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Diamagnetism and Paramagnetism
Mater in magnetic field (see basic course electrodynamics)
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M – magnetisation
χ – magnetic susceptibility
µ  - magnetic permeability
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Within magnetic field, alignment of
permanet magnetic dipoles
 paramagnetim

0<mχDiamagnetism All atoms with paired spins : S=0
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Langevin equation

N atoms/unit volume

Paul Langevin
1872 - 1946

610−≈mχ
<r²> =  <x²> + <y²> + <z²>
Electron distribution within the atom

https://de.wikipedia.org/wiki/1872
https://de.wikipedia.org/wiki/1872
https://de.wikipedia.org/wiki/1946


Explanation:
The Langevin theory of diamagnetism applies to materials containing atoms with
closed shells. A magnetic field with strength B, applied to an electron with
charge e and mass m, gives rise to Larmor precession with frequency ω = eB / 2m. 
The number of revolutions per unit time is ω / 2π, so the current for an atom with
Z electrons is

The magnetic moment of a current loop is equal to the current times the area of the loop. 
Suppose the field is aligned with the z axis. The average loop area can be given as
where is the mean square distance of the electron perpendicular to the z axis. 
The magnetic moment is

If the distribution of charge is spherically symmetric, we can suppose that the
distribution of x,y,z coordinates are independent and identically distributed. Then

where is the mean square distance of the electrons from the nucleus. Therefore,   .

If N is the number of atoms per unit volume, the diamagnetic susceptibility in SI units is
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<x²> = <y²> = <z²>= 1/3 <r²>
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https://en.wikipedia.org/wiki/Larmor_precession
https://en.wikipedia.org/wiki/Magnetic_moment
https://en.wikipedia.org/wiki/Magnetic_susceptibility


Paramagnetism 0>mχ • Atoms with odd number of electrons S<>0
• Free atoms/ions with partly filled inner shells
• Metals…

JgµJµ B−== γ
Magnetic moment γ – gyromagnetic ratio = magn. moment/angular momentum

µB – Bohr magneton
g  – Lande factor = Number of Bohr magnetons / angular   

momentum in units of h/2π
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Energy niveau splitting of B-field µBBgµmE BJ ==∆

mJ=J, J-1,J-2,…,-J
B
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Spin alignment
quantized

Spin never parallel B 

Paramagnetism

For
atom Russels Sounders

Coupling
ħJ =ħL + ħS



µBBgµmU BJ −=−=Energy levels of a system in a magnetic field

In two level system
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Projection of magnetic moment of upper/lower state is –
-µ and +µ, resultant magnetization is
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For x<<1  tanh x = x )/( kTµBNµM =

µBU ±=

mJ= J, J-1, J-2,…-J , for L=0, S=1/2, mj = ½, - ½

Population of upper and lover level:
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In atom with angular moment quantum number J there are 2J+1 equally spaced
energy levels



BJ(y) – Brillouin function

Leon Brillouin
1889 - 1969

For large B(y)  Langevin
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For y <<1 : coth(y) = 1/y + y/3 –y³/45+…. 
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Curie - law

1/χ

Τ
Measurement of χ(T) 
 µeff=p µB  

Mmax = NgµBJ





Calculation of µeff from electron configuration of atoms, considering
- Pauli principle
- Hund´s rule
Electrons in partially filled shell first towards maximum S           followed by maximazing L

J = L – S for shell below half filling
J = L + S for shell above half filling

Example Ce3+, 1 f-electron , L=3; S= ½   J=L-S = 5/2, experimental finding often L=0
Orbial moment is „quentched“ , 
caused by time average in non- cubic crystal field ( see later)

Example 3d elements do show spin magnetism only !!!! – no orbital magnetism

Paramagnetism of ions  



Solid state magnetism
Considers: (1)  interatomic interaction ; (2) interaction of magnetic moments
Metals:
 magnetism of electrons in conduction band
 Magntism of inner, partially filled shells : i.e. Fe 3d group, rear elements 4f shell
Ion crystals: 
 L=0 – spin magnetism, rear earth elements L is not quenched , 4f electrons are screed
by 5p, 5d and 6s electrons against external crystal fields

Paramagnetism of conducting electrons 
magnetic moment of single electron per electron (µ Bohr) 
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Expection of classic free electron gas
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Experimentally one observes 1/100 of this value:  only electrons close to EF can
contribute to magnetism – ratio T/TF
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Density of states

B=0 :    N(↑) =N(↓) = ½ N EmVEDED
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B>0 :    N(↑) - N(↓) =( ½ N + ½ ∆N) - =( ½ N - ½ ∆N) = ∆N M=µB ∆N ∆N  = ???
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µBB << EF       µBB/kT≈ 0.001          EF/kT≈ 100 
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=χ Pauli´s spin susceptibility of conducting electrons

Additional effect due to B induced energetic splitting of electron levels below CB  
 Landau diamagnetism
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Ferromagnetism
Appears below „Curie“ temperature Tc

At T > Tc - paramagnetism

cTT
C
−

=χ Curie- Weiss-
law

Typical ferromagnets :

Fe, Co, Ni – group 3d

Gd, Dy,  - group 4f 

Origin of ferromagnetism is the internal 
interaction spins caused by exchange fields 
between next neighbors or by  “molecular field”.



Weiß supposed the existence of internal magnetic field
The “molecular field”:

MµB BE λ=

Spin at one particular atom „is feeling“ magnetic moments of neighbored atoms, 
creating a „mean“ field BE and small magnetisation M
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Resulting in

Providing singularity at T=Tc;      Curie- Weiss law is well confirmed experimentally

More advanced calculations predict : 
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For Fe Tc= 1000K, λ= 5000; saturation Ms = 1700 Gauß λ*Ms = 10^7 Gauß = 10^3 T !!!
T< Tc, Ms becomes T-dependent

Internal magnetic field

1T = 10000 Gauß



Crystal field 

For example : FeN6 complex



T< Tc, Ms becomes T-dependent, behavior explained  by evaluation of Brillouin function, 

Solution for M 0<T<Tc : determine crossing point of                             with   x
µµ
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M(T)/M(0)=1 at T=0 and zero at T=Tc.

Slope M(x) increases for increasing T

Origin of internal field is “molecular field: an 
atom with unpaired spin is surrounded by other 
atoms in certain geometrical arrangement

Explanation by Brillion function

external field B=0, only molecular field MµB BE λ=
kT

MµµNµM λ0tanh=

)/tanh( kTµBNµM =

Tc=1000k, N=1029 /m³ 



Exchange interaction 
Depending on next neighbor distances the energy separation between the bonding and 
antibonding orbitals changes and results in paired or mainly unpaired arrangement, Phase 
transition between different magnetization can be induced by local distortions of the 
crystal field. 
Exchange interaction is expressed by Heisenberg exchange energy

jiSSJU ˆˆ2−=

where J is exchange integral, ferromagnetic coupling: J>0, antiferromagnetic coupling: J<0, 
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J cannot be explained by dipole-dipole interaction but interplay between kinetic energy and 
Coulomb energy  Exchange interaction,

For metals like Fe, Co, Ni… 

Slater criterion expresses J as function of r/2ra, 
where r is next neighbor distance and ra the 
atomic radius. 

 J>0 for r/2ra > 1,5 and J<0 for r/2ra < 1.5. 

 See lecture for QM approach



Nature of spin exchange interaction

interaction between two neighbored spins

eigenvalues we compose the total spin :

Calculated by relation

Possible eigenvalues for using S(S+1) are 0 (S=0) and 2 (S=1).  

Thus eigenvalues of are ¾.   

Therefore the eigenvalues of           are   ¼ (for S=1) and -3/4 (for S=0). 
Subsequently the eigenvalues of Hamiltonian are E= ¼ A (S=1) and E=- ¾ A (S=0).

Each energy level is 2S+1 times degenerated, therefore S=0 is a singulett and S=1 is a 
triplett state.ms component of total spin is 0 for singulett and ( -1,0,+1) for triplett. 
The spin eigenstates are

 S ms Spin eigenvalue TS ,χ  SaSb 

Triplett  1 

1 

1 

1 

0 

-1 

|↑↑> 

(|↑↓>+|↓↑>)/√2 

|↓↓> 

¼ 

¼ 

¼ 

Singulett 0 0 (|↑↓>-|↓↑>)/√2 -3/4 

 



Eigenvalues of by linear combination of electron basic wave functions and

To the total spatial wave function for singulett and triplett states

Spin function

Energy of singulett and triplett states are

The difference is :

Which is the exchange integral J. The total Hamiltonian is

Where the spin dependent part is : 

For triplett state J>0 For singulett state J<0



Kinds of magnetic exchange interaction 
Direct exchange interaction

Indirect exchange interaction

Oscillatry interaction via 
electrons in CB, proposed by
Rudermann, Kittel, Kasuya, 
Yoshida = RKKY interaction

superexchange



Antiferromagnetism J<0 
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AF magnetism vanishes above
TN – Neel temperature

Experimental evidence by spin resolved
neutron scattering

AF

MTN κ=

is the antiferromagnetic x-change interaction
curve shifted to “negative” Curie-Weiß

temperature Θ. In range 0> T>TN the total 
magnetization is zero and AF order increases 
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Spins are ordered antiparallel arrangement at temperature below certain ordering
temperature - Neel temperature NT

Suceptibility at T=TN is not infinite but shows certain cusp. 
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Spin arrangement in Mn2+ in MnO, 
Oxygen atoms are not shown –
indircet spin exchange

Scattering angle 

T-dependent neutron
diffraction at MnO



Neutron diffraction at bcc FeRh showing
transition from Ferromagnetic phase – via 
antiferromagnetic phase to paramagnetic
phase

TN= 350 K, Tc=675 K 



Spin waves - Magnons

Ferromagnetic ground state ↑↑↑↑↑↑↑↑

Possible excitation ↑↑↑↑↑↓↑↑ Costs ²8JSE =∆

Compromise : spin flip distributed over many neighbored spins

Spin wave

 Spin precession



Magnon spectrum of fcc Co alloy

Dispersion relation for magnons : 
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Compare phonons :   k≈ω



Thermal excitation of magnons:  (for bosons)  number o magnons excited nk
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Number N/atom/unit volume is Q/a³ with Q=1,2,4 for sc, bcc, fcc

Bloch T^(3/2) law
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Number N/atom/unit volume is Q/a³ with Q=1,2,4 for sc, bcc, fcc

Bloch T^(3/2) law

Ferromagnetic magnons J>0; antiferromagnetic Magnons : J<0
Ferrimagnetic mgnons have 2 magnetic moments/ uc two branches



Magnetic domains and hystereses
At T<<Tc all magnetic moments aligned, but amcroscopic moment can be zero
Origin: solid shows magnetic domains = Weiss domains

Separation into domains is energetically favoured

Large magn
energy

Low magnetic
energy

Magnetic lines are
closed inside solid

Magn. Lines 
outside solid

Magnetic domains are
separated by Bloch walls

Thickness amount many unit cells
In Fe :   about 300a



Exchange energy differs for crystal direction

„hard“ and „weak“ 
directions

Fe: [100]  „weak“
[111]  „hard“

Ni [100]    „hard“
[111]   „weak“

Spin orientation rotates by application of external B-field

Reversible wall movement

irreversible wall movement

Complete reversal of magnetisation



Bc – coercitive force

Fiel do apply to
cancel macrocopic
magnetiszation

MR – remanescence

Macroscopic
magnetization at B=0

∫= BdMW

Power loss by
one cycle

Ferromagnet in external magnetic field
In weak field domains in optimum spindircetion to external field grow in size compared
to domains of other spin orientation
 domain wall displacement typically over weak direction

In strong field: all domains rotate into filed dircetion – also via „hard“ direction

Hysteresis loop



Observation of domain changing orientations as
function of B   by x-ray microscopy



Magnetic materials



„hard“„weak“
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