

Lecture 2: X-ray diffraction

Prof. Dr. U. Pietsch

The mean aim of Max von Laue (1912)

ys are electromagnetic wave with wave length much smaller than wave length of visible light. X-rays are diffracted a crystal lattice

Original experiment von Laue, Friedrich und Knipping

Ausgestellt im Deutschen Museum in München

First Laue Experiment

Photographic film

Erster Kristall Cu₂SO₄ · 5 H₂O <u>1912: Begin of modern Crystallography</u> X-rays are electromagnetic waves of very short wavelength (~1 Å = 10⁻¹⁰ m).

Crystals are periodic structures in 3D : interatomic distances are of similar order of magnitude as x-ray wave length

X-ray diffraction is a method to determine the geometric structure of solids !

Explanation of Laue pattern von Laue Equation Scattering from a line of atoms along "a" Ţ 9 á 2nd ander $P_1 = a \cos \alpha_0$ orper $P_2 = a \cos \alpha$ Constructive interference Condition for along conical surfaces about constructive Total a-axis interference Path difference $P_2 - P_1 = a (\cos \alpha - \cos \alpha_0) = h \lambda$

von Laue Equation

For a crystal with cell parameters

We have three von Laue equations a ($\cos \alpha - \cos \alpha_0$) = h λ b ($\cos \beta - \cos \beta_0$) = k λ c ($\cos \gamma - \cos \gamma_0$) = l λ

Where $\cos \alpha_0$, $\cos \beta_0$, $\cos \gamma_0$ are the direction cosines of the incident ray and $\cos \alpha$, $\cos \beta$, $\cos \gamma$ are the direction cosines of the reflected ray in the crystal axis.

So, we must also satisfy

$$\frac{\cos^2 \alpha_0 + \cos^2 \beta_0 + \cos^2 \gamma_0 = 1}{\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1} \quad (2)$$

Using that the angle between the incident and reflected ray is 2 θ

3 $\cos 2\theta = \cos \alpha \cos \alpha_0 + \cos \beta \cos \beta_0 + \cos \gamma \cos \gamma_0$

von Laue Equation

We square the von Laue Equations

$$\frac{h^2\lambda^2}{a^2} = \cos^2\alpha - 2\cos\alpha\cos\alpha_0 + \cos^2\alpha_0$$

$$\frac{h^2\lambda^2}{b^2} = \cos^2\beta - 2\cos\beta\cos\beta_0 + \cos^2\beta_0$$

$$\frac{l^2\lambda^2}{c^2} = \cos^2\gamma - 2\cos\gamma\cos\gamma_0 + \cos^2\gamma_0$$

$$\left(\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}\right)\lambda^2 = 1 - 2(\cos\alpha\cos\alpha_0 + \cos\beta\cos\beta_0 + \cos\gamma\cos\gamma_0) + 1$$

$$\lim_{\substack{k=1\\ l \neq k}} \frac{h^2}{a^2} + \frac{k^2}{c^2} + \frac{l^2}{c^2}\right)\lambda^2 = 2(1 - \cos2\theta)$$

$$\lim_{\substack{k=1\\ l \neq k}} \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}\right)\lambda^2 = 4\sin^2\theta$$
Trig. Identity

General Bragg law

Reciprocal Lattice

For a crystal with cell parameters

A vector connecting 2 lattice points in reciprocal space can be written

General Bragg law

$$2\pi \left(\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}\right)^{1/2} = \frac{4\pi}{\lambda} \sin \theta$$

are the reciprocal $|\vec{G}| = \frac{4\pi}{\lambda} \sin \theta$
vectors
of the reciprocal lattice

$$a = b = c \qquad 2\pi \frac{\sqrt{h^2 + k^2 + l^2}}{a} = \frac{4\pi}{\lambda} \sin \theta$$
$$\lambda = 2\frac{a}{\sqrt{h^2 + k^2 + l^2}} \sin \theta$$
$$\lambda = 2d \sin \theta$$

Interference at dense backed "lattice planes"

Bragg equation

 $N\lambda = 2dsin\Theta$

 $\Delta K = G = 2\pi (ha^* + kb^* + lc^*)$

Electron circulates with relatvististic energy in orbit of storage ring with orbit frequency $\omega = 10^6 \text{ Hz} \rightarrow \text{E}_{e} = 5 \text{ GeV}$

$$E_{e} = \frac{m_{0}c^{2}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} = \frac{m_{0}c^{2}}{\sqrt{1 - \beta^{2}}}$$

 E_e is much larger compared to rest mass energy mc², γ = 5GeV/ 0.511 GeV \approx 10⁴

$$\gamma = \frac{E_e}{m_o c^2} = \frac{1}{\sqrt{1 - \beta^2}}$$

value $1/\gamma$ is the vertical open angle Using γ one can estimate the electron velocity

$$\beta = [1 - \frac{1}{\gamma^2}]^{1/2} \approx 1 - \frac{1}{2\gamma^2} = 1 - 6 * 10^{-9} \qquad v \approx 1 - 6 * 10^{-9} c$$

Supposing the circulating electron emits a photon at point A of orbit. M Elektron proceeds to point C via B on orbit. At point C it emits a second photon. For the electron the length

AC (electron) = $v^* dt$.

For the photon emitted in A reaches this distance is

AC(photon = c *dt

The spatial distance between both waves : (c-v) dt

An observer at point C the light pulse has a length

$$\Delta t = \frac{(c-v)dt'}{c} = (1-\beta^2)dt'$$

Considering the opening angle $\alpha = 1/\gamma$ due to electron orbit

$$\Delta t = (1 - \beta \cos \alpha) dt' = [1 - (1 - \frac{1}{2\gamma^2})(1 - \frac{\alpha^2}{2})] dt' \approx \frac{1 + (\alpha \gamma)^2}{2\gamma^2} dt'$$

For $\alpha = 0$ $\Delta t = \approx \frac{1}{2\gamma^2} dt' \approx 10^{-8} dt'$

Dilatation of time a consequences for spectral distribution of photon emission

Orbit time of electron along AC differs from time of photon

$$\Delta t'(electron) = \frac{1}{2\pi\gamma}T = \frac{1}{\gamma\omega} \approx 10^{-10}s$$
$$\Delta t(photon) = \frac{1}{2\gamma^2}\frac{1}{\gamma\omega}T = \frac{1}{2\gamma^3\omega} \approx 10^{-18}s$$

Inverse pulse length determines the spectral with of light emission

$$\Delta \omega_c = \frac{3}{2} \gamma^3 \omega \approx 10^{18} Hz$$

The emission spectrum has a critical wave length given by

$$\lambda_c = \frac{c}{\upsilon} = \frac{10^8}{10^{18}} = 10^{-10} m$$

This is x-ray range. In energy :

$$\hbar\omega_c = \frac{3}{2}\hbar\omega\gamma^3 \approx 0.655 * E_e^2 (GeV)B(T)$$

Bending radius R of electron orbit is

$$\gamma mv = \operatorname{Re} B$$
 $R = \frac{\gamma mc}{eB} = \frac{E_e}{mc^2} \frac{mc}{eB} = 3.3 * \frac{E_e(GeV)}{B(T)}$

Emission power is

$$P(kW) = 1.266 * E_e^2 (GeV) B^2(T) R\alpha(m) I(mA)$$

For ESRF, E=6GeV, B=0.8T \rightarrow R= 24.8m

 $P(kW) = 1.266 * 6_e^2 (GeV) 0.8^2(T) 24.8m + 0.05mrad * 100mA = 7.3W$

Dipole scattering of x-ray wave by an electron: Electron excites dipole radiation

Superposition of dipole radiation generated by two electrons at positions X_1 and X_2

$$E = E_0 \frac{e^2}{mc^2} \frac{1}{X} \exp(i[\omega t - \frac{2\pi}{\lambda}(X_1 - X_2)])$$

For n electrons

$$E = E_0 \frac{e^2}{mc^2} \frac{1}{R} \exp(2\pi i [\upsilon t - \frac{R}{\lambda}] \sum_n \exp(\frac{2\pi}{\lambda} [\vec{S} - \vec{S}_0]) \qquad k_f - k_i = \frac{2\pi}{\lambda} (S - S_0)$$

Stotal scattering amplitude of one atom : \rightarrow atomic form factor

Scattering by all electrons of one atom : \rightarrow atomic formfactor

$$E = E_0 \frac{e^2}{mc^2} \frac{1}{R} \exp(2\pi i [\upsilon t - \frac{R}{\lambda}] \sum_n \exp(\frac{2\pi}{\lambda} \vec{S} - \vec{S}_0])$$
$$e * \sum_n \exp(i [\frac{2\pi}{\lambda} r(\vec{S} - \vec{S}_0)]) = \int \exp(2\pi i [\frac{\bar{S} - \bar{S}_0}{\lambda} \vec{r}] \rho dV$$

Form factor $f[(s-s_0)/\lambda]$ result from quantun mechanical calculations f(0) = Z; $f[(s-s_0)/\lambda]$ decays continuosly as function of $(s-s_0)/\lambda$

Scattering by two atoms :

$$E \approx f_1 \exp(2\pi i [\upsilon t - \frac{R}{\lambda}] + f_2 \exp(2\pi i [\upsilon t - \frac{R - (S - S_0)R_2}{\lambda}]) = \exp(2\pi i [\upsilon t + \frac{R}{\lambda}](f_1 + f_2 \exp(2\pi i [\frac{R_2}{\lambda}(\vec{S} - \vec{S}_0)]))$$

Scattering by many disordered atoms :

$$I \approx E * E^* = f_1^2 + f_2^2 + 2f_1f_2\cos\left[\frac{2\pi}{\lambda}(\vec{S} - \vec{S}_0)\right]$$
$$< \exp\frac{2\pi i}{\lambda}[\vec{S} - \vec{S}_0]r_{nm}] \rightarrow \frac{\sin(kr_{nm})}{kr_{nm}} \rightarrow k = \frac{2\pi}{\lambda}$$

$$I = \sum_{n,m} f_m f_n \frac{\sin(kr_{nm})}{kr_{nm}}$$

Debye'sche Streugleichung Debye equation

Scattering by "small" crystal: $r_{nm} = R_{nm} + r_n$ distances between unit cells \rightarrow shape factor, distances between atoms within one unit cell \rightarrow structure factor

$$R_{nm} = m_1 a_1 + m_2 a_2 + m_3 a_3$$

$$E \approx f_n \exp(i\omega t) \exp(-2\pi i \frac{R}{\lambda}) \exp(\frac{2\pi i}{\lambda} (\vec{S} - \vec{S}_0) [m_1 a_1 + m_2 a_2 + m_3 a_3]$$

I <> 0 only in near vicinity of the peak maxima

$$Ka_1 = 2\pi h$$

 $Ka_2 = 2\pi k$
 $Ka_3 = 2\pi l$
h,k,l integer

FWHM of a Bragg peak can be approximated

$$I(\Delta x) \approx \frac{\sin^2(N\Delta x)}{\sin^2(\Delta x)} \approx N^2 \exp(-(\Delta x N)^2 / \pi) \qquad \Delta x = \frac{1}{2} \Delta k a \qquad \Delta k = \frac{1}{2} B \cos \Theta$$

$$N^{2} \exp(-(\pi \frac{N^{2} a^{2}}{\lambda^{2}} (\frac{B}{2})^{2} \cos^{2} \Theta) = \frac{1}{2}$$

FWHM B(2 Θ) is inversely proportional to crystal size L

$$B(2\Theta) = \frac{\sqrt{2(\ln s)/\pi}\lambda}{Na\cos\Theta} = \frac{0.94\lambda}{Na\cos\Theta} = \frac{0.94\lambda}{L\cos\Theta}$$

Structure factor F

$$F = \sum_{i=1}^{n} f_i \exp(-i(kr_i))$$

$$k = 2\pi(ha^* + kb^* + lc^*)$$
 $r_i = x_ia + y_ib + z_ic$

$$F = \sum_{i=1}^{n} f_i \exp(-2\pi i(ha^* + kb^* + lc^*)(x_ia + y_ib + z_ic))$$

$$F = \sum_{i=1}^{n} f_{i} \exp(-2\pi i (hx_{i} + ky_{i} + lz_{i}))$$

 $\mathsf{Examples} \rightarrow$

bcc- structure: xyz = 000,
$$\frac{1}{2} \frac{1}{2} \frac{1}{2}$$

= $f(1 + \exp(-\pi i(h + k + l)))$

 $\begin{array}{ll} \mathsf{F=2f} & \text{if } \mathsf{h+k+l} = \mathsf{even}; \\ \mathsf{F=0} & \text{if } \mathsf{h+k+l} & \text{odd} \end{array}$

fcc- structure: xyz = 000, $\frac{1}{2}$ $\frac{1}{2}$ 0, $\frac{1}{2}$ 0 $\frac{1}{2}$, 0 $\frac{1}{2}$ $\frac{1}{2}$

$$F = f(1 + \exp(-\pi i(h+k) + \exp(-\pi i(h+l) + \exp(-\pi i(k+l))))$$

F= 4fif h,k,lall are even or odd;F= 0if h,k,lare mixed

hcp- structure: xyz = 000, 1/3 2/3 1/2

$$F = f(1 + \exp(-2\pi i((h + 2k)/3 + l/2)))$$

F= 2f	if h+2k =3n, l even;
F= √3f	if h+2k= 3n+1, l odd
F= 0	if h+2k= 3n+1 leven

Extinktion rules

Not all combinations of h,k,l are "allowed", Bragg peak intensity can be vanishing due to crystal (point group) symmetry

In fcc system, only reflections appear with $h^2+k^2+l^2 = 2,4,8,11,12...$

- = 111, 200, 220, 311, 222,....
 - In NaCl 111, 311.... Are weak reflectons 220, 400..... Are strong reflections
 - In ZnSe 220, 400.....strong 111, 311.....middle 200, 222.....weka

Structure (point group) identification considering extinktion rules and Bragg peak intensities

Powder diffraction pattern from CdSe Nanowires

Debye-Waller Factor

Due to thermal atom oscillations

 $\langle \exp(ik(r+\Delta r))\rangle = \exp(ikr)\langle \exp(ik\Delta r)\rangle$

$$\langle \exp(ix) \rangle = 1 + i \langle x \rangle - \frac{1}{2} \langle x^2 \rangle + \dots = \exp(-\frac{1}{2} \langle x^2 \rangle)$$

$$\langle \exp(ik\Delta r) \rangle \approx \exp(-\frac{1}{2}k^2 \langle \Delta r^2 \rangle) = \exp(-2M)$$

$$2M = 16\pi^2 \langle u^2 \rangle \frac{\sin^2 \theta}{\lambda^2}$$

$$F(T) = F \exp(-2M)$$

X-ray intensity becomes damped, Bragg peaks exit

Data evaluation

1	2	3	4	5	6	7	8	9	10	11	12	13	14
20	$\frac{4\sin^2\theta}{\lambda^2}$	$h^2 + k^2 + l^2$	hkl	a(A)	$\frac{\sin\theta}{\lambda}$	fcı	f _{Na}	F^2	m	(LP)	$\frac{F^2m(\text{LP})}{1000}$	A, arb. unit	Col. 12 corrected
27.3	0.0940	3	111	5.65	0.154	13.50	8.90	338	8	33.5	91	116	102
31.7	0.1255	4	200	5.65	0.177	12.70	8.70	7330	6	24.0	1057	1260	1160
45.5	0.2516	8	220	5.64	.0.251	10.50	7.65	5280	12	10.9	690	694	697
53.9	0.3455	11	311	5.64	0.294	9.60	7.00	107	24	7.4	19	23	18
56.5	0.3768	12	222	5.64	0.307	9.35	6.75	4150	8	6.6	219	200	201
66.3	0.503	16	400	5.64	0.354	8.65	6.10	3490	6	4.7	98	92	82
73.2	0.598	19	331	5.64	0.386	8.30	5.65	112	24	3.8	10	13	8
75.4	0.629	20	420	5.64	0.396	8.20	5.50	3010	24	3.60	260	198	195
84.1	0.755	24	422	5.64	0.434	7.85	5.05	2660	24	3.05	195	136	136
90.6	0.849	27	(511 (333	5.64	0.461	7.60	4.75	130	{24 8	2.80	12	10	8

Table 5.1POWDER DIFFRACTOMETER PATTERN OF NaCl ($\lambda = 1.542$ A)

Electron charge density distribution from x-ray diffraction data

$$\rho(r) = \int_{-\infty}^{\infty} F(k) \exp(-ikr) dk$$

$$\rho_i(r) = \frac{2}{V} \sum_{-h}^{h} \sum_{-k}^{k} \sum_{-l}^{l} \Delta F_i(H) \exp(-2\pi H r); \qquad H = \frac{1}{a} (hkl)$$

$$i = \begin{cases} \text{VED using } F_i(H) = F_{\text{obs}}(H) - F_{\text{core}}(H); & hkl = 000 \dots 12 \ 12 \ 0 \ , \\ \text{DED using } F_i(H) = F_{\text{obs}}(H) - F_{\text{sph}}(H); & hkl = 111 \dots 12 \ 12 \ 0 \ , \\ \text{FRD using } F_i(H) = F_{\text{obs}}(H); & hkl = 222, \ 442, \ 622 \ , \\ \text{DX using } F_i(H) = F_{\text{AH}}(H) - F_{\text{TB}}(H); & hkl = 111 \dots 880 \ . \end{cases}$$

Electronic charge density of silicon

Valence charge density

difference charge density (bonding charges)

U.Pietsch phys.stat.sol.(b) 137, 441,(1986)

Electron density distribution of GaAs from x-ray diffraction data

Ullrich Pietsch Z. Naturforsch. 48a, 29-37 (1993)