Dr. Ali Abboud Return: 14.06.2019

Solid State Physics for Nano SS 2019 Exercise sheet 5 semiconductors

Exercise 1: metal - semiconductor contact

From an ideal metal – SiO_2 - Si diode having N_A = 10^{17} cm⁻³ calculate the maximum width of the surface depletion zone. Hint: at room temperature kt/q= 0.026eV and n_i =9.65 x 10^9 cm⁻³, ϵ =11.9 x 8.85 x 10^{-14} F/cm, How the width changes if one reduces the doping level by 2 orders of magnitude?

Exercise 2: Flat-band voltage

Calculate the flat-band voltage of an n+-polysilicon – SiO2 – Si diode with N_A = 10^{17} cm⁻³ and d= 5nm. Assume that only the interface charges $Q_f/q = 5 \times 10^{-11}$ cm⁻² have to be considered, for n+ polySi with N_A = 10^{17} cm⁻³ ϕ_{MS} = -0.98V.

Exercise 3: Drain voltage at saturation

From n-cahnnel n+ polySi MOSFET with gate oxid thickness 8nm and N_A= 10^{17} cm⁻³ and Gate voltage V_G = 3V calculate V_{Dsat}, use $2\psi_B$ = 0.84V and ϵ_{ox} = 3.9 x 8.85x 10^{-14} F/cm²