Solid state physics for Nano

Lecture 9: Magnetism

Prof. Dr. U. Pietsch

Diamagnetism and Paramagnetism

Mater in magnetic field (see basic course electrodynamics)

$$B = \mu_0 H + M$$
$$B = \mu_0 H (1 + \chi_m)$$
$$B = \mu_0 \mu H$$
$$\chi_m = \frac{\mu_0 M}{B}$$

Diamagnetism

$$\chi_m < 0$$

 $\chi_m = \frac{\mu_0 Z e^2 N}{6m} < r^2 >$

 $\chi_m \approx 10^{-6}$

M – magnetisation

- χ magnetic susceptibility
- $\mu\,$ magnetic permeability

Within magnetic field, alignment of permanet magnetic dipoles → paramagnetim

All atoms with paired spins : S=0

Langevin equation

N atoms/unit volume

 $\langle r^2 \rangle = \langle x^2 \rangle + \langle y^2 \rangle + \langle z^2 \rangle$ Electron distribution within the atom

Explanation:

The Langevin theory of diamagnetism applies to materials containing atoms with closed shells. A magnetic field with strength *B*, applied to an electron with charge *e* and mass *m*, gives rise to Larmor precession with frequency $\omega = eB/2m$. The number of revolutions per unit time is $\omega/2\pi$, so the current for an atom with *Z* electrons is

$$I = -(\frac{Ze^2B}{4\pi m})$$

The <u>magnetic moment</u> of a current loop is equal to the current times the area of the loop. Suppose the field is aligned with the *z* axis. The average loop area can be given as $\pi < \rho^2 >$ where $< \rho^2 \Rightarrow$ the mean square distance of the electron perpendicular to the *z* axis. The magnetic moment is $\mu = -(\frac{Ze^2B}{\Delta m}) < \rho^2 >$

If the distribution of charge is spherically symmetric, we can suppose that the distribution of x, y, z coordinates are independent and identically distributed. Then

$$= = = 1/3$$

where r^2 > is the mean square distance of the electrons from the nucleus. Therefore,

$$<\rho^2>===2/3$$

If N is the number of atoms per unit volume, the diamagnetic susceptibility in SI units is

$$\chi_m = \frac{\mu_0 \mu N}{B} = \frac{\mu_0 Z e^2 N}{6m} < r^2 >$$

Paramagnetism

Paramagnetism
$$\chi_m > 0$$

Magnetic moment

$$\chi_m > 0$$

- Atoms with odd number of electrons S<>0
- Free atoms/ions with partly filled inner shells
- Metals...

 $\mu = \gamma \hbar J = -g\mu_B J$ $g = 1 + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}$ For atom

 γ – gyromagnetic ratio = magn. moment/angular momentum

$$a_B - Bohr magneton$$

- Lande factor = Number of Bohr magnetons / angular g momentum in units of $h/2\pi$

 $\hbar I$ Is sum of orbital momenta

Energy niveau splitting of B-field

 $\Delta E = m_I g \mu_B B = \mu B$

Spin never parallel B

Russels Sounders

 $\hbar J = \hbar L + \hbar S$

Coupling

Energy levels of a system in a magnetic field

In two level system

 $U = \pm \mu B$

ure 2 Energy level splitting for one elec-

$$m_j$$
= J, J-1, J-2,...-J , for L=0, S=1/2, m_j = ½, - ½

Population of upper and lover level:

$$\frac{N_1}{N} = \frac{\exp(\mu B / kT)}{\exp(\mu B / kT) + \exp(-\mu B / kT)}$$
$$\frac{N_2}{N} = \frac{\exp(-\mu B / kT)}{\exp(\mu B / kT) + \exp(-\mu B / kT)}$$

Projection of magnetic moment of upper/lower state is $-\mu$ and $+\mu$, resultant magnetization is $x = \mu B / kT$

$$M = (N_1 - N_2)\mu = N\mu \frac{e^x - e^{-x}}{e^x + e^{-x}} = N\mu \tanh x$$

For x<<1 tanh x = x $M = N\mu(\mu B / kT)$

$$U = -m_J g \mu_B B = -\mu B$$

In atom with angular moment quantum number J there are 2J+1 equally spaced energy levels

 $B_{J}(y)$ – Brillouin function

$$B_{J}(y) = \frac{2J+1}{2J} \operatorname{coth}(\frac{2J+1}{2J}y) - \frac{1}{2J} \operatorname{coth}(\frac{y}{2J})$$

For large $B(y) \rightarrow$ Langevin

For $y \ll 1$: coth(y) = $1/y + y/3 - y^{3}/45 + ...$

$$B_J(y) \approx \frac{y(J+1)}{3J}$$

$$\chi_m = \frac{\mu_0 M}{B} = \frac{\mu_0 N g^2 \mu_B^2 J (J+1)}{3kT} = \frac{\mu_0 N \mu_{eff}^2}{3kT} = \frac{C}{T}$$

Curie - law

Measurement of $\chi(T) \rightarrow \mu_{eff}=p \mu_B$

Т

1/χ

(Near room temperature)						
Ion	Configuration	Basic level	$p(ext{calc}) = g[J(J+1)]^{1/2}$	$p(\exp),$ approximate		
Ce^{3+}	$4f^{1}5s^{2}p^{6}$	${}^{2}F_{5/2}$	2.54	2.4		
Pr^{3+}	$4f^25s^2p^6$	${}^{3}H_{4}$	3.58	3.5		
Nd^{3+}	$4f^{3}5s^{2}p^{6}$	${}^{4}I_{9/2}$	3.62	3.5		
Pm ³⁺	$4f^45s^2p^6$	${}^{5}I_{4}$	2.68			
Sm^{3+}	$4f^55s^2p^6$	${}^{6}H_{5/2}$	0.84	1.5		
Eu^{3+}	$4f^{6}5s^{2}p^{6}$	${}^{7}F_{0}$	0	3.4		
Gd^{3+}	$4f^75s^2p^6$	${}^{8}S_{7/2}$	7.94	8.0		
Tb^{3+}	$4f^85s^2p^6$	${}^{7}F_{6}$	9.72	9.5		
Dy^{3+}	$4f^95s^2p^6$	${}^{6}H_{15/2}$	10.63	10.6		
Ho^{3+}	$4f^{10}5s^2p^6$	⁵ <i>I</i> ₈	10.60	10.4		
Er^{3+}	$4f^{11}5s^2p^6$	${}^{4}I_{15/2}$	9.59	9.5		
Tm^{3+}	$4f^{12}5s^2p^6$	${}^{3}H_{6}$	7.57	7.3		
Yb^{3+}	$4f^{13}5s^2p^6$	${}^{2}F_{7/2}$	4.54	4.5		

Table 1 Effective magneton numbers p for trivalent lanthanide group ions

Paramagnetism of ions

Calculation of μ_{eff} from electron configuration of atoms, considering

- Pauli principle
- Hund's rule

Electrons in partially filled shell first towards maximum S 1 followed by maximazing L

J = L - S for shell below half filling J = L + S for shell above half filling

Example Ce³⁺, 1 f-electron , L=3; S= $\frac{1}{2} \rightarrow$ J=L-S = 5/2, experimental finding often L=0 Orbial moment is "quentched", caused by time average in non- cubic crystal field (see later)

Example 3d elements do show spin magnetism only !!!! – no orbital magnetism

Solid state magnetism

Considers: (1) interatomic interaction ; (2) interaction of magnetic moments Metals:

 \rightarrow magnetism of electrons in conduction band

→ Magntism of inner, partially filled shells : i.e. Fe 3d group, rear elements 4f shell Ion crystals:

 \rightarrow L=0 – spin magnetism, rear earth elements L is not quenched , 4f electrons are screed by 5p, 5d and 6s electrons against external crystal fields

Paramagnetism of conducting electrons

magnetic moment of single electron $\mu_B = \frac{e\hbar}{2}$ per electron (μ Bohr)

Expection of classic free electron gas

$$2mc$$

$$M = N\mu_B L(\frac{\mu_B B}{kT}) \approx n\mu_B \frac{\mu_B B}{kT} = \frac{N\mu_B^2 B}{kT}$$

$$\chi_m = \frac{\mu_0 M}{B} = \frac{\mu_0 N \mu_B^2}{kT}$$

Curie behaviour

Experimentally one observes 1/100 of this value: \rightarrow only electrons close to E_F can contribute to magnetism – ratio T/T_F

$$\chi_m = \frac{\mu_0 M}{B} = \frac{\mu_0 N \mu_B^2}{k T_F}$$

Density of states

 $B=0: N(\uparrow) = N(\downarrow) = \frac{1}{2} N \qquad D(E) \uparrow = D(E) \downarrow = \frac{1}{2} \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E} \qquad M=0$ $D(E) \uparrow \qquad \qquad D(E) \downarrow \qquad$

B>0: $N(\uparrow) - N(\downarrow) = (\frac{1}{2}N + \frac{1}{2}\Delta N) - = (\frac{1}{2}N - \frac{1}{2}\Delta N) = \Delta N$ $M = \mu_B \Delta N$ $\Delta N = ???$

$$D(E) \uparrow = \frac{1}{2} \int_{-\mu_B B}^{E_F} D(E + \mu_B B) dE = \frac{A}{3} (E_F + \mu_B B)^{3/2}$$
$$D(E) \downarrow = \frac{1}{2} \int_{-\mu_B B}^{E_F} D(E - \mu_B B) dE = \frac{A}{3} (E_F - \mu_B B)^{3/2}$$
$$V_F (2m)^{3/2}$$

$$A = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2}$$

 $\mu_{B}B \ll E_{F}$ $\mu_{B}B/kT \approx 0.001$ $E_{F}/kT \approx 100$

$$N \uparrow \downarrow = \frac{A}{3} E_F^{3/2} (1 \pm \mu_B B / E_F)^{3/2} \approx \frac{A}{3} E_F^{3/2} (1 \pm \frac{3}{2} \mu_B B / E_F + ...)$$
$$\Delta N = \frac{A}{3} E_F^{3/2} 3 \frac{\mu_B B}{E_F} = A \mu_B B E_F^{1/2}$$

$$M(T=0) = \frac{3}{2} N_{e} (\frac{\mu_{B}B}{E_{F}}) = N_{e} \mu_{B} \frac{3\mu_{B}B}{2kT_{F}}$$

Pauli's spin susceptibility of conducting electrons

Additional effect due to B induced energetic splitting of electron levels below CB \rightarrow Landau diamagnetism

$$\chi_{tot} = \chi_{para} + \chi_{dia} = \chi_{para} - \frac{1}{3}\chi_{para} = \frac{N_e \mu_B^2}{kT_F}$$

For T>0 $M(T) = M(0)[1 + \frac{\pi^2}{12}(\frac{T}{T_F})^2 +] \rightarrow M$ is nearly independent from T

Internal magnetic field

Weiß supposed the existence of internal magnetic field B_E = The "molecular field":

$$B_E = \lambda \mu_B M$$

Spin at one particular atom "is feeling" magnetic moments of neighbored atoms, creating a "mean" field $B_{\rm F}$ and small magnetisation M

 $\mu_0 M = \chi (B + B_E)$ Using Curie law : $\chi_m = \frac{C}{T}$

$$\mu_0 M = \frac{C}{T} (B + \lambda \mu_0 M) = \frac{CB}{T - \lambda C}$$

Resulting in

$$\chi_m = \frac{M}{B} = \frac{C}{T - \lambda C} = \frac{C}{T - T_C}$$

Providing singularity at T=T_c; Curie- Weiss law is well confirmed experimentally More advanced calculations predict : $\chi = \frac{C}{(T - T_c)^{4/3}}$ $C = \frac{NJ(J+1)g^2\mu_B^2}{3k}$

For Fe Tc= 1000K, λ = 5000; saturation M_s = 1700 Gauß $\rightarrow \lambda^*$ M_s = 10^7 Gauß = 10^3 T !!! T< Tc, Ms becomes T-dependent 1T = 10000 Gauß

Crystal field

For example : FeN₆ complex

Explanation by Brillion function

Exchange interaction

Depending on next neighbor distances the energy separation between the bonding and antibonding orbitals changes and results in paired or mainly unpaired arrangement, Phase transition between different magnetization can be induced by local distortions of the crystal field.

Exchange interaction is expressed by Heisenberg exchange energy $U = -2J\hat{S}_{i}\hat{S}_{j}$

where J is exchange integral, ferromagnetic coupling: J>0, antiferromagnetic coupling: J<0,

$$J = \frac{\mu^2 \mu_0 N}{Z} \lambda \qquad \Rightarrow \text{See lecture for QM approach}$$

J cannot be explained by dipole-dipole interaction but interplay between kinetic energy and Coulomb energy \rightarrow Exchange interaction,

For metals like Fe, Co, Ni...

Slater criterion expresses J as function of $r/2r_a$, where r is next neighbor distance and r_a the atomic radius.

$$\rightarrow$$
 J>0 for r/2r_a > 1,5 and J<0 for r/2r_a < 1.5.

Nature of spin exchange interaction

interaction between two neighbored spins $\hat{H} = \vec{A}\hat{S}^{a}\hat{S}^{b}$ eigenvalues we compose the total spin : $\vec{S} = \hat{S}^{a} + \hat{S}^{b}$ Calculated by relation $\hat{S}^{2} = (\vec{S}^{a})^{2} + (\vec{S}^{b})^{2} + 2\hat{S}^{a}\hat{S}^{b}$

Possible eigenvalues for \hat{S}^2 using S(S+1) are 0 (S=0) and 2 (S=1).

Thus eigenvalues of $\hat{S}^{a,b}$ are $\frac{3}{4}$.

Therefore the eigenvalues of $\hat{S}^{a}\hat{S}^{b}$ are $\frac{1}{4}$ (for S=1) and $-\frac{3}{4}$ (for S=0). Subsequently the eigenvalues of Hamiltonian are E= $\frac{1}{4}$ A (S=1) and E=- $\frac{3}{4}$ A (S=0).

Each energy level is 2S+1 times degenerated, therefore S=0 is a singulett and S=1 is a triplett state.m_s component of total spin is 0 for singulett and (-1,0,+1) for triplett. The spin eigenstates are

	S	ms	Spin eigenvalue $\chi_{S,T}$	SªS ^b
Triplett	1	1	个个>	1⁄4
	1	0	(↑↓>+ ↓↑>)/√2	1⁄4
	1	-1	↓↓>	1⁄4
Singulett	0	0	(↑↓>- ↓↑>)/√2	-3/4

Eigenvalues of $\hat{S}^a \hat{S}^b$ by linear combination of electron basic wave functions $\psi_a(r_1)$ and $\psi_b(r_2)$ To the total spatial wave function $\psi_a(r_1)\psi_b(r_2)$ for singulett and triplett states

$$\begin{split} \psi_{s} &= \frac{1}{\sqrt{2}} [\psi_{a}(r_{1})\psi_{b}(r_{2}) + \psi_{a}(r_{2})\psi_{b}(r_{1})]\chi_{s} \\ \psi_{T} &= \frac{1}{\sqrt{2}} [\psi_{a}(r_{1})\psi_{b}(r_{2}) - \psi_{a}(r_{2})\psi_{b}(r_{1})]\chi_{T} \end{split}$$

 $\chi_{S,T}$ Spin function

Energy of singulett and triplett states are

$$E_s = \int \psi_s^* \hat{H} \psi_s dr_1 dr_2 \underline{\qquad} E_T = \int \psi_T^* \hat{H} \psi_T dr_1 dr_2$$

The difference is : $E_s - E_T = 2 \int \psi_a^*(r_1) \psi_b^*(r_2) \hat{H} \psi_a(r_2) \psi_b(r_1) dr_1 dr_2 = 2J$

Which is the exchange integral J. The total Hamiltonian is

$$\hat{H} = \frac{1}{4}(E_s + 3E_T) - (E_s - E_T)\hat{S}^a\hat{S}^b = \frac{1}{4}(E_s + 3E_T) - \hat{H}^{spin}$$

Where the spin dependent part is : $\hat{H}^{spin} = -2J\hat{S}^{a}\hat{S}^{b}$

For triplett state $E_S > E_T$ J>0 For singulett state $E_S < E_T$ J<0

Kinds of magnetic exchange interaction

Direct exchange interaction

Indirect exchange interaction

Oscillatry interaction via electrons in CB, proposed by Rudermann, Kittel, Kasuya, Yoshida = RKKY interaction

Antiferromagnetism J<0

$$\chi = \frac{C}{(T + \Theta)}$$

AF magnetism vanishes above $T_N - Neel$ temperature

 $T_N = \kappa M$

 $\chi_m \approx \frac{1}{T}$ curve shifted to "negative" Curie-Weiß temperature Θ . In range 0> T>T_N the total magnetization is zero and AF order increases

> →idik-11111111 →idik-

Experimental evidence by spin resolved neutron scattering

is the antiferromagnetic x-change interaction

Antiferromagnetism

Spins are ordered antiparallel arrangement at temperature below certain ordering temperature - Neel temperature T_{N} Suceptibility at $T=T_N$ is not infinite but shows certain cusp. $T_N = \kappa M$

supposing

 $T > T_N$

 $\chi = \frac{2CT - 2\kappa C^2}{T^2 - (\kappa C)^2} = \frac{2C}{T + T_M} \quad \text{C-Curie}$ constant

In experiment

$$\chi = \frac{C}{(T + \Theta)}$$

M_A M₀ 2ϕ

T

 $B \perp \uparrow \downarrow$ and $B \parallel \downarrow \uparrow$ Below T_N sucseptibility differs for

For $B_a \perp \uparrow \downarrow$ Energy density is $u = \mu M_A M_B - B_a (M_A + M_B) \approx -\mu M^2 [1 - \frac{1}{2} (2\varphi)^2] - B_a 2M\varphi$ $\frac{\partial u}{\partial \varphi} = 0 = 4\mu M^2 \varphi - 2B_a M \qquad \qquad \varphi = \frac{B_a}{2\mu M} - \chi_\perp = \frac{2M\varphi}{B_a}$ $B_a \parallel _ \uparrow \downarrow \qquad \qquad \chi_\parallel = 0 \qquad \qquad \text{at } \mathsf{T} = \Theta, \text{ due spin fluctuat}$ For $B_a \parallel \uparrow \downarrow$ at T= Θ , due spin fluctuations χ_{\parallel} increases with $T < T_{N}$

Substance	Paramagnetic ion lattice	Transition temperature, T_N , in K	Curie-Weiss θ , in K	$rac{ heta}{T_N}$	$rac{\chi(0)}{\chi(T_N)}$
MnO	fcc	116	610	5.3	2
MnS	fcc	160	528	3.3	0.82
MnTe	hex. layer	307	690	2.25	
MnF ₂	bc tetr.	67	82	1.24	0.76
FeF ₂	bc tetr.	79	117	1.48	0.72
FeCl ₂	hex. layer	24	48	2.0	< 0.2
FeO	fcc	198	570	2.9	0.8
CoCl ₂	hex. layer	25	38.1	1.53	
CoO	fcc	291	330	1.14	
NiCl ₂	hex. layer	50	68.2	1.37	
NiO	fcc	525	~2000	~4	
Cr	bcc	308			

Table 2 Antiferromagnetic crystals

Scattering angle

Neutron diffraction at bcc FeRh showing transition from Ferromagnetic phase – via antiferromagnetic phase to paramagnetic phase

Spin waves - Magnons

Compromise : spin flip distributed over many neighbored spins

 \rightarrow Spin precession

Spin wave - 2u sin ka PPPPPPPPP Sjitt b)

$$E_{exc} = -\frac{N}{2} 2J(S_J S_{J+1} + S_J S_{J-1} + ...) = -2NAS^2$$

with $\Delta E = 8AS^2 per spin$

Dispersion relation for magnons : $\hbar\omega = 4JS[1 - \cos(ka)]$

 $Ka <<1 \rightarrow 1 - \cos(ka) \rightarrow \frac{1}{2} k^2 a^2$

 $\hbar\omega = 4JSa^2k^2 \approx Dk^2$

Compare phonons : $\omega \approx k$

D determined by neutron scattering

Thermal excitation of magnons: (for bosons) number o magnons excited n_k

$$n_k = \frac{1}{\exp(\hbar\omega_k / kT) - 1}$$

Total number of magnons excited at temperature T

$$\sum_{k} n_{k} = \int d\omega D(\omega) < n(\omega) >$$

 $D(\omega)$ is magnon density of modes, integrated over 1st Brillion zone

$$\frac{d\omega}{dk} = \frac{4JSa^2k}{\hbar} = 2(\frac{2JSa^2}{\hbar})^{1/2}\omega^{1/2}$$

magnon density of modes is
$$D(\omega) = \frac{1}{4\pi^2}(\frac{\hbar}{2JSa^2})^{3/2}\omega^{1/2}$$

So that total number of magnons is

$$\sum_{k} n_{k} = \frac{1}{4\pi^{2}} \left(\frac{1}{\exp(\hbar\omega_{k}/kT) - 1} \left(\frac{\hbar}{2JSa^{2}} \right)^{3/2} \int_{0}^{\infty} d\omega \frac{\omega^{1/2}}{\exp(\hbar\omega(kT) - 1} = \frac{1}{4\pi^{2}} \left(\frac{kT}{2JSa^{2}} \right)^{3/2} \int_{0}^{\infty} dx \frac{x^{1/2}}{e^{x} - 1} dx \frac{\omega^{1/2}}{e^{x} - 1} d\omega \frac{\omega^{1/2}}{e^{x} - 1} = \frac{1}{4\pi^{2}} \left(\frac{kT}{2JSa^{2}} \right)^{3/2} \int_{0}^{\infty} dx \frac{x^{1/2}}{e^{x} - 1} dx \frac{\omega^{1/2}}{e^{x} - 1} d\omega \frac{\omega^{1/2}}{e^{x}$$

 $=0.0587^{*}4\pi^{2}$

Number N/atom/unit volume is Q/a³ with Q=1,2,4 for sc, bcc, fcc

$$\frac{\sum_{k} n_{k}}{NS} = \frac{\Delta M}{M(0)} = \frac{0.05872C}{SQ} \left(\frac{kT}{2JS}\right)^{3/2}$$
Bloch T^(3/2) law

Number N/atom/unit volume is Q/a^3 with Q=1,2,4 for sc, bcc, fcc

$$\frac{\sum_{k} n_{k}}{NS} = \frac{\Delta M}{M(0)} = \frac{0.05872C}{SQ} \left(\frac{kT}{2JS}\right)^{3/2}$$

Bloch $T^{3/2}$ law

Ferromagnetic magnons J>0; antiferromagnetic Magnons : J<0 Ferrimagnetic mgnons have 2 magnetic moments/ uc \rightarrow two branches

Magnetic domains and hystereses

At T<<Tc all magnetic moments aligned, but amcroscopic moment can be zero Origin: solid shows magnetic domains = Weiss domains

Separation into domains is energetically favoured

Magnetic domains are separated by Bloch walls

Thickness amount many unit cells In Fe : about 300a

Spin orientation rotates by application of external B-field

Exchange energy differs for crystal direction

Ferromagnet in external magnetic field

In weak field domains in optimum spindircetion to external field grow in size compared to domains of other spin orientation

→ domain wall displacement typically over weak direction

In strong field: all domains rotate into filed dircetion – also via "hard" direction

Hysteresis loop

Power loss by one cycle

 B_c – coercitive force

Fiel do apply to cancel macrocopic magnetiszation

M_R – remanescence

Macroscopic magnetization at B=0

Magnetic materials

Tabelle N 3

Einige Eigenschaften weichmagnetischer Materialien *)

Material	Zusammensetzung Gew.%	Wärmebehandlung **) °C	μ_Α/μ_0	$\mu_{\rm max}/\mu_0$	$\begin{array}{c} H_{\rm c}/{\rm Am^{-1}}\\ (B=0) \end{array}$	$I_{\rm S}/{\rm Wbm^{-2}}$	T _C /°C
Fisen	99.8	950	150	5000	80	2.15	770
Eisen (gerein.)	99.95	1480 (H ₂): 880	10000	200000	4	2,15	770
Silizium-Eisen	4 Si	800	500***)	7000	40	1.97	690
Alperm	16 Al	600 (A)	3000	55000	3.2	0.80	400
78 Permallov	78.5 Ni	1050: 600 (A)	8000	100000	4	1,08	600
Supermalloy	5 Mo, 79 Ni	1300 (H ₂ , K)	100000	1000000	0,16	0,79	400
Mu-Metall	5 Cu. 2 Cr. 77 Ni	$1175(H_{2})$	20000	100000	4	0,65	
Hipernik	50 Ni	1200 (H ₂)	4000 .	70000	4	1,60	500
Permendur	50 Co	800	800	5000	160	2,45	980
45-25 Perminvar	25 Co. 45 Ni	1000: 400	400	2000	95	1,55	715
7-70 Perminvar	7 Co. 70 Ni	1000: 425	850	4000	48	1,25	650
Co	99 Co	1000	70	250	796	1,79	1120
Ni	99 Ni	1000	110	600	56	0,61	358

*) Nach BOZORTH; bezüglich hartmagnetischer Materialien vgl. Tab. N 4

**) A: abgeschreckt; H2: getempert in reinem Wasserstoff; K: kontrollierte Abkühlungsgeschwindigkeit

***) $B = 2 \cdot 10^{-3} \text{ Wb/m}^2$

Curickup.