

Prof. Dr. Ullrich Pietsch Dr. Ali Abboud Siegen: 21.05.2019 Return: 29.05.2019

Exercise for Solid State Physics for Nanoscience SS 2019 Exercise sheet 4

4.1 Intrinsic Carrier concentration vs. Temperature

The density of free electrons n (holes p) is given below:

 $n = 2\left(\frac{2\pi m_n kT}{h^2}\right)^{\frac{3}{2}} e^{-\frac{E_C - E_F}{kT}}; \qquad p = 2\left(\frac{2\pi m_P kT}{h^2}\right)^{\frac{3}{2}} e^{-\frac{E_F - E_V}{kT}};$

 E_c , E_v and E_F are the conduction, valance and Fermi energy levels. For intrinsic semiconductors the number of electrons is equal to the number of holes (n=p=n_i).

Scale the intrinsic carrier concentrations for germanium, silicon and GaAs from room temperature (T = 300 K) to $0 \circ \text{C}$ and liquid nitrogen temperature (T = 77 K) using the data below:

	Si	Ge	GaAs
E _G [eV]	1.12	0.67	1.35
$\frac{dE_{G}}{dT}[eV/K]$	-2.3x10 ⁻⁴	-3.7x10 ⁻⁴	-5.0x10 ⁻⁴
$n_i(300K)[cm^{-3}]$	1.45x10 ¹⁰	2.4x10 ¹³	1.79x10 ⁶

4.2 Space charge region of pn-Junction

a) Find the built-in voltage for a silicon p-n junction at room temperature with doping concentrations $N_A = 10^{16} \text{cm}^{-3}$ (acceptor) and $N_D = 10^{12} \text{cm}^{-3}$ (donor).

b) Derive the width of the natural space-charge region and the maximum electric field ε_{max} for an abrupt p-n junction as a function of the doping concentration N_A and N_D. Calculate the width for a very highly doped (N_A=10¹⁶ cm⁻³) p-type junction on n-type detector-grade material with N_D=10¹² cm⁻³.

4.3 Structure of Bands

(a) Draw a pn diode junction in thermal equilibrium with its parts separated. Indicate on the sketch the levels of the valance band energy, conduction band and Fermi energy for both the p and n type semiconductors.

(b) Repeat part (a) when the two semiconductors are braught togather.

(c) see 4.2b For different doping concentration of the p and n type materials, plot the change of the electric field E, the potential V and the charge density p along the depleted area. Use figure below.

Exercise 4: Solar Cell

A biased pn-junction is a basic element of silicon solar cells. It function can be understood by means of the I-V characteristics curve of a pn-junction shifted by I_L along the current axis (towards

negative current), where I_L is the radiation induced current. Determine the effective working point (I_W, V_W) providing maximum power harvest of the solar cell. Neglect any other losses and suppose that Voc is known (open circuit).