Prof. Dr. Ullrich Pietsch Dr. Ali Abboud 19.6.2019 Return: 26.06.2019

Solid State Physics for Nano SS 2019 Exercise sheet 6 Magnetism

Exercise 1: two level system

Calculate the mean magnetic moment (magnetization per particle) of a system with total angular momentum J=1/2, caused by application of an external magnetic field B_0 . Calculate the heat capacity of the system at constant B field and evaluate its function of temperature.

Exercise 2: Hund rules

Apply Hund rules and find the ground state of Eu¹⁺, Eu²⁺ and Eu³⁺ and discuss the consequences for the magnetic moment. Which electronic configuration is responsible for the magnetism in Fe and Ni.

Exercise 3: Magnon dispersion

Show that the dispersion relation for antiferromagnetic magnons is $\hbar\omega \propto |ka|$ instead of $\hbar\omega \propto |ka|^2$ in ferromagnetic case. Hint: define a set of two differential equations for dS^x / dt and dS^y / dt for both sub lattices (similar to the approach for phonons of a two atomic chain)