Solid state physics for Nano

Lecture 6: electronic band structure of solids

Prof. Dr. U. Pietsch

Band of allowed states

Overlap between two neighboured atomic states results in 2 states : bonding and antibonding state. Bonding between 10²³ atomic in solids results in 2 10²³ solution, which are such as dense that they overlap and create "bands" separated by "forbidden" zones. Empirically described by

$$E(k,m) = E_m^{at} - \alpha_m - 2\beta_m \cos(ka)$$

 α describes decrease of energy due to bonding, 4 β measures the band width between k=0 and k= π/a . Many properties of solids can be described in terms of "electron gas" (Sommerfeld) : electrons are moving as non-interacting particles with spin1/2

These "free electrons have kinetic energy

$$E = \frac{m}{2}v^2 = \frac{p^2}{2m}$$

It describes a dispersion relation

$$E = \frac{\hbar^2 k^2}{2m}$$

between energy E and momentum k

electron gas in solid

What happens, if k is approaching $k=\pi/a$?

If k< $\pi/a \rightarrow \lambda > a \rightarrow$ no interaction of electron wave with lattice if k $\approx \pi/a \rightarrow \lambda \approx a \rightarrow$ electron wave "reflected" at lattice planes

Electron wave propagates free as long as k< π/a

$$\psi_k = \psi_0 e^{ikx}$$

For $k \approx \pi/a = G/2$ wave is Bragg reflected

$$\psi_{-k} = \psi_0 e^{-ikx}$$

$$\psi_{+} = \psi_{0}(e^{ikx} + e^{-ikx}) = 2\psi_{0}\cos(kx)$$
$$\psi_{-} = \psi_{0}(e^{ikx} - e^{-ikx}) = i2\psi_{0}\sin(kx)$$

Ansatz:

$$|\psi|^2 = e^{ikx}e^{-ikx} = 1$$

 $|\psi_+|^2$

Largest probability between atoms

 $|\psi_-|^2$

Largest probability at atoms

In terms of energy:

$$E(k)_{+} = \frac{\hbar^{2}}{2m}k^{2} - V_{+}$$
$$E(k)_{-} = \frac{\hbar^{2}}{2m}k^{2} + V_{-}$$

$$V_{\scriptscriptstyle +} - V_{\scriptscriptstyle -} = \!\! E_{_g}$$
 Energy gap

$$|\psi_{+}|^{2} \approx \cos^{2}(kx)$$

$$|\psi_{-}|^{2} \approx -\sin^{2}(kx)$$

$$|\psi_{-}|^{2} \approx -\sin^{2}(kx)$$

$$|\psi_{-}|^{2}$$

$$|\psi_{+}|^{2}$$

$$|\psi_{$$

Valid also k= $2\pi/a$; k= $3\pi/a$ → Extended zone scheme Parabel origin also at $k=\pi/a$; $k=2\pi/a....$ Overlap of peridodic zone scheme \rightarrow Folding into $\rightarrow -\pi/a < k < \pi/a$ \rightarrow 1st Brillouin zone

 \rightarrow Reduced zone scheme

"effective mass" of electrons in solid

Number of states per band in 1st BZ:

and in 1st BZ: $-\frac{\pi}{a} \le k \le \frac{\pi}{a}$ $V = (\frac{2\pi}{a})^3$ $V = (\frac{2\pi}{L})^3$ $L^3 = Na^3$ $(\frac{2\pi}{a})^3/(\frac{2\pi}{L})^3 = N$

Because of spin \rightarrow 2N states per energy band

1 or 3 electrons in upper band

Na: 1s²2s²2p⁶,3s¹= Ne 3s¹ upper band is filled with 1 electron only

Higherst populed energy – FERMI energy

2 or 4 electrons in upper band: Be, Mg, Ca,Sn T>18°C metal Si, Ge – typical semiconductors, E_g 0.1..2 eV C, SiC ... isolators E_g = 10eV

Density of states in 1D (DOS)

particle in box model, standing waves

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi_n}{\partial x^2} = E_n\psi \qquad \psi_n(0) = \psi_n(L) = 0$$

$$\frac{1}{2}n\lambda_{n} = L$$

$$\frac{1}{2}n\lambda_{n} = L$$

$$\frac{1}{2}n\lambda_{n} = A \sin\left(\frac{m\pi}{L}x\right)$$

$$\frac{dV_{n}}{dx} = A \frac{m\pi}{L}\cos\left(\frac{m\pi}{L}x\right)$$

$$\frac{d^{2}V_{n}}{dx^{2}} = -A\left(\frac{m\pi}{L}\right)^{2} \sin\left(\frac{m\pi}{L}x\right)$$

$$\frac{\pi^{2}}{2m}\left(\frac{m\pi}{L}\right)^{2} = \sum_{n}^{\infty} = \frac{R^{2}}{2m}\left(\frac{m}{2L}\right)^{2}$$
Energie niveaus
$$\frac{g_{n}}{dx} = \frac{g_{n}^{2}}{2m}\left(\frac{m}{2L}\right)^{2}$$
N=2n due to spin

Total energy is:

$$E = 2 \sum_{n=1}^{n_F} E_n = 2 \frac{\hbar^2}{2m} \left(\frac{1}{2L}\right)^2 \sum_{n=1}^{N/2} n^2$$
$$E \approx \frac{\hbar^2}{2m} \left(\frac{1}{2L}\right)^2 \left(\frac{N}{2}\right)^3 = \frac{1}{3} N E_F$$

$$D(E) = \frac{number_of_states}{energy int ervall} = 2\frac{dn}{dE}$$

$$dE = \frac{h^2}{2m} \frac{n}{2L} \frac{dn}{2L} \qquad \frac{dn}{dE} = \frac{4L^2m}{h^2} \frac{1}{n}$$

$$D(E) = 2\frac{dn}{dE} = \frac{8L^2m}{\hbar^2}\frac{1}{n} = \frac{4L}{\hbar}\sqrt{\frac{m}{2E}} \approx \frac{1}{\sqrt{E}}$$

Fermi energy in 3D

Standing waves in 3D

Alternative

$$\psi_n(\vec{r}) = \sqrt{\frac{8}{L^3}} \sin(\frac{n_x \pi}{L} x) \sin(\frac{n_y \pi}{L} y) \sin(\frac{n_z \pi}{L} z)$$
$$\psi_k(\vec{r}) = \sqrt{\frac{1}{V}} e^{i\vec{k}\cdot\vec{r}}$$

Boundary conditions

$$\psi_k(x+L, y, z) = \psi_k(x, y+L, z) = \psi_k(x, y, z+L)$$

$$k_{x} = 0, \pm \frac{2\pi}{L}; \pm \frac{4\pi}{L}; \dots; \pm \frac{2n\pi}{L}; k_{y} = \dots; k_{z} = \dots$$
$$e^{ik_{x}(x+L)} = e^{i(2n\pi(x+L)/L)} = e^{i2\pi nx/L}e^{i2n\pi} = e^{i2\pi nL} = e^{ik_{x}x}$$

Number of electrons in sphere with radius k_F

$$N = 2\frac{4\pi k_F^3}{3} / (\frac{2\pi}{L})^3 = \frac{V}{3\pi^2} k_F^3$$

$$k_{F} = \sqrt[3]{\frac{3\pi^{2}N}{V}}$$
$$E_{F} = \frac{\hbar^{2}}{2m} (\frac{3\pi^{2}N}{V})^{2/3}$$

Fermi momentum $\hbar k_F = m v_F$ $m v_F = \hbar (\frac{3\pi^2 N}{V})^{1/3}$ Fermi velocity $v_F = \frac{\hbar}{m} (\frac{3\pi^2 N}{V})^{1/3}$

Fermi temperature

$$E_F = kT_F$$

Example for Li: N/V= 4.6 10^{22} cm⁻³ =1 el/Li atom

$$k_F = 1.1 \ 10^8 \ /cm = 1.1 \ /A$$

 $v_F = 1.3 \ 10^8 \ cm/s = 1.3 \ 10^3 \ km/s = 0.04\% \ c$
 $E_F = 4.7 \ eV \rightarrow T_F = 55.000K$

Density of states in 3D (DOS)

Influence of Temperature on DOS

Bonding energy for lowest energy levels are large, all levels occupied

At T=0 probability of occupation

$$f(E) = \begin{cases} 1 \text{ for } E \leq E_F \\ 0 \text{ for } E > E_F \end{cases}$$

At T>0 , thermal energy kT, only levels close to $\rm E_{\rm F}$ can be redistributed

$$f(E,T) = \frac{1}{\exp(\frac{E-\mu}{kT}) + 1}$$

 $\mu \approx E_F$ chemical potential

Impact of electrons to specific heat

Only electrons close to E_F can gain energy of about $kT \rightarrow this$ results in range $E_F - \frac{1}{2} kT$ non occupied states (2) and in range $E_F + \frac{1}{2} kT$ (1) and newly occopied states, all other electrons cannot contribute to specific heat

Impact of electrons to specific heat

$$\frac{\partial f}{\partial T} = \frac{E - E_F}{kT^2} \frac{\exp(\frac{E - E_F}{kT})}{[\exp(\frac{E - E_F}{kT}) + 1]^2}$$

For kT << E_F : D(E) = D(E_F) $c_{el} = \frac{\partial E}{\partial T} = \int_0^\infty dE(E - E_F)D(E)\frac{\partial f}{\partial T} = \frac{1}{3}\pi^2 D(E_F)k^2T$

using

$$D(E_{\rm F}) = \frac{V}{\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E_{\rm F}} \qquad E_{\rm F} = \frac{\hbar^2}{2m} \left(\frac{3\pi^2 N}{V}\right)^{2/3}$$

$$c_{el} = \frac{1}{2}\pi^2 Nk \frac{kT}{E_F} = \frac{1}{2}\pi^2 Nk \frac{T}{T_F} = \gamma T$$

Separation between electron and phonon contribution to specific heat

 $c_{total} = \gamma T + AT^3$

Electrical charge transport

Electrons close to E_F contribute to charge transport only. Their characteristic velocity is \rightarrow Fermi velocity, $\sqrt{2E_F}$

$$v_F = \sqrt{\frac{2E_F}{m}}$$

expressing the maximum velocity an electron can reach before scattering at another electron, defect, phonon aso. Is is much larger $v_F >>$ drift velocity

$$v_D = \frac{j}{(N_e - N_p)e}$$

 N_e , N_p – concentration of electrons and holes, v_D is the real velocity of signal transport. Force, F, acting on an electron within electric field E

$$F == -eE = \frac{dp}{dt} = \hbar \frac{dk}{dt}$$

Means, Fermi sphere is constantly shifted

By collosion with defects, phonons etc. Fermi sphere is some constantly

$$dk = \frac{F}{m}\mathcal{T}$$

 τ – is collision time

Electric transport

 $-\Gamma$

 $ne^{2}\tau$

m

Ry

$$\hbar dk = 4mdv = F\tau \qquad dv = v_D = -\frac{eE\tau}{m}$$
$$j = \sigma E = nedv = -\frac{ne^2 E\tau}{m} \qquad \text{using}$$

ne is transported amount of charge, τ – scattering time Gained energy in field E is donated to lattice

$$\frac{\Delta Q}{\Delta t} = \frac{\frac{1}{2}m(2dv)^2}{2\tau} = \frac{ne^2E^2\tau}{m} = \sigma E^2 \quad \text{Joules heat}$$

Temperature dependence

$$j(T) = \sigma(T)E = n(T)e\mu(T)E$$

 μ - is the mobility (Beweglichkeit) [cm²/Vs], n – number of "free" charge carrier.

In metals n is constant (and high), μ and j increase with decreasing the temperature or decrease with increasing the temperature due to the increase of scattering at thermally excited phonons and defects.

Opposite for semiconductors, the μ and j increases for increasing temperature because more and more electrons are able to occupy states within the conduction band and can contribute to charge transport.

Cyclotron resonance spectroscopy

Specific band structure of semiconductors

Generell insolator structure: with $E_g > kT$, 0.2...3 eV

 $j = \sigma E$ $\sigma = \sigma_0 \exp(-\frac{E_g}{kT})$

A TYPICAL BANDSTRUCTURE: Si

Direct band semiconductor

Indirect band semiconductor

$$E_{light} = E_g \pm \hbar \omega_{phonon}$$

Few band structure parameters

Material	Bandgap (eV)	Relative Dielectric Constant		Material	Electron Mass (m ₀)	Hole Mass (m ₀)
с	5.5, I	5.57		A1As	0.1	
Si	1.124, I	11.9		A1SP	0.12	$m^*_{dos} = 0.98$
Ge	0.664, I	16.2		GaN	0.19	$m_{dos}^{*} = 0.60$
SiC	2.416, I	9.72		GaP	0.82	$m_{dos}^* = 0.60$
GaAs	1.424, D	13.18		GaAs	0.067	m [*] ₂ = 0.082
AlAs	2.153, I	10.06				$m_{hh}^* = 0.45$
InAs	0.354, D	15.15		GaSb	0.042	$m^*_{aos}=0.40$
GaP	2.272, I	11.11		Ge	$m_l = 1.64$	m [*] / ₂ = 0.044
InP	1.344, D	12.56			$m_t = 0.082$ $m_{dos} = 0.56$	$m_{hh}^* = 0.28$
InSb	0.230, D	16.8			0.072	* 0.61
CdTe	1.475, D	10.2		Inr	0.075	$m_{dos}^2 = 0.04$
AIN	6.2, D	9.14		InAs	0.027	$m_{dos}^{*} = 0.4$
GaN	3.44. D	10.0		InSb	0.13	$m_{dos}^* = 0.4$
ZnSe	2.822, D	9.1		Si 7	$m_l = 0.98$ $m_t = 0.19$ $m_{dos} = 1.08$	$m_{lh}^* = 0.16$ $m_{hh}^* = 0.49$
ZnTe	2.394, D	8.7				

DOS of Semiconductors

$$f(E,T) = \frac{1}{\exp(\frac{E-\mu}{kT}) + 1}$$

E-
$$\mu$$
 >>kT; E_F $\approx \mu$ $f(E,T) \approx \exp(-\frac{E-\mu}{kT})$

Probability to occupy a state in CB:

$$E_{CB}(\vec{k}) == E_{VB} + \frac{\hbar^2 k^2}{2m_e^*} \qquad D_e(E) = \frac{V}{2\pi^2} \left(\frac{2m_e^*}{\hbar^2}\right)^{3/2} \sqrt{E - E_g}$$

$$n = \int_0^\infty D_e(E) f(E,T) dE = \frac{1}{2\pi^2} \left(\frac{2m_e^*}{\hbar^2}\right)_0^\infty \sqrt{E - E_g} \exp(-\frac{E_g}{kT})$$
Number of electrons on CB:
$$n = 2 \left(\frac{2\pi m_e^* kT}{\hbar^2}\right)^{3/2} \exp(-\frac{E_g}{kT})$$
Probability to find holes
$$f_h = 1 - f_e(E,T) \approx \exp(+\frac{E - \mu}{kT}) \qquad D_h(E) = \frac{V}{2\pi^2} \left(\frac{2m_h^*}{\hbar^2}\right)^{3/2} \sqrt{-E}$$
Number of holes in VB:
$$p = 2 \left(\frac{2\pi m_h^* kT}{\hbar^2}\right)^{3/2} \exp(-\frac{\mu}{kT})$$

Number of holes in VB:

Carrier concentration in CB and VB

For intrinsic semiconductor yields : n=p

$$m_e^{3/2} \exp(-\frac{\mu - E_g}{kT} = m_h^{3/2} \exp(-\frac{\mu}{kt}))$$

$$\frac{3}{2}\ln\frac{m_e^*}{m_h^*} = -\frac{2\mu + E_g}{kT} \qquad \mu =$$

$$\mu = \frac{E_g}{2} - \frac{3}{4kT} \ln \frac{m_e^*}{m_h^*}$$

Because 2nd term is very small :

$$\mu = E_F = E_g/2$$

Thermally excited charge carriers:

$$n = p = 2\left(\frac{2\pi kT}{\hbar^2}\right)^{3/2} (m_n^* m_h^*)^{3/4} \exp(-\frac{E_g}{2kT})$$

 $n_i = p_i = 2.5 * 10^{13} cm^{-3} _ Ge _ E_g = 0.67 eV$

 $n_i = p_i = 1.4 * 10^{10} cm^{-3} _Si _E_{o} = 1.14 eV$

$$\sigma = \sigma_0 \exp(-\frac{E_g}{2kT}) = n(T)e\mu_e + p(T)e\mu_p$$

 $\mu_{e}(Si) = 1300 \text{ Vs/cm}^{2}; \mu_{h}(Si)=500 \text{ Vs/cm}^{2}$ $\mu_{e}(GaAs) = 8800 \text{ Vs/cm}^{2}; \mu_{h}(GaAs)=400 \text{ Vs/cm}^{2}$

Temperature dependence of intrinsic charge carrier concentration

INTRINSIC CARRIER DENSITY n_i (cm⁻³)

Doping of semiconductors

Effective number of charge carriers can be increased by **DOPING**: replacement of very few Si atoms by P, As,...(donators) or by B, Al,...(acceptors).

Energy states of dopands calculated by **effective mass theory:** (H-atom modell): replacing $e^2 \rightarrow e^2/\epsilon$ and $m \rightarrow m_{e,h}$. where ϵ is the statistic dielectric constant of host material.

$$E_H = -\frac{e^4 m}{2\hbar^2 n^2}$$

Donator energy $E_{D,A} = 13.6eV \frac{m_{e,h}}{m\epsilon^2} \frac{1}{n^2}$ 6meV (Ge), 20meV (Si)Radius of donator
electron $r_{D,A} = 0.0529nm \frac{\epsilon m}{m_{e,h}} n^2$ 8nm (Ge), 3nm(Si)

Donator doped semiconductors : \rightarrow n- conductivity Acceptor doped semicductor : \rightarrow p - conductivity

Temperature dependence of doped semiconductors

