Solid state physics for Nano

Lecture 7: pn junctons

Prof. Dr. U. Pietsch

pn-junction

Elements and principal band structure of pn- junction elements

$$n_n p_n = n_p p_p = n_i^2$$

 p_p – hole concentration at p-site - majority p_n - hole concentration on n-site - minority

Due to charge carrier diffusion current, j_{Diff} , ionized (fixed) ions are left (A⁻ and D⁺) originating an electric field, and subsequently drift current, j_{Drift} opposite to j_{Diff} of mobile charge carriers: in equilibrium $j_{Diff} = -j_{Drift} \rightarrow j_{total} = 0$

Originates contact potential: for hole current

$$\frac{dV_0}{dx}\frac{e}{kT} = -\frac{1}{p}\frac{dp}{dx}$$

 V_p – potential on p site V_n – potential on n-site

$$V_0 = \frac{kT}{e} \ln \frac{p_p}{p_n} \qquad p_p >> p_n \rightarrow V > 0$$

Basis parameters

Because of $p_p = N_A$ and $p_n = n_i^2 / N_D$,

$$V_{0} = \frac{kT}{e} \ln \frac{p_{p}}{p_{n}} = \frac{kT}{e} \ln \frac{N_{D}N_{A}}{n_{i}^{2}} = \frac{kT}{e} \ln \frac{n_{n}}{n_{p}}$$

$$\frac{d^{2}V}{dx^{2}} = \begin{cases} -\frac{eN_{A}}{\varepsilon\varepsilon_{r}} - 0 < x_{p} < \frac{x}{2} \\ +\frac{eN_{D}}{\varepsilon\varepsilon_{r}} - \frac{x}{2} < x_{n} < 0 \end{cases}$$

Boundary conditions: V=0; dV/dx=0 at $x_{n,p}=|x/2|$

p – n junction barrier height

 qV_{r}

-x/2

p-type

Electrion energy

Ev

$$V_0(x) = -\frac{e}{2\varepsilon\varepsilon_r} (N_D x_n^2 + N_A x_p^2)$$

$$x_n = \sqrt{\frac{2V_0 \varepsilon \varepsilon_r}{e} \frac{N_A}{N_D} \frac{1}{N_A + N_D}}; \underline{\qquad} x_p = \frac{N_D}{N_A} x_n$$

$$E(x) = -gradV(x) = \frac{e}{\varepsilon\varepsilon_r} (N_D x_n + N_A x_p)$$

$$E_n(x) = -\frac{eN_D}{\varepsilon\varepsilon_r} x_n;\dots$$

n-type

E_C

E_f

E,

 E_V

x

Х

Electron potential

¦+x/2

 qV_{bi}

 qV_n

Diffusion and drift current

 $J=j_n+j_p$; electrons diffuse $n \rightarrow p$; and holes from $p \rightarrow n$; stationary case d/dt=0

$$\frac{dj_p}{dx} = -\frac{dj_n}{dx} = -eU \qquad \qquad j_n = eD_n \frac{dn}{dx} - e\mu_n n \frac{dV}{dx}$$
$$j_p = -eD_p \frac{dp}{dx} + e\mu_p p \frac{dV}{dx}$$
Diffusion Drift

For minority charge carriers neglect drift current

$$j_n^{(p)} = eD_n \frac{dn}{dx}; \underline{\qquad} j_p^{(n)} = -eD_p \frac{dp}{dx}$$

For majority charge carriers neglect diffusion current

$$j_n^{(n)} = -e\mu_n n \frac{dV}{dx}; \underline{\qquad} j_p^{(p)} = e\mu_p p \frac{dV}{dx}$$

Outside space charge diffusion current depends on drift current of minority charge carriers because here \rightarrow dV/dx=0

$$\frac{d^2 p}{dx^2} = -\frac{1}{eD_p} \frac{dj_p^{(n)}}{dx} = \frac{V}{D_p} = \frac{p - p_n}{L_p^2}; \underline{\qquad} \frac{d^2 n}{dx^2} = \frac{n - n_p}{L_n^2}$$

Generell solution

$$p = p_n + A_1 \exp(x/L_p) + A_2 \exp(-x/L_p)$$
$$n = n_p + B_1 \exp(x/L_n) + B_2 \exp(-x/L_n)$$

 $p \rightarrow p_n$ for $x \rightarrow +\infty$ and $n \rightarrow n_p$ for $x \rightarrow -\infty$; therefore $A_1 = B_2 = 0$

From Poisson equation: $A_2 = p_n (e^{\frac{eU}{kT}} - 1)e^{x/L_p}; \underline{B}_1 = n_p (e^{\frac{eU}{kT}} - 1)e^{-x/L_n}$

$$p(x) = p_n + p_n [e^{eU/kT} - 1]e^{(x_n - x)/L_p}; _ n(x) = n_p + n_p [e^{eU/kT} - 1]e^{(x - x_p)/L_n}$$

$$j_p^{(n)}(x) = e \frac{D_p}{L_p} p_n [e^{eU/kT} - 1] e^{(x_n - x)/L_p}; \underline{j_n^{(p)}}(x) = \frac{eD_n}{L_n} n_p [e^{eU/kT} - 1] e^{(x - x_p)/L_n}$$

$$j = j_p^{(n)}(x) + j_n^{(p)}(x) = e(\frac{D_p}{L_p}p_n + \frac{eD_n}{L_n}n_p)(e^{\frac{eU}{kT}} - 1)$$

Potential offset

Equilibrium

Reverse bias

Foreward bias

J. Peisl, LMU 1990

pn-junction under illumination

Generation of carriers by light: (see also page 6)

G – generation rate

$$\frac{d^2 p}{dx^2} = \frac{p - p_n}{L_p^2} - \frac{G}{D_p}; - - \frac{d^2 n}{dx^2} = \frac{n - n_p}{L_n^2} - \frac{G}{D_n}$$

 $p(x) = p_n + G\tau_e + [p_n(e^{eU/kT} - 1) - G\tau_h]e^{(x_n - x)/L_p}$

$$x) = e \frac{D_p}{L_p} p_n [e^{eU/kT} - 1] e^{(x_n - x)/L_p} - eGL_n e^{(x_n - x)/L_p}$$

$$= j_0 (e^{eU/kT} - 1) - j_L$$

$$= J_s \left[\exp\left(\frac{eU}{kT}\right) - 1 \right] - I_L$$

 $I_L = eAG(L_n + L_p + W)$

 ${\rm I}_{\rm L}\,$ - Leakage current

Photo -diode

Creation of e-h – pairs within the space charge region, because of reverse bias, e and h become separated towards external contacts. Number of created e-h pairs depends on photon energy: $E_g(k=0) - Si - 3.56eV$

$$N=h\,
u\,/\,E_{
m g}(k=0)$$
 hv=10keV, N = 2808

Pn-CCD

Diffusion length

External irradiation creates a charge carrier excess at the SC surface. This excess decays exponentially towards the bulk : diffusion length $d\Delta p = \Delta p = 1$

Recombination excess :
$$U_n = \frac{\Delta n}{\tau_n} \dots U_p = \frac{\Delta p}{\tau_p}$$
 $\frac{d\Delta p}{dt} = G - \frac{\Delta p}{\tau_p} - \frac{1}{e} divj_p$
 $\frac{d\Delta n}{dt} = G - \frac{\Delta n}{\tau_n} - \frac{1}{e} divj_n$

G=0 in bulk, without E-field $j_n = eD_n grad\Delta n ___j = eD_p grad\Delta p$

Solve Poisson equation : divgrad(z)=d²/dz²

$$-\frac{\Delta p}{\tau_{p}} + D_{p} \frac{d^{2}\Delta p}{dz^{2}} = 0$$
Ansatz: $\Delta \rho = \rho_{0} e^{\frac{-z}{L_{p}}} \Delta n = n_{0} e^{\frac{-z}{L_{n}}}$

$$-\frac{\Delta n}{\tau_{n}} + D_{n} \frac{d^{2}\Delta n}{dz^{2}} = 0$$

Diffusion length
$$L_p = \sqrt{\tau_p D_p} _ L_n = \sqrt{\tau_n D_n}$$

Solar cells

Solar cell operates between -1 < I < 0A and 0 < V < 1V. open-circuit voltage V_{oc} is for I=0. At V=0 the I=I_L is the short-circuit current. Only the rectangle $I_{sc} \times V_{oc}$ can be used for power conversion; load resistance R_{L} sets the working point at I_m and V_m defining the filling factor . factor . $FF = \frac{I_m V_m}{I_{sc} V_{oc}} < 1$ The open circuit voltage: $V_{oc} = \frac{KT}{e} \ln(\frac{I_L}{I} + 1)$ The output power is $P = IV = I_s V \left[\exp\left(\frac{eV}{kT}\right) - 1 \right] - I_L V$ V_{oc} The condition dP/dV=0 defines the working point for V_m $V_m = V_{oc} - \frac{kT}{e} \ln(1 + \frac{kT}{eV_m})$ Huminated and approximate for $I_m = I_m \approx I_L (1 - \frac{kT}{eV_m})$ Energy delivered per photon at R₁ $P_m = I_I E_m / e$ $E_m = e \left| V_{oc} - \frac{kT}{e} \ln(1 + \frac{kT}{eV_m}) - \frac{kT}{e} \right|$ power conversion efficiency $\eta = \frac{P_m}{P_m}$

Energy dispersive pixel detector for X-rays

Alternative approach

Project has started June2007

 pn-CCD X-ray detector type of MPI HLL Munich, originally developed for XMM-Newton Satellite mission (ESA).
 Since launch 1999 excellent spectroscopy and imaging,

Our Project : Application of pnCCD for use of Synchrotron Radiation

General setup of the detector

Application: Laue diffraction at Lithium aluminate (LiAlO₂ [100])

a = 5.1687 Åc = 6.2676 Å

2-fold symmetry!

Excitons in semiconductors

Excitons are created once a photon is absorbed by the semiconductor exciting an electron from VB into CB creating h+ in VB and e- in CB connected via Coulomb interaction.
 → bound electron-hole pair = "exciton", is quite stable and can have a long life time, of order of nanoseconds.

Exciton binding energy
$$E_X = 13.6 eV \frac{\mu}{\varepsilon_r^2} \frac{1}{n^2}$$
 exciton radius $\lambda_x = 0.0529 nm \frac{\varepsilon_r}{\mu} n^2$
Considering reduced mass $\frac{1}{\mu} = \frac{1}{m_e^*} + \frac{1}{m_h^*}$

In case of GaAs $m_e^*=0.067m$ and $m_{hh}^*=0.62m \rightarrow \mu=0.060m$. Using $e_r = 13.18$ the exciton binding energy is $E_x = -4.7$ meV and the Bohr radius $\lambda = 11.5$ nm.

Excitons in heterostructures

Thin well structures

pn semiconductor diode (LED) Super luminescent LED (SLD)

Fig. 23.9. Common structures of superluminescent diodes (SLDs). (a) SLD with cleaved facets coated with anti-reflection (AR) coatings. (b) SLD with cleaved, reflecting facets and stripe contact injecting current over the partial length of the device.

E. F. Schobert Light Emitting Clodes (Cambridge Univ. Press) www.LightEmittingDiodes.org

Radiant flux 30mW at operating voltage 1.8V

Laser Diodes: AlGaN nanowire laser diode emits at 239 nm

Over the years, the short-wavelength limit of laser diodes has moved from the red end of the visible spectrum to the near-UV.

https://www.laserfocusworld.com/laserssources/article/16546978/

