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Overview
1. Introduction – the quantum many-body problem (sort of)

2. Approximations and variational methods

• Variational ansatzes as quantum circuits

• Examples

3. Flow equations

• History

• Applications to quantum-many body problems

4. Flow equations on quantum circuits

• Universal variational method

• Optimal gate generators

• Example: application to 1D Heisenberg model

5. Conclusions and TODO
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The quantum many-body problem
• Describe the ground and low-energy eigenstates of a system 

of N interacting particles

• Generic model: particles arranged on a lattice with nearest-
neighbour interactions.

H =
∑

〈j,k〉
Kjk +

∑

j
Hj

“two-local” Hamiltonian
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“Describing” quantum systems
• Whatdo we mean by a description of these low-energy 

states?

– Quantitative: energy spectrum and gap, local observables, 
correlation functions.

– Insight: emergence of unusual excitations or quasi-
particles and their statistical properties.

• Howdo we provide these descriptions?

– Hardly anything is exactly soluble.

– The ground state of a system of 30spin-½ particles 
(qubits) expanded in the usual basis requires 16 GBworth 
of coefficients.
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Approximations and variational methods
• “Hilbert space is a big place” – for a locally interacting 

system with lots of symmetry only a small part should be 
relevant.

• In a variational method we posit a relevant subclass of states, 
and then try to optimize approximations within that subclass.

• e.g.
– Mean Field Theory
– Density Matrix Renormalization

– General Tensor Networks

|ψ〉 =⊗N
k=1 |ψk〉

|ψ〉 = ∑

k1,...kN

Tr
(

Ak1
1 · · ·AkNN

)

|k1, . . . , kN〉
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Variational classes as quantum circuits
• A quantum circuit classspecifies the location of gates, any 

ancillary systems, and refinement parameters.

• All existing ansatz states have equivalent descriptions as 
quantum circuits.

Many-body 
system

d-dimensional
ancilla

e.g. “Staircase” circuit, corresponding to matrix productstates

[Fannes, Nachtergaele, Werner 1989; Osterlund and Roemer, 1992]
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Variational classes as quantum circuits

e.g. “MERA” circuit [Vidal 2006]
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More variational classes
e.g. 1D Quantum cellular automata model (fixed depth)

U1

U2

U3

U5

U6

U7

U8

U9

U11

U12

U13

U14

U15

U10 U4
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Desiderata: Efficient local expectations

|0〉
|0〉

|0〉
|0〉
|0〉

〈0|
〈0|
〈0|
〈0|
〈0|

U†1
U†2

U†3

U†4U4

U1
U2
U3 K

1.Cancel U †4U4 = I
2. Evaluate then set  U†

3KU3 A2 = (I ⊗ 〈0|)U†3KU3(I ⊗ |0〉)

4. Read out the (1,1) element.

3. Iterate until we obtain A0

acting only on the auxiliary system.
Ak−1 = (I ⊗ 〈0|)U†

kAkUk(I ⊗ |0〉)
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Flow Equations
• Analytic techniques for transforming a Hamiltonian via a 

continuously parameterized unitary transformation 

U(t) = T exp
(

−i
∫ t

0
G(s)ds

)

U (0)

• For                             we find   

• With appropriate choice of generator G(t) we can obtain 
useful limiting forms  limt→∞ H(t)

H(t) = U (t)†HU (t)
dH
dt = −i [G(t), H(t)]
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History of Flow Equations
• Introduced independently by lots of people, in particular 

Brockett, Glazek and Wilson, Wegner.

• e.g. with we have double-bracketflow

and if N is a diagonal matrix with increasing entries, then

• Can also be used to numerically sort lists, solve linear 
programming problems [Brockett 1988]

G = [H(t), N ]

limt→∞H(t) = diag (E0, E1, . . . , En) .

dH
dt = −i [[H,N ] , H ] ,



QAP Maria Laach 2007 13/21

Flow Eqns and quantum many-body systems

• Numerical flow techniques are obviously not directly 
practical for  2N×2N Hamiltonians.

• Used as an approximate analytic method by differentiating in 
parameters

– Make a clever choice for the generator G(t)

– Truncate resulting system of DEs

– Solve by whatever means necessary.

• Used to effectively diagonalize Hamiltonians, calculate 
correlation functions, and to take controlled expansions in 
strong-coupling models. [Kehrein & Mielke, Wegner]
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Flow Eqns as universal variational method

• Our approach:write variational classes for quantum many-
body problems as quantum circuits, and use flow equations as 
a general purpose optimization method.

• Quantum circuit classspecified by M gates             so the 
overall unitary is                    Aim to minimize the 
expectation.

• Method:Calculate infinitesimal generators 
individually to minimize the derivative dE/dt.

Gj(t)

Uj(t)
U (t) = ∏M

j=1 Uj(t).

E(t) = 〈0|U (t)†HU (t)|0〉
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Finding optimal generators
• This amounts to minimizing the real part of the quantity:

• After various rearrangements, it can be shown that the 
optimal generator is given by with 

(i.e. a partial trace over the particles not acted on by       )

• Given                 the circuit class must admit an 
efficientmethod of evaluating these operators.

−i
M
∑

j=1
〈0|U(t)†H

(
M
∏

k=j+1
Uk(t)

)

Gj(t)
(

j
∏

k=1
Uk(t)

)

|0〉

H = ∑
〈l,m〉 Hlm

Fj = TrRj ( j
∏

k=1
Uj

)|0〉〈0|U†H(

M
∏

k=j+1
Uk

)





Uj

Gj = −2(Fj + F †j )
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Example (i) Contracting staircase circuits

• Contribution to the optimal generator of due to U3(t)

• Can be evaluated by sequentially tracing out qubits from 
matrices of dimension at most

H23

××
×

×
×

×

×
×

4D × 4D.
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Example (ii)  Contracting MERA circuits

• Slightly more complicated, but same basic idea allows us to 
evaluate the partial trace via a sequence of smaller partial 
traces on (at most) 16×16matrices.

×

×

×
×

×

×
×

×
× ×

××
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The Flow Algorithm
• Starting from some initial configuration of the circuit 

we can implement a downhill algorithm as follows
{Uj(0)}

Set n = 0
Initialize each Uk(0)
Set E(0) = 〈0|U†(0)HU(0)|0〉
do:

for each k = 1, . . . ,M:
Calculate optimal generator Gk(n)
Calculate optimal flow strength t
Set Uk(n+ 1) = exp (−iGk(n)t)Uk(n)

end
n = n+ 1
Set E(n) = 〈0|U†(n)HU(n)|0〉

while E(n) < E(n− 1)
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Performance with “staircase” circuits (i)
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Performance with staircase circuits (ii)
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Conclusions and TODO

1. By re-expressing ansatz states for quantum many-body 
systems as quantum circuits, we can use the method of flow 
equations as a general purpose optimization method.

2. Appeal:

– Flexibility

– QI has a lot to say about quantum circuits and gates

– “The wisdom of optimal control”

3. Future work:

• MERA version in “development”

• 1D and 2D cellular automata circuits.


