognized as a physi-
cal quantity, with its representation and processing being
governed by the laws of quantum mechanics. Rather than
‘‘bits,’’ the fundamental units of classical information
theory, we instead employ ‘‘qubits’’ that represent a general
quantum superposition of ‘‘0’’ and ‘‘1.’’ A computation on a
device containing N qubits is a sequence of unitary transfor-
mations within its 2N-dimensional Hilbert space. Research-
ers have already discovered quantum algorithms that exploit
state superposition, entanglement, and interference in order
to solve certain problems more quickly than any known clas-
sical procedure #1$. Two important cases are those of factor-
ing large numbers, where the quantum device has an expo-
nential speed advantage #2$ and the task of searching among
N elements, where a classical device requires time of order N

but the quantum device requires only !N #3$, or !3 N with a
corresponding size cost #4$.
Efforts toward experimental realization of a quantum

computer !QC" have focused principally on nuclear magnetic
resonance !NMR" and atomic trap implementations #5,6$.
Numerous recent proposals have also drawn attention to pos-
sible solid-state realizations #7,8,4$. Typically such proposals
demand manipulation of the Hamiltonian locally, on the
scale of the individual component qubits. However, this is
not a fundamental requirement: it can be sufficient to apply
only global manipulations to which all elements are sub-
jected simultaneously. This would be a highly desirable
economy for many implementations, because it would lower
the number of channels by which the computer interacts with
its environment, and hence reduce the decoherence rate.
Moreover, it may enable new implementations where it is
difficult or impossible to perform individual addressing !e.g.,
quantum dot arrays may be driven by laser radiation of a
wavelength far greater than the dot-dot separation". Lloyd
has demonstrated a QC model #9,10$ in which the algorithm
is represented by a series of update ‘‘rules’’ that are applied
globally to a line of cells, each cell being a two-state system.
To realize this model one would need to produce three
‘‘types’’ of cell in the pattern ABCABC . . . , and moreover

one must find a means of applying asymmetric rules such as,

‘‘all cells of type A now invert their state if, and only if, the

left neighbor is in state 1 and the right is in state 0.’’ Clearly

it is important to know if these are the minimum physical

requirements. The present work demonstrates that they can

in fact be relaxed significantly, to two cell types without the

ability to distinguish the left neighbor from the right. These

are the minimum requirements for any globally driven sys-

tem, given that we must have more than one cell ‘‘type’’

#11$. The simplifications enhance the practicality of the

model; neighbor indistinguishability is particularly signifi-

cant in broadening the range of potential implementations,

two of which we later discuss. This paper also provides a

mechanism, compatible with any cellular computer, for per-

forming operations in parallel. We note the implications in

terms of device size and speed. Parallelism may be essential

for quantum error correction schemes to function efficiently

#12$.
Our scheme consists of two ‘‘types’’ of cell, A and B,

alternating along a one-dimensional array. Each cell has two
internal eigenstates !↓% and !↑%, and can represent any quan-
tum superposition of these states. Each qubit of quantum
information is represented by four consecutive cells: the qu-
bit basis state !0% is represented by !↑↑↓↓% while the state
!1% is represented by !↓↓↑↑%. The basis states of a qubit X
can therefore be compactly written as xxxx , where x corre-
sponds to ↓ if X"0 and ↑ if X"1, with the opposite apply-

ing to x̄ . Figure 1!a" shows an array containing three qubits,
each pair being separated by spacer cells in the !↓% state !the
minimum acceptable spacing is four cells #13$, but eight are
used here for clarity". The array is subject to update rules
specified by the notation A f

U which means, each cell of type

A is subjected to unitary transform U if, and only if, its
‘‘field’’ has value f. When the U is omitted a simple inver-
sion is implied, !↓%!!↑% . The ‘‘field’’ is defined as the num-
ber of nearest neighbors in state !↑% minus the number in
state !↓%. This is the proper control variable since in a physi-
cal realization the cells will be aware of their neighbors
through the net effect of, for example, their electrostatic
fields.
We now exhibit elementary qubit transformations

!‘‘gates’’" on our array. The first is the general ‘‘one-qubit*Electronic address: s.benjamin@physics.ox.ac.uk
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Overview of Global QC

Need to execute control on all A sites where control is based 
on combined state of both B neighbors

Single Qubit Gate
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Overview of Global QC

2-Qubit Gate
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Overview of Global QC

Variants

ABABAB + collectively switched Heisenberg interaction
Given the ability to switch on and off various interactions 

between A and B qubits, S. C. Benjamin, PRL 88, 017904 (2002).

 Not as easy to engineer physically? Again uses a Control Pattern 
to steer control to particular gates.

VOLUME 88, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 7 JANUARY 2002
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FIG. 1. (a) A schematic diagram of the proposed architecture:
a one-dimensional array of two-state cells. All the cell-cell in-
teractions denoted HAB are switched simultaneously, as are all
interactions denoted HBA. (b) An explicit description of the
steps involved in applying a single-qubit “gate” U to qubit Y.
Successive rows show how the state of a section of the array
develops over time. Notation on the right indicates the elemen-
tary operation applied at each interviewing step: a indicates that
only the HAB interactions are nonzero, and similarly b indicates
only HBA are nonzero. (c) Schematic summarizing the flow of
information in (b).

(1) It must be possible to switch “off” HBA, so that the
system then decouples into a set of (identically interacting)
A-B pairs.

(2) By manipulation of the remaining terms HA, HB,
and HAB, it must be possible to implement any two-qubit
operation on the A-B pairs (all pairs will experience the
same manipulation, of course).

(3) As requirements (1) and (2), but “switching off” the
HAB interaction instead.

The design challenge will be to meet condition (a) with-
out reintroducing local gates—several possibilities are dis-
cussed later. Condition (b) is relatively easy: it could be
met, for example, by a pair of systems A and B having
different g factors and being coupled by a Heisenberg in-
teraction. (This is an example where A and B are physi-
cally distinct systems.) With a short sequence of steps,
involving varying the Heisenberg coupling strength [4–7]
and altering the orientation of a global magnetic field, it
will be possible to perform any desired two-qubit gate on
this isolated pair.

These ingredients then suffice to perform universal
quantum computation. We will briefly describe how this

may be achieved; the procedures are conceptually similar
to those discussed in Ref. [3] (in fact, they are rather more
simple). In the following, we will use the term “a-phase”
to refer to the system when HBA ! 0, and “b-phase”
to refer to the HAB ! 0 case. In Fig. 1(b), successive
rows of cells show how the state of the array changes
over time. Consider the topmost row. Here there are two
qubits, denoted Y and Z, stored in the illustrated section
of the array. All but one of the other cells are in state
“0”— the one exception is a single cell in state 1, which
is said to be representing the “control unit” (CU). Notice
that only the A cells are representing qubits, and the CU
is represented by a B cell. Now suppose that we fix
HBA ! 0, i.e., adopt the a phase, and perform a SWAP
operation between the (now isolated) AB pairs. We denote
this operation as “a:SWAP.” The result of this operation
is shown in the second row: all the information (qubits)
is shifted one cell to the right, and the CU is shifted one
cell to the left. If we now perform the complementary
operation b:SWAP, then the qubits will be shifted one cell
farther to the right, and the CU one farther to the left, as
shown in the third row. Because we are using pure SWAP
operations, when qubit Z “collides” with the CU, the two
objects simply pass “through” one another undisturbed.
Therefore with an appropriate sequence of a:SWAP and
b:SWAP operations, we can move the CU back and forth
through the qubits as we wish. Now suppose that we
are “running” some quantum algorithm which calls for
a transformation U to be applied only to one specific
qubit —qubit Y , say. This “single-qubit gate” operation
is shown in detail in Fig. 1(b), and schematically in
Fig. 1(c). We first move the CU until it is adjacent to
the qubit. We then perform a control-U between the CU
(acting as the control qubit) and Y (the target qubit). We
established in our list of requirements that it is possible to
do this. Since the CU is in state j1!, the transformation
U will be applied to qubit Y ; all other qubits will, of
course, also be subject to the control U; however, since
their controlling qubits will be in state “0” they will not
undergo any net transformation. Now we are free to move
the CU away to its next destination qubit.

The process for performing a control U between two
of the qubits is rather more complex. Figure 2 defines
the process, and the following description provides an
overview. Before the process can begin, the CU must be
moved until it is beside the control qubit (Y in the example
of Fig. 2). Then a sequence of steps (labeled “part 1” in
Fig. 2) is applied. Although each of these steps necessar-
ily involves applying gates along the entire array (because
we may not act locally), nevertheless the sequence is such
that there is a net effect only on a triplet of cells in the
neighborhood of the CU. The cell to the right of the CU
is placed into state “1,” while the cell representing the CU
and that representing the qubit Y are placed into a certain
entangled state [denoted ȲY in Fig. 2(a)]. The merit of
this transformation is seen when we now apply a series

017904-2 017904-2
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Overview of Global QC

Work to simulate arbitrary quantum dynamics 
and computation using a generic entangling 

Hamiltonian

Some speculation whether the result could hold in a quantum cellular 
automata design, i.e. the local unitaries are applied homogeneously at once 

- no results

Universal quantum computation and simulation using any entangling Hamiltonian and

local unitaries

Jennifer L. Dodd, Michael A. Nielsen, Michael J. Bremner, and Robert T. Thew
Centre for Quantum Computer Technology, Department of Physics, University of Queensland, Queensland 4072, Australia

!Received 15 June 2001; published 4 April 2002"

What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system?

We provide an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed

two-body entangling n-qubit Hamiltonian and local unitary operations. It follows that universal quantum

computation can be performed using any entangling interaction and local unitary operations.

DOI: 10.1103/PhysRevA.65.040301 PACS number!s": 03.67.Lx, 03.65.!w, 03.67.!a

A central goal of quantum physics is to understand and
control quantum dynamics. Recently, the emergence of fields
such as quantum control #1$, laser cooling #2$, quantum com-
munication, and quantum computation #3,4$ has focused ef-
forts to understand and control quantum dynamics at the
single quantum level.
Our interest is in the dynamics of composite quantum

systems. An especially important example of such a system
is a quantum computer, which is a composite of a large num-
ber of two-level quantum systems !qubits". We wish to de-
termine which interactions are sufficient for the simulation of
arbitrary quantum dynamics in such a system. Our results
demonstrate equivalence between this property of universal-
ity and the ability to entangle all components of the system.
More precisely, we consider the following problem: what

dynamics can we produce with a specified two-body, n-qubit
Hamiltonian, given the ability to perform arbitrary local uni-
tary operations on individual qubits? Under these conditions,
we exhibit an explicit algorithm which shows that any
Hamiltonian which produces entanglement can be used to
efficiently simulate an arbitrary two-body dynamical opera-
tion. This holds even if the Hamiltonian alone is only ca-
pable of producing a small amount of entanglement.
It follows that any entangling interaction, together with

local unitary operations, is sufficient to perform universal
quantum computation. Our results thus confirm the ‘‘folk-
lore’’ belief that the ability to entangle is a crucial element in
quantum computation.
Substantial prior work has been done on universal opera-

tions, and many specific sets of universal gates are known
#5,3$. Our work differs from previous work on the general
requirements for universality in several regards. Closest is
the work in #6$ and #7$, where it was shown that almost any
two-qubit quantum gate is universal for quantum computa-
tion. This work focused on unitary gates rather than
continuous-time Hamiltonian evolution, and did not explic-
itly determine which sets of unitary gates are universal. Our
work explicitly determines which two-body Hamiltonians,
together with the additional requirement of local unitary op-
erations, are universal. Furthermore, in #6$ and #7$ it was
assumed that gates could be independently applied to any

pair of qubits in the computer, and thus required the ability to
turn on and turn off interactions between different pairs of
qubits. By contrast, we assume only a fixed entangling op-
eration, although we do require the ability to turn on and turn

off arbitrary local unitary operations.
Our techniques make use of generalizations of standard

nuclear-magnetic-resonance !NMR" techniques for decou-
pling and refocusing #8,9$. Similar ideas have been applied
by #10,11$ to the problem of efficiently implementing
coupled logic gates using a restricted class of Hamiltonians
which arises naturally in NMR.
The structure of this Rapid Communication is as follows.

We begin with a precise formulation of our goals and results.
A specific two-qubit example is given to illustrate our tech-
niques, and the general algorithm is described for the case of
an arbitrary two-qubit system. The efficiency of the algo-
rithm and the effect of errors are then discussed. We con-
clude by generalizing the algorithm to n-qubit systems.
An arbitrary Hamiltonian on n qubits can be given the

operator expansion

H" %
j1 , . . . , jn"0

3

h j1••• jn& j1
! ••• ! & jn

, !1"

where the h j1••• jn are real numbers and &1 ,&2 ,&3 are the
usual Pauli sigma matrices, with &0'I the identity. Our dis-
cussion is restricted to the case of time-independent Hamil-
tonians containing only one- and two-body terms, that is, if
h j1••• jn(0 then only one or two of the j1 , . . . , jn are not
equal to zero. If the Hamiltonian contains a nonzero contri-
bution to &k! & l then we say the Hamiltonian couples sys-
tems k and l. This focus on two-body Hamiltonians is a mild
restriction as most candidate systems for quantum informa-
tion processing are of this type.
Under what circumstances is it possible to produce en-

tanglement between an arbitrary pair of systems, even ones
that are not directly coupled by the Hamiltonian H? Not
surprisingly, Hamiltonians which have terms coupling sys-
tems k and l can produce entanglement between these sys-
tems. We say that systems k and k! are connected if there is
a sequence (k ,k1 , . . . ,km ,k!) such that each adjacent pair in
the sequence is coupled by H. It is clear that if k and k! are
not connected then no entanglement can be created between
them, and thus it is not possible to perform an arbitrary uni-
tary operation on the system. Conversely, it follows from our
later discussion !and is a priori plausible" that if a pair of
systems is connected then it is possible to create entangle-
ment between them !cf. #12,13$". This motivates our defini-

RAPID COMMUNICATIONS

PHYSICAL REVIEW A, VOLUME 65, 040301!R"

1050-2947/2002/65!4"/040301!4"/$20.00 ©2002 The American Physical Society65 040301-1



Jason Twamley, CQCT, Macquarie University, Sydney Australia SP4 QAP Meeting, March 2007

Overview of Global QC

Work to examine the class of Hamiltonian that can be simulated by 
using inhomogeneous and homogeneously applied local unitaries and 

some translationally invariant inter-qubit interaction
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Simulation of quantum dynamics with quantum optical systems

E. Jané,1 G. Vidal,2 W. Dür,3 P. Zoller,4 and J.I. Cirac5

1Departament d’Estructura i Constituents de la Matèria,
Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain

2Institute for Quantum Information, California Institute for Technology, Pasadena, CA 91125 USA
3Sektion Physik, Ludwig-Maximilians-Universität München, Theresienstr. 37, D-80333 München, Germany

4Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
5Max-Planck Institut für Quantenoptik, Hans-Kopfermann Str. 1, D-85748 Garching,Germany

(Dated: 25th May 2006)

We propose the use of quantum optical systems to perform universal simulation of quantum
dynamics. Two specific implementations that require present technology are put forward for il-
lustrative purposes. The first scheme consists of neutral atoms stored in optical lattices, while
the second scheme consists of ions stored in an array of micro–traps. Each atom (ion) supports
a two–level system, on which local unitary operations can be performed through a laser beam. A
raw interaction between neighboring two–level systems is achieved by conditionally displacing the
corresponding atoms (ions). Then, average Hamiltonian techniques are used to achieve evolutions
in time according to a large class of Hamiltonians.

PACS numbers: 03.67.-a, 03.65.-w, 32.80.Pj, 42.50.-p

I. INTRODUCTION

Simulating quantum systems on a classical computer is
known to be hard. Consider a set of two–level quantum
systems, say N spin–1/2 particles placed at the sites of
some regular lattice, that interact with each other. The
number of parameters required to describe the state of
these spins grows exponentially with N [1, 2]. For in-
stance, the state of N = 50 spin–1/2 systems is specified
by 250 ≈ 1015 numbers, whereas a 250 × 250 matrix, i.e.
with ≈ 1030 entries, needs to be exponentiated in order to
compute its time evolution. Therefore, a device process-
ing information according to the laws of classical physics
—and in particular any present computer— is unable to
efficiently simulate the dynamics of these spins when N
becomes large.

This fact has severe consequences in the study of
condensed matter systems. Our understanding of a
large spectrum of collective quantum phenomena, in-
cluding ferromagnetism, antiferromagnetism, conductor–
insulator transitions, superconductivity and quantum
Hall effect, is dramatically hindered by the impossibil-
ity of tracing quantum dynamics. Suppose the N spins,
whose 2N–dimensional Hilbert space H decomposes as

HN = H(1) ⊗H(2) ⊗ · · ·⊗H(N), H(k) = C2, (1)

display a property that we want to study, originating,
say, in a given collective effect, and we conjecture that
some Hamiltonian HN acting on HN is able to account
for this effect. Since a classical computer can not effi-
ciently simulate a quantum evolution according to HN ,
the question whether HN successfully describes the prop-
erty of interest can in general not be answered. And
thus, for instance, the simple Hubbard model, believed
to explain a wide range of electromagnetic properties of

condensed matter systems –high temperature supercon-
ductivity among them–, remains unsolved after decades
of study [3, 4].

As a matter of fact, Feynman’s initial motivation for
constructing a quantum computer was the efficient sim-
ulation of quantum dynamics [1]. Building on the obser-
vation that a quantum system can be used to simulate
another quantum system, he conjectured the existence of
a universal quantum simulator UQS. Since then, several
authors have analyzed this possibility [5]. A UQS is a
controlled device that, operating itself at the quantum
level, efficiently reproduces the dynamics of any other
many–particle quantum system that evolves according to
short range interactions. Here, the assumption of some
degree of locality in the interactions, implying that the
multi–particle Hamiltonian HN =

∑

i Hi is a sum of
terms Hi each one involving only a few neighboring sys-
tems, is important to achieve an efficient simulation. In
most cases of interest this requirement happens to be ful-
filled. Consequently, a UQS could be used to efficiently
simulate the dynamics of a generic many–body quantum
system and in this way function as a fundamental tool
for research in quantum physics.

On the other hand, the main present motivation for
building a quantum computer comes from the expected
exponential gain in efficiency of certain quantum algo-
rithms with respect to their classical counterparts. Shor’s
efficient factorization of large numbers is so far the most
celebrated milestone of quantum computation [6]. How-
ever, for quantum computers to overcome classical ones
in tasks such as factorization, they would have to coher-
ently operate tens of thousands of two–level systems or
quantum bits (qubits). This extraordinary enterprise re-
quires technology that may only be at reach in several
decades from now. Instead, simulating the dynamics of
a few tens of qubits appears as a more feasible —and,

quant-ph/0207011



Jason Twamley, CQCT, Macquarie University, Sydney Australia SP4 QAP Meeting, March 2007

Overview of Global QC

Universal QC can be efficiently simulated via translationally invariant 
requires 1-qubit and several types of 2 qubit global gates.

Quantum computing on lattices using global two-qubit gates

G. Ivanyos*
Computer and Automation Research Institute, Hungarian Academy of Sciences, H-1518 Budapest, P.O. Box 63., Hungary

S. Massar†

Laboratoire d’Information Quantique and QUIC, C.P. 165/59, Av. F. D. Roosevelt 50, B-1050 Bruxelles, Belgium

A. B. Nagy‡

Budapest University of Technology and Economics, H-1521 Budapest, P.O. Box 91., Hungary
!Received 7 March 2005; revised manuscript received 8 June 2005; published 29 August 2005"

We study the computation power of lattices composed of two-dimensional systems !qubits" on which
translationally invariant global two-qubit gates can be performed. We show that if a specific set of six global
two qubit gates can be performed and if the initial state of the lattice can be suitably chosen, then a quantum
computer can be efficiently simulated.

DOI: 10.1103/PhysRevA.72.022339 PACS number!s": 03.67.Lx

I. INTRODUCTION

Building a computer that operates coherently at the quan-
tum level may revolutionize the way we carry out computa-
tions. Indeed it is believed that such quantum computers are
much more powerful than their classical analogs. For in-
stance it seems that factoring can be carried out exponen-
tially faster on a quantum computer than on a classical com-
puter. For this reason much work is being devoted to
developing physical systems in which computation can be
carried out at the quantum level.

Very attractive systems in which to implement quantum
information processing are atomic lattices. Indeed the
method for realizing such lattices suggested in #1$ has been
demonstrated in #2$, and lattices comprising more than 105

atoms have been realized. A method for carrying out interac-
tions between neutral atoms suggested in #3$ has been dem-
onstrated in #4$. This method realizes a global two-qubit gate
which in a few steps can entangle all the lattice, leading to
cluster states #5$. Finally coherent transport of atoms over
many lattice spacings has been demonstrated in #6$ which
implies that the global two-qubit gates can be realized be-
tween atoms located many lattice spacings away.

On the other hand, atomic lattices are affected with a fun-
damental difficulty. Namely, it is very difficult in these sys-
tems to address individually each atom in the lattice. Rather
one is limited to the global operations mentioned above.
Thus whereas atomic lattices seem well suited to carry out
simulations of translationally invariant physical systems #7$,
it is not as clear how to use them to implement a universal
quantum computer.

Here we address the question of the computational power
of atomic lattices. That is, to what extent can a quantum
computer be efficiently realized using atomic lattices?

We shall consider a perfect lattice—i.e., a lattice with ex-
actly one atom per site. We shall suppose that the only gates
which are available are global one-qubit gates and global
two-qubit gates. We will suppose that these gates can be
performed perfectly. We shall also take each atom to have an
internal Hilbert space of dimension 2—i.e., a qubit. These
restrictions strongly limit the operations that can be carried
out and the core of our result consists of showing how to
overcome these constraint. Finally we shall suppose that the
initial state of the lattice breaks slightly the translational
symmetry in a specific way. Namely, we shall suppose that
all the atoms are initially in the state %0& except two specific
atoms that are in the state %1&. Our main result is to show that
in this situation it is possible to efficiently simulate a quan-
tum computer.

We note that experiments so far involving atomic lattices
have only used qubits !as we do", but also have only imple-
mented a single global two-qubit Hamiltonian which in the
notation below is %01&'01%!d". On the other hand, the result we
report here requires two different global two-qubit gates and
global one-qubit gates. Whether or not the Hamiltonian
%01&'01%!d" and arbitrary global one-qubit gates are enough to
simulate a quantum computer is an open question. The re-
sults obtained here may provide an avenue for tackling this
problem. We expect they will also be of interest in other
contexts as they provide a nontrivial way of implementing a
quantum computer in a system where limited sets of gates
are realizable.

The question of the computational power of atomic lat-
tices has recently been studied in a number of works. For
instance the proposals of #8,9$ are based on the concept of a
“marker qubit” which is circulated through the lattice. And
#10$ uses as ingredient imperfections in the lattice. The latter
work has been extended in #11$ to perfect lattices and trans-
lationaly invariant initial states. In #12$ a method to realize a
quantum computer using global two-qubit gates which act on
half the qubits only was proposed. The techniques used in
these works differ in essential ways from the ones presented
here. Essential differences concern, for instance, the size of
the Hilbert space of each atom, the initial state, the way local

*Electronic address: Gabor.Ivanyos@sztaki.hu
†Electronic address: smassar@ulb.ac.be
‡Electronic address: nagy@math.bme.hu
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gates between logical qubits are implemented using the glo-
bal gates, etc.

Finally it may be interesting to note that the present work
was motivated by a numerical study of the computational
power of atomic lattices. In this numerical investigation we
allowed all global one-qubit gates and a single global two-
qubit gate on qubit pairs of distance 1 on a lattice consisting
of n qubits on a circle. We considered the action of these
global gates on the eigenspaces of the cyclic shift operator in
the Hilbert space of the states of the n qubits corresponding
to the eigenvalue 1. !As the shift operator commutes with the
global gates, all of its eigenspaces are invariant under the
action of global gates." Using the computational algebra sys-
tem GAP #13$, we obtained that, for n=3, . . . ,7 qubits, the
restriction of the Hamiltonians of global gates to the eigens-
pace generates the whole unitary Lie algebra. That is, at least
up to 7 qubits, the above global gates form a universal set of
gates on the eigenspace. If this holds for every n !as we
conjecture", global one-qubit gates and a single global two-
qubit gate on a cyclic lattice consisting of n qubits can imple-
ment arbitrary unitaries on a Hilbert space of size roughly
n−O!log2 n" qubits.

A possible reason for the universality we found is that the
global two-qubit gate considered has almost as many eigen-
values as possible. But this means that in some sense this
gate acts “chaotically.” Therefore the model is probably not
very useful in the sense that it does not seem to allow one to
define a qubit structure on the eigenspace in a natural way.
For this reason we turned to the model described above
which uses more two-qubit gates, which allows a qubit struc-
ture to be defined and which is amenable to analytic treat-
ment. It is this analysis we report here.

II. QUALITATIVE DESCRIPTION OF THE METHOD

As mentioned in the Introduction we will deal with a lat-
tice of qubits. In Figs. 1–3 we illustrated this with a one-
dimensional lattice. But the method works equally well with
higher-dimensional lattices. There are three kinds of qubits in
the lattice.

!i" First of all there are the logical qubits. We denote the
set of logical qubits by P. Initially the logical qubits are in a
specific state, which could be %0&. During the computation the
logical qubits evolve and change state.

!ii" Second there are two special qubits r and r!. These
qubits are initially in the state %1&, and after each gate they
are brought back to the state %1&. Their role is to help localize
the logical qubits and to extract local operations from global
ones.

!iii" Third, there are all the other qubits. These are initially
in the state %0&, and after each gate they are brought back to
the state %0&.

The disposition of the logical qubits P and the special
qubits r and r! must obey some geometrical constraints.
These constraints are described in Sec. IV. In Figs. 1–3 we
have taken a very simple case where the qubits belong to a
one-dimensional lattice; the logical qubits are at positions
6 ,12,18, . . . ,6k , . . . and r=1, r!=2. This is a special case of
the first example in Sec. IV.

Our main result is to show that in such a configuration we
can realize local gates between logical qubits by sequences
of global gates. Suppose that we want to realize a universal
set of local gates between the logical qubits at positions p
=6 and p!=12 in the example of Figs. 1–3. To this end we
will need several kinds of global gates. First of all we need to

FIG. 1. !Color online" Global interaction on qubits separated by distance 6. In this figure we illustrate our method on a linear lattice in
which the logical qubits are located at every sixth site !except at position 0". The logical qubits are marked X, Y, and Z, in the figure. The
special qubits r and r! which are used to help localize the logical qubits and to extract local operations from global ones are located at
positions 1 and 2. The qubits r and r! are initially in state %1& and are brought back to state %1& after each gate. All other qubits are initially
set to %0& and are brought back to %0& after each gate. In order to carry out a local gate between logical qubits X !position 6" and Y !position
12", one needs to be able to realize the four global two qubit gates described in the figure. These global gates act only on qubits separated
by distance 6= !position of qubit Y"− !position of qubit X". The lines in the figure indicate which qubits are coupled by the interaction. In
addition one must also be able to realize the two phase gates described in Fig. 2. Note that the global two-qubit gates illustrated in this figure
do not factorize as a product of gates acting on pairs of qubits !contrary to the phase gates of Fig. 2".
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A scheme of universal quantum computation is described that does not require local control. All the required
operations, an Ising-type interaction and spatially uniform simultaneous one-qubit gates, are translation
invariant.
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I. INTRODUCTION

Symmetry reduces complexity. In physical systems real-
izing quantum computers, the highest degree of symmetry is
therefore not the most desirable. A quantum computer needs
to be sufficiently simple and robust to be controllable in an
experiment yet complex enough to be universal. One may
therefore ask the question, “how much symmetry does a
quantum computer allow for?” In fact, a number of physical
systems considered for the realization of a quantum com-
puter such as optical lattices #1$ or arrays of microlenses #2$
are translation invariant, and the above question acquires a
practical aspect.

Quite surprisingly, it turns out that universal quantum
computation can tolerate a fair amount of symmetry. Re-
cently, a scheme of quantum computation using the rotation-
invariant measurement of the total “spin” of two qubits as
the only gate has been devised #3$. Furthermore, a
translation-invariant computation scheme has been described
#4$.

The computational power of translation-invariant or
nearly translation invariant quantum systems was revealed in
Lloyd’s #5$ and Watrous’ #6$ work on quantum cellular au-
tomata !QCA". In Ref. #6$ it was shown that a one-
dimensional QCA can simulate any quantum Turing ma-
chine. Translation invariance is broken only by the initial
state which encodes the program. The schemes in Refs. #5$
and #7$ allow one to simulate quantum circuits using a chain
of qubits with a generic translation-invariant interaction.
They require different species of qubits in a periodic arrange-
ment and local addressability at one end-point of the chain.
In the scheme in Ref. #8$ such individual addressing is only
required in the initialization. The method proposed in Ref.
#4$ is completely translation invariant in space. It requires
homogeneous one- and two-local operations on five-level
systems.

Here I describe a scheme for universal quantum compu-
tation via translation-invariant operations on a chain of qu-
bits. No individual addressability is required. The scheme
uses an Ising-type interaction and spatially uniform one-
qubit gates. The qubits are all of the same species. Cold
atoms in optical lattices #1$, where the requirement of local
control adds to the overall technological challenge, are a can-
didate for the realization of the presented scheme.

II. CONSTRUCTIVE ELEMENTS, UNIVERSALITY, AND
SCALABILITY

I consider a one-dimensional chain of N qubits initialized
in the state %00¯0& which is repetitively updated according
to the transition function

T = ' !
i=1

N−1

!!Z"i,i+1('!
i=1

N

Hi( . !1"

That is, in each elementary step of the evolution first a Had-
amard gate is applied to each qubit and second, conditional
phase gates are simultaneously applied to all pairs of neigh-
boring qubits. This QCA transition function has previously
been discussed in Ref. #9$.

Between the transitions one may apply translation-
invariant unitary transformations of the form

UA!"" = !
i=1

N

exp'i
"

2
Ai( , !2"

with A! )X ,Y ,Z*. !Note that the subscript “i” labels the site.
The same operation is applied to each qubit." These require-
ments are equivalent to bang-bang pulses of the form !2" and
a permanent Ising-type interaction H=+i=1

N−1%11&i,i+1,11%.
Let us first observe that

TN+1 = R , !3"

where R is the reflection operator that sends the state of the
qubit chain into its mirror image. Thus, despite the fact that
the qubits at the end points need not be addressed, it is rel-
evant that the chain has ends. !For adaption of the scheme to
a ring of qutrits, see remark 1 in Sec. III". A proof of Eq. !3"
is given in the Appendix.

Apart from its use in the computational scheme described
here, the bit reversal operation R is interesting in its own.
Recently, proposals for both approximate and perfect bit re-
versal in qubit chains with a Heisenberg and XY interaction
have been made; see Refs. #10–12$, and references therein.
For perfect mirror reflection in an XY chain the coupling
strength needs to vary with position #11$, but only mildly
#12$.

Relation !3" represents a method to achieve spatial reflec-
tion in systems with an Ising-type interaction. Here, the in-
teraction strength is independent of position, but additional
stroboscopic pulses !2" are required to realize the uniform
Hadamard transformations.
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A. Universal set of gates

The key to the construction of a universal set of gates for
the described automaton is displayed in Fig. 1. The
!N+1"-fold repetition of the elementary transition function
constitutes half a clock cycle of the automaton. Within this
period each local Pauli observable goes through the phases
of expansion, transmission, and contraction to the mirror im-
age of the initial position. During expansion and contraction,
the propagated observable is susceptible to a global Y pulse

Y ª UY!!" = !
i=1

N

Yi. !4"

Namely, it picks up a sign factor under conjugation. Contrar-
ily, during the phase of transmission where the observables
behave as left or right movers #9$ a Y pulse has no effect.
The duration of expansion, transmission and contraction
phase depend on the initial position of the local Pauli observ-
able. Therefore, each local Pauli observable shows a charac-
teristic response to sequences of Y pulses within the half
cycle. In this way, temporal control can be translated into
spatial control. In the construction described below, suitably
tailored sign flips of Pauli observables are used to reverse
rotation angles. Depending on whether a rotation angle is
reversed or not, two matching rotations will either cancel or
amplify each others effect.

The degree of spatial control obtained suffices to simulate
a quantum logic network. One constraint arises: every opera-
tion applied to the qubit chain is reflection symmetric. There-

fore, qubit i cannot be addressed separately from its mirror
image at location īªN+1− i. To cope with this constraint,
the same network is simulated twice on the chain, once on
the left side and once—as a mirror image—on the right. This
doubles the required length of the chain and also influences
the readout process, as will be discussed in Sec. II B.

To probe the available spatial control, consider the
sequence

UZ!c,"" = #TYcNTYcN−1T ¯ TYc1TYc0UZ!− "/2"$

# #TYcNTYcN−1T ¯ TYc1TYc0UZ!"/2"$ , !5"

where c= !c0 , . . . ,cN"T is a binary vector. To analyze the ef-
fect of this sequence, the Pauli operators Yci are propagated
backwards in time until they reach the UZ gates. There they
accumulate to Ȳ,

Ȳ = !T−NYcNTN" ¯ !T−1Yc1T"Yc0. !6"

Then,

UZ!c,"" = RȲUZ!− "/2"RȲUZ!"/2" = !
i=1

N

exp#isi!"/2"Zi$ ,

!7"

where we have used that RȲR= Ȳ and

si =%0 if #Ȳ,Zi$ = 0,

1 if &Ȳ,Zi' = 0.
( !8"

In this way, temporal control has been converted into spatial
control, provided that—for suitable choices of c—the binary
variables si!c" do indeed vary with i.

The si are easily computed in the stabilizer formalism
#13–15$. Following, Ref. #15$ we write Pauli operators A in
the form i$!−1"%&a, where a= ! z

x
" is a 2N-component binary

vector, z= !v1 , . . . ,vN"T, x= !w1 , . . . ,wN"T; $ ,%!Z2, and &a=
! i=1

N Zi
viXi

wi. The evolution of A under conjugation by our
Clifford unitary T ,A→T!A"=TAT†, may then be followed in
terms of $, %, and a. The scalars $ and % have no influence on
the sign factor !−1"si !8", and we need to consider the update
of a only, a!t"→a!t+1"=Ca!t". Therein, C is a 2N#2N
binary symplectic matrix which takes the form

C = )' I

I 0
* . !9"

' is the adjacency matrix of the interaction graph !the line
graph". Further, denote by F the 2N#2N-matrix F= ! 0I

I0
" and

observe that FC−1=CF. Now, the vector s= !s1 , . . . ,sN"T car-
rying the information about the sign flips under conjugation
by Ȳ is related to the vector c describing the temporal se-
quence of Y pulses, via s=MZc. The matrix MZ encodes how
temporal control is converted to spatial control. Its elements
are given by

FIG. 1. !Color online" The evolution of a local Pauli observable
Z3 for a qubit chain of length N=8. The color-coded boxes denote
Pauli operators Xi and Zi, respectively, and each row of boxes rep-
resents a tensor product of such Pauli operators. Within the cycle
that leads to reflection of the chain, each local observable undergoes
the phases of expansion, transmission, and contraction. When ex-
panding or contracting, the operators pick up a sign factor of −1
under conjugation by a Y pulse.
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We show how to perform reversible universal quantum computation on a translationally invariant pure state,
using only global operations based on next-neighbor interactions. We do not need to break the translational
symmetry of the state at any time during the computation. Since the proposed scheme fulfills the locality
condition of a quantum cellular automata, we present a reversible quantum cellular automaton capable of
universal quantum computation.
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I. INTRODUCTION

The great challenge in quantum-information theory and
quantum computation is to build a quantum computer, which
is conjectured to be exponentially faster than its classical
counterpart. Many proposals have been presented in recent
years that claim a physical system to be a good candidate for
doing quantum computation. In order to be able to build a
quantum computer, the proposed scheme has to satisfy a
checklist #1$ of required properties that are widely believed
to be necessary for universal quantum computation. Two of
the points on this checklist are, that a qubit has to be encoded
into a well-defined physical system, i.e., there should be two
levels representing %0& and %1&, and that each of these systems
should be manipulated individually. We present a quantum-
computation scheme that seems to get around these require-
ments, using translationally invariant states and global ad-
dressing.

To encode several qubits into a translationally invariant
system seems to be contradictory, because by definition all
individual systems are identical and cannot carry different
kinds of quantum information. Restricting to global opera-
tions that are themselves translationally invariant, we are not
able to break the translation symmetry, in particular, we can-
not address a single system alone.

But such a situation occurs for example in optical lattices,
for which it is experimentally a very hard task to address
single sites in the lattice. In the ideal situation, this lattice is
prepared in a translationally invariant state, with exactly one
atom per site #2$, all in the same internal state. Schemes for
quantum computation that have been proposed for this sys-
tem require breaking the translational symmetry as a first
step #4–6$, e.g., by using imperfections in the lattice #3$.

In this paper we introduce a method of performing quan-
tum computations on a translationally invariant, one-
dimensional lattice of five-level systems, that can be associ-
ated for example with a line of atoms in an optical lattice.
Our scheme will be completely based on global operations,
that can be carried out by reflectionally symmetric and trans-
lationally invariant next-neighbor Hamiltonians. Beside its
physical relevance these kind of operations allow us to con-
nect quantum computation to the context of quantum cellular
automata #7–9$.

Our system will stay in a pure, reflectionally symmetric,
and translationally invariant state during the whole computa-

tion. The main idea is based on the notion of ensemble quan-
tum computation and is related to the schemes presented in
#3$.

The paper is organized as follows. In the first step we will
introduce a quantum-computation scheme that requires non-
translationally invariant states. In the next step, we will show
how we can get rid of this condition by switching to an
ensemble quantum computation scheme. In a last step we
will verify, that we can do this with a pure state.

II. PRELIMINARIES AND NOTATION

Assume we have atoms with six internal states !%0&,…,%5&"
in a one-dimensional lattice of length m, where we assume m
to be very large. To avoid any discussion about border ef-
fects, we will further assume either periodic boundary con-
ditions or m→!.

Hxa
yb denotes a reflection symmetric next-neighbor Hamil-

tonian, which is constructed in the following way: hxa
yb

= %x ,a&'y ,b%+H.c.. is a Hamiltonian having the ability to
transform %xa& into %yb& and vice versa, in the sense that
eihxa

ybt%xa&= i%yb& for t=" /2. Here x ,y denote two states in one
site of the lattice and a ,b two states in a neighboring site. In
most of the cases x ,y ,a ,b will be chosen to be one of the
basis states !%0&,…,%5&".

To make this Hamilton reflection symmetric we take
h!xa,yb"=hxa

yb+hax
by. To our system we will apply translation-

invariant next-neighbor Hamiltonians of the form

Hxa
yb = (

i
h!xa,yb"

!i,i+1" , !1"

where h!xa,yb"
!i,i+1" denote the Hamiltonian h!xa,yb" applied on the

ith and !i+1"th places. In particular, we will only apply
Hamiltonians of the form Hxa

xb, with 'x %a&= 'x %b&=0. In this
case all h!xa,xb"

!i,i+1" commute with each other. Note, that the states
a ,b do not have to be orthogonal.

By Uxa
xb we denote the unitary operation eiHxa

xbt with t
=" /2 chosen in such a way that every “isolated” %xa& in the
lattice is transformed into %xb& and vice versa, in the sense
that Uxa

xb%¯xac¯ &= i%¯xbc¯ & !c!x". Note, that Uxa
xb acts

in the same way to the left, i.e., Uxa
xb%¯cax¯ &

= i%¯cbx¯ &. Without loss of generality we will ignore the

PHYSICAL REVIEW A 73, 012324 !2006"

1050-2947/2006/73!1"/012324!4"/$23.00 ©2006 The American Physical Society012324-1



Jason Twamley, CQCT, Macquarie University, Sydney Australia SP4 QAP Meeting, March 2007

Overview of Global QC

Work to show universal quantum computation via a 
homogenous chain and translation-invariant operations

Globally Controlled Quantum Wires for Perfect Qubit Transport, Mirroring, and Computing

Joseph Fitzsimons1,* and Jason Twamley2,†

1Department of Materials, Oxford University, Oxford, United Kingdom
2Centre for Quantum Computer Technology, Macquarie University, Sydney, NSW 2109, Australia

(Received 9 February 2006; published 1 September 2006)

We describe a new design for a q wire with perfect transmission using a uniformly coupled Ising spin
chain subject to global pulses. In addition to allowing for the perfect transport of single qubits, the design
also yields the perfect ‘‘mirroring’’ of multiply encoded qubits within the wire. We further utilize this
global-pulse generated perfect mirror operation as a ‘‘clock cycle’’ to perform universal quantum
computation on these multiply encoded qubits where the interior of the q wire serves as the quantum
memory while the q-wire ends perform one- and two-qubit gates.
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The development of protocols for transmitting quantum
states is a particularly important problem in quantum com-
putation. The ability to produce q wires would allow quan-
tum information to be moved around within a quantum
processor. In the initial work [1,2], the transport of quan-
tum states through unmodulated spin chains was examined
and less-than-perfect transport fidelities were found [1,3–
7]. This is due to the dispersion of the quantum information
along the chain [8]. Much work has since ensued searching
for perfect q-wire transport schemes and briefly we can
categorize these into: (1) if the nearest-neighbor couplings
between systems comprising the q wire are set to very
specific values [6,7], one can achieve perfect transport.
(2) One can achieve near perfect transport by encoding
the quantum information into low-dispersion wave pack-
ets, or by encoding or decoding via conditional quantum
logic across multiple q wires [3,8–10]. (3) Use ‘‘gapped
systems,’’ where the q-wire ends are only weakly coupled
to a strongly intercoupled interior of the q wire [11], to
achieve near perfect transport. (4) Other possibilities in-
clude teleportation of the quantum information along the q
wire by measurements [12], encoding into solitonlike ex-
citations [13], or use quantum cellular automata concepts
[14]. Besides the transport of single qubits, of more interest
is the capability of the q wire to transport entire qubit
registers via ‘‘quantum mirror wires’’ [15]. Here an un-
known multiqubit quantum state, when encoded at one end
of the wire is transmitted to the other end, but in reverse
order, !i1i2!!!iN

j1j2!!!jN 2H 1"H 2"!!!H N ! ~!#!iNiN$1!!!i1
jN!!!j1 .

Experimental proposals for q wires include Josephson
junction arrays [16], molecular magnet wires [17], quan-
tum nano-electromechanical systems [18], and tunnel-
coupled electronic quantum dots [19].

As well as demonstrating that globally addressed q wires
can yield perfect qubit transport and perfect multiqubit
mirroring we will also show that they can be used to
execute universal quantum computation. We achieve this
via a combination of the application of selective local
unitaries on the ends of the q wire and homogenous local
unitaries [HLUs [20] ] (or global pulses) on the entire q

wire. The use of HLUs alone to perform quantum compu-
tation has been examined by a number of authors [2,21–
23]. In all but the last of these, the application of HLUs
alone is not sufficient to implement universal quantum
computation and some structuring of the q wire is typically
required, e.g., two or three types of cells in the q wire. Our
hybrid approach using HLUs and end-system selective
addressing has a number of benefits over pure HLU com-
puting. We require no structuring of the q wire while the
use of robust composite pulses [24] can greatly reduce the
effects of any static variations in the intersystem coupling
strengths. Finally, to our knowledge, no fault tolerant
quantum error correction scheme has been found for pure
HLU quantum computation. It is our hope that such a
scheme might be more feasible in our hybrid design. It
may be that such q wires could comprise both the computa-
tional and communication resources within a quantum
processor and possibly lead to greater simplifications in
the required technology.

State transfer and Ising interactions.—The simplest ap-
proach to state transfer in a q wire is to simply swap qubits
in neighboring locations, repeating the process on alternat-
ing pairs of qubits until the desired state has reached the
end of the q wire, at which point no further swaps are per-
formed. Building on this idea we follow the steps outlined
in Fig. 1 to arrive at the circuit (f), which transports un-
known state jq1i using simultaneously applied Hadamard
operations !H % QN

j#1 H
j, and controlled phase operations

CZ%QN$1
j#1 CZj;j&1. Complete transport through an

N-system q wire with the initial state jq1 & 0& 0 ! ! !i
requires the application of CZ ! ' !H ! CZ(N$1 global opera-
tions. From (f) it would appear that such transport will
require the very particular initial state jq1q2q3 ! ! ! qNi #
jq1 & 0 ! ! !i, where qa, a # 2; . . . ; N are the j& '0(i, pure
states alternately. However, this is not the case as we show
below and any initial state of these other systems will
suffice (even completely mixed states).

The execution of (f) in Fig. 1 requires the application of
the global pulses !H and CZ. We have assumed that the
interior q-wire systems are identical and !H is generated via

PRL 97, 090502 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
1 SEPTEMBER 2006

0031-9007=06=97(9)=090502(4) 090502-1  2006 The American Physical Society

 CZ!!a"
z # !!a"

z CZ; CZ!!1"
x # !!1"

x !!2"
z CZ;

 CZ!!N"
x #!!N$1"

z !!N"
x CZ;

CZ!!a"
x #!!a$1"

z !!a"
x !!a%1"

z CZ; !H!!a"
z #!!a"

x !H:
(2)

Using these rules one can follow the propagation of !!a"
x (or

!!a"
z ), through the global operations, e.g., ! !H & CZ"2!!5"

x #
!!3"
x !!4"

z !!5"
x !!6"

z !!7"
x ! !H & CZ"2. The propagation can be

more easily understood through a graphical representation
[see Fig. 2(a)]. Using these rules and the graphical repre-
sentation one can show S!!a"

x # !!N$a%1"
x S, S!!a"

z #
!!N$a%1"
z S. We see from Fig. 2(a) that the propagation

typically undergoes a period of expansion until the pattern
hits the nearest q-wire end. It then continues to expand in
the other direction while remaining ‘‘stuck’’ at the end it
has impacted. Following two applications of !H & CZ after
impact the pattern reflects off this nearest wire end and
then the process of impact, sticking, and reflection repeats
off the other end of the q wire. Following N % 1 applica-
tions of clocking operation, !H & CZ, the initial product
state of the q wire undergoes a perfect spatial inversion
about the wire’s midpoint and consequently the inversion
of any initial state of the q wire occurs after a full cycle of
S # ! !H & CZ"N%1 operations. The construction of perfect
quantum mirror transport using only global operations
may need only modest technological developments to be-
come possible in the near future in a variety of physical
implementations.

Single-qubit gates.—Besides quantum transport we
show how a q wire can perform universal quantum com-
putation. We make full use of the capability to separately
manipulate the ends of the q wire. We refer back to
Fig. 2(a) and we note that the pattern resulting from a
single-qubit operation acting on the initial state impacts a
horizontal edge of this pattern in a series of four cells. To
arrange that these edge qubit patterns do not overlap we
now assume an initially padded qubit register, i.e., j iinit #
jq1 % q2 % q3 % & & &i. To execute universal quantum logic
we demonstrate single- and two-qubit gates. To achieve the
former, the execution of a general qubit rotation,
U!a"!";#;$" ' Rz!""Ry!#"Rz!$", on any qubit qa, we
use three full mirror cycles of S. During the first cycle,
to execute Rz!$", on qa, we apply this single-qubit opera-
tion on an edge at the impact points L!a"

i , in Fig. 2(b).
Following one round of S, which leaves the qubit register
spatially reversed along the q wire, we apply the global
operation !Hy '

QN
a#1Hy, whereHy ' R!a"

x !%=2". We then
apply a second round of S, and during this apply Rz!#" (at
L!a"
i ). Following this second round of S we globally apply
!Hy and using HyR

!a"
z !&"Hy # R!a"

y !&", we see that Ry!#" is
executed on qa. In the third round of S, we again apply
Rz!"" (at L!a"

i ) to arrive at U!a"!";#;$". Following from
the fact that adjacent qubit patterns do not overlap when

they impact an end (due to our use of buffer states), we can
pipeline the above single-qubit operation and are able to
execute

QN
a#1U

!a"!"a;#a;$a", i.e., arbitrary single-qubit
operations on all qubits encoded within the q wire, using
three rounds of S, using edge operations and global !Hy.

Two-qubit gates.—To execute two-qubit gates we utilize
the end-system control to apply decoupling pulses selec-
tively to either end system but more simply one can apply a
Rx!%=2" pulse to the end spin midway through the Ising
gate to average out the Ising interaction completely, or use
selective pulses to move an end-system qubit to an ‘‘off-
line’’ storage memory using techniques such as those
recently demonstrated in a nitrogen-vacancy-13C coupled
system [25]. By decoupling off an end system we artifi-
cially shorten the q wire and by continuing to apply the
global operations !H & CZ, (while omitting the Hadamard
on the decoupled end site), we can cycle the remaining

FIG. 2 (color online). Method of executing single- and two-
qubit gates. (a) Mirror transport of the local unitary operations X
(red), and Z (blue), acting on jq5i. The global pulses are CZ
(green vertical bars), and !H (purple vertical bars). (b) To execute
single-qubit gates on jq4i we apply !z operations on the ends at
the times L!5"

1 ; . . . ; L
!5"
4 . (c) Two-qubit gate between control

jqci # jq1i, and target jqti # jq7i. Colored overlays blue (red)
are the transport patterns of an initial X on jq1i (jq7i).
Underlying pattern is the simultaneous transport of both where
the jq1i trap is on during the indicated period (shown in light
blue). The jq1i pattern moves along the bottom edge of the graph
(c) until it reaches time step m, where the trap is turned off. At m
the target pattern begins to impact the trapped pattern and when
this occurs we globally apply CZ & CZ but lift off the trap at the
end site for a short time to yield a CZ(&) # diag !1; 1; 1; ei&", or a
controlled phase gate between the two patterns. At time kwe can
either reverse the temporal order of the global operations or
continue forward, retrapping the control pattern to execute a
number of controlled phase gates targeting any qubit pattern
which impacts that trapped pattern.
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Overview of Global QC

Intriguing use of Quantum Cellular Automata to 
increase signal strength in SS NMR QC
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We analyze a conceptual approach to single-spin measurement. The method uses techniques from the
theory of quantum cellular automata to correlate a large number of ancillary spins to the one to be
measured. It has the distinct advantage of being efficient: under ideal conditions, it requires the application
of only O!

!!!!
N3

p
" steps (each requiring a constant number of rf pulses) to create a system of N correlated

spins. Numerical simulations suggest that it is also, to a certain extent, robust against pulse errors, and
imperfect initial polarization of the ancilla spin system.
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One of the most interesting challenges in physics today
is that of measuring the state of a single (nuclear) spin.
Being able to do this would bring us closer to spin based
quantum computers [1], and have a myriad of applications,
ranging from spintronics to protein analysis. Unfortu-
nately, performing such measurement is not an easy task.
Several methods have been proposed [2], and single-spin
detection has been done [3], and the measurement in some
specific cases has also been achieved [4] for electron spins.

Cappellaro et al. [5] propose using a system of N
independent spins as a measurement system. This system
is coupled to the spin being measured, and using entan-
gling operations, creates a large correlated state, one whose
signal can be measured with current NMR technology. The
methods presented there require O!N" pulse sequences in
order to achieve N quanta of polarization. We expand on
their ideas to create a scheme which uses O!

!!!!
N3

p
" pulses,

and is fairly robust against noise and errors, and does not
rely on entanglement. The improved running time is the
most important advantage, since the whole procedure must
finish before decoherence destroys the information being
measured.

The method presented here is inspired by quantum
cellular automata [6,7] and pulse driven quantum com-
puters [8,9]. It uses a cubic lattice crystal [10] with two
nucleus types, which we call A and B. Each species A
nucleus is connected only to B nuclei, and vice versa in a
checkerboard fashion (see Fig. 1).

We will refer to upward and downward z polarizations as
j$1i and j#1i. We assume, for the time being, that the
crystal is initialized to a completely polarized state with all
nuclear spins in a downwards z polarization state, j#1i.
The method then consists of bringing one corner of the
crystal into close proximity to the spin we wish to measure,
so as to couple the two spins. Once coupled we can use
NMR rf pulses to correlate them, or swap the states.
Suppose the spin we wish to measure is initially in the
state j i, being either the eigenstate j#1i or j$1i. After
the swap the top-left vertex nuclear spin will be in the state
j i.

What we present now is an efficient method to create a
very large correlated state within the crystal. Under ideal
conditions, that is complete polarization, perfect pulses,
and no decoherence, the method creates the state j i%N
using only O!

!!!!
N3

p
" steps (each requiring a constant number

of rf pulses). When N & 106 the resulting state gives a
strong enough magnetic signal to be measured. Achieving
this polarization, in the ideal case, requires applying about
200 steps of our algorithm.

In order to more easily illustrate our algorithm it is best
to visualize the cube lattice in the following way. We
envision slicing the cube into layers, such that the first
layer is the corner nuclear spin that contains the state to be
measured. Layer two contains all nuclei coupled to layer
one. Layer three contains all nuclei coupled to layer two
which are not in layer one, and so on. This is illustrated in
Fig. 2.

Each layer includes spins of only one species, layer one
being all A, layer two all B, layer three all A again and so
on. We envision taking only half the cube lattice, so that

FIG. 1. Cube lattice: a crystal with two types of nuclei A and
B, one represented as light gray spheres, the other dark gray.
Each species A is neighbored by only B type nuclei and vice
versa. The lines connecting the spheres represent the nearest-
neighbor couplings. The white sphere represents the spin we
wish to measure. This spin is coupled to the dark gray nucleus in
the top-left vertex.
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F&T Scheme

Goal:
Perfect quantum state transfer in a spin 
chain 

Only global addressing of intermediate 
qubits

Motivation:
Spin chains can already be realised in 
many systems

Using global control overcomes many 
addressability concerns

Spins at ends of chain have a different 
energy level structure since they have 
only one neighbour.	
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F&T Scheme

N. Khaneja, S J Glaser Efficient transfer of coherence through Ising Spin Chain, 
Phys Rev A 66, 060301 (2002)



Jason Twamley, CQCT, Macquarie University, Sydney Australia SP4 QAP Meeting, March 2007

F&T Scheme



Jason Twamley, CQCT, Macquarie University, Sydney Australia SP4 QAP Meeting, March 2007

F&T Scheme



Jason Twamley, CQCT, Macquarie University, Sydney Australia SP4 QAP Meeting, March 2007

F&T Scheme



Jason Twamley, CQCT, Macquarie University, Sydney Australia SP4 QAP Meeting, March 2007

F&T Scheme



Jason Twamley, CQCT, Macquarie University, Sydney Australia SP4 QAP Meeting, March 2007

F&T Scheme



Jason Twamley, CQCT, Macquarie University, Sydney Australia SP4 QAP Meeting, March 2007

F&T Scheme



Jason Twamley, CQCT, Macquarie University, Sydney Australia SP4 QAP Meeting, March 2007

F&T Scheme



Jason Twamley, CQCT, Macquarie University, Sydney Australia SP4 QAP Meeting, March 2007

F&T Scheme



Jason Twamley, CQCT, Macquarie University, Sydney Australia SP4 QAP Meeting, March 2007

F&T Scheme



Jason Twamley, CQCT, Macquarie University, Sydney Australia SP4 QAP Meeting, March 2007

Conclusions

www.ics.mq.edu.au/qis
http://www.qunat.org/personal.php?id=6

Globally controlled Universal QC

Could have very large impact in reducing classical control hardware and 
power dissipation? BUT!

So far Globally Controlled Fault Tolerant Quantum Error Correction in the 
literature

Our design based on 1D nearest neighbor physics, but with some spatial 
engineering of 1D system,  

More work needed to fully investigate Fault Tolerance and establish existence of 
threshold

http://www.ics.mq.edu.au/qis
http://www.ics.mq.edu.au/qis
http://www.qunat.org/personal.php?id=6
http://www.qunat.org/personal.php?id=6

